Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-23T08:25:52.500Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 September 2013

J. M. Borwein
Affiliation:
University of Newcastle, New South Wales
M. L. Glasser
Affiliation:
Clarkson University, New York
R. C. McPhedran
Affiliation:
University of Sydney
J. G. Wan
Affiliation:
Singapore University of Technology and Design
I. J. Zucker
Affiliation:
King's College London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. and I. A., Stegun. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York, 1972.
Adamchik, V.On the Hurwitz function for rational arguments. Appl. Math. Comp., 187: 3–12, 2007.Google Scholar
Adler, S.Generalized Ewald method for lattice sums. Physica (Utrecht), 27: 1193–1201, 1961.Google Scholar
Andrews, G. E., R., Askey, and R., Roy. Special Functions. Cambridge University Press, Cambridge, 1999.
Appell, P.Sur les transformations des équations différentielles linéaires. C. R. Acad. Sci. Paris, 91:211–214, 1880.Google Scholar
Appell, P.Sur les fonctions de trois variables réelles satisfaisant à l'équation différentielle Δ F = 0. Acta Math., 4:313–374, 1884.Google Scholar
Appell, P.Sur quelques applications de la fonction Z(x, y, z) à la physique mathématique. Acta Math., 8:265–294, 1886.Google Scholar
Appell, P.Sur les fonctions harmoniques à trois groupes de périodes. Rend. Circ. Mat. Palermo, 22:361–370, 1906.Google Scholar
Ayoub, R.An Introduction to the Analytic Theory of Numbers. American Mathematical Society, Providence, RI, 1963.
Bailey, D. H., J. M., Borwein, D., Broadhurst, and M. L., Glasser. Elliptic integral evaluations of Bessel moments and applications. J. Phys. A: Math. Theor., 41:205–203, 2008.Google Scholar
Bailey, D. H., J. M., Borwein, R. E., Crandall, and I. J., Zucker. Lattice sums arising from the Poisson equation. J. Phys.A, 46:115201–115232, 2012.Google Scholar
Bailey, W. N.A reducible case of the fourth type of Appell's hypergeometric functions of two variables. Quart. J. Math. Oxford, 4:305–308, 1933.Google Scholar
Bailey, W. N.Some infinite integrals involving Bessel functions. Proc. London Math. Soc., 40: 37–48, 1935.Google Scholar
Baldereschi, A., G., Senatore, and I., Oriani. Madelung energy of the Wigner crystal on lattices with non-equivalent sites. Solid State Commun., 81: 21–22, 1992.Google Scholar
Barber, M. N.Cross-over phenomena in the asymptotic behaviour of lattice sums. J. Phys. A., 10: 2133–2142, 1977.Google Scholar
Bellman, R.A Brief Introduction to Theta Functions. Holt, New York, 1961.
Benson, G. C.A simple formula for evaluating the Madelung constant of a NaCl-type crystal. Can. J. Phys., 34: 888–890, 1956.Google Scholar
Benson, G. C. and H. P., Schreiber. A method for the evaluation of some lattice sums occur¬ring in calculations of physical properties of crystals. II. Can. J. Phys., 33: 529–533, 1955.Google Scholar
Benson, G. C., H. P., Schreiber, and D., Patterson. An examination of Verwey's model for the lattice structure of the free surface of alkali halide crystals. Can. J. Phys., 34: 265–275, 1956.Google Scholar
Benson, G. C. and F., van Zeggeren. Madelung constants of some cubic crystals. J. Chem. Phys., 26:1083–1085, 1957.Google Scholar
Berndt, B. C.Ramanujan's Notebooks Part III. Springer-Verlag, New York, 1991.
Berndt, B. C., G., Lamb, and M., Rogers. Two dimensional series evaluations via the elliptic functions of Ramanujan and Jacobi. Ramanujan Journal, 2011.Google Scholar
Bertaut, F.L'énergie électrostatique de réseaux ioniques. J. Phys. Radium, 13: 499–505, 1952.Google Scholar
Bertaut, F.C. R., Hebd. Seances Acad. Sci., 239: 234–235, 1954.
Bertin, M. J.Mesure de Mahler d'hypersurfaces K3. J. Number Theory, 128: 2890–2913, 2008.Google Scholar
Bethe, H.Splitting of terms in crystals. Ann. Phys. (Leipzig), 3:137, 1929.
Birman, J. L.Effect of overlap on electrostatic lattice potentials in ionic crystals. Phys. Rev., 97:897–902, 1955.Google Scholar
Blakemore, J. S.Solid State Physics. Saunders, Philadelphia, 1969.
Bogomolny, E. and P., Leboeuf. Statistical properties of the zeros of zeta functions – beyond the Riemann case. Nonlinearity, 7:1155–1167, 1994.Google Scholar
Bonsall, L. and A. A., Maradudin. Some static and dynamical properties of a two-dimensional Wigner crystal. Phys. Rev. B, 15:1959–1973, 1977.Google Scholar
Boon, M. and J., Zak. Coherent states and lattice sums. J. Math. Phys., 19: 2308–2311, 1978.Google Scholar
Born, M.Dynamik der Kristallgitter. Teubner, Leipzig, 1916.
Born, M.Über elektrostatische Gitterpotentiale. Zeitschrift für Physik, 7: 124–140, 1921.Google Scholar
Born, M. and M., Bradburn. The thermodynamics of crystal lattices. II. Proc. Camb. Phil. Soc., 39: 104–113, 1943.Google Scholar
Born, M. and R., Fürth. The stability of crystal lattices. III. Proc. Camb. Phil. Soc., 36:454–465, 1940.Google Scholar
Born, M. and M., Göppert-Mayer. In Handbuch der Physik (S., Fliigge, ed.), vol. 24, Part 2, p. 707. Springer-Verlag, Berlin and New York, 1933.
Born, M. and A., Landé. The absolute calculation of crystal properties with the help of Bohr's atomic model. Part 2. In Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, pp. 1048–1068, 1918.
Born, M. and R. D., Misra.On the stability of crystal lattices. IV. Proc. Camb. Phil. Soc., 36: 466–478, 1940.Google Scholar
Bornemann, F., D., Laurie, S., Wagon, and J., Waldvogel. The SIAM 100-Digit Challenge. SIAM, 2004.
Borwein, D. and J. M., Borwein.A note on alternating series in several dimensions. Amer. Math. Mon., 93:531–539, 1985.Google Scholar
Borwein, D. and J. M., Borwein.Some exponential and trigonometric lattice sums. J. Math. Anal.Appl., 188:209–5218, 1994.Google Scholar
Borwein, D., J. M., Borwein, and C., Pinner. Convergence of Madelung-like lattice sums. Trans. Amer. Math. Soc., 350:3131–3167, 1998.Google Scholar
Borwein, D., J. M., Borwein, and R., Shail. Analysis of certain lattice sums. J. Math. Anal. Appl., 143:126–137, 1989.Google Scholar
Borwein, D., J. M., Borwein, R., Shail, and I. J., Zucker.Energy of static electron lattices. J. Phys. A: Math. Gen., 21:1519–1531, 1988.Google Scholar
Borwein, D., J. M., Borwein, and K., Taylor. Convergence of lattice sums and Madelung's constant. J. Math. Phys., 26:2999–3009, 1985.Google Scholar
Borwein, J. M. and D. H., Bailey.Mathematics by Experiment: Plausible Reasoning in the 21st Century, 2nd edition. A. K., Peters, 2008.
Borwein, J. M. and P. B., Borwein.Pi and the AGM - A Study in Analytic Number Theory and Computational Complexity. Wiley, New York, 1987.
Borwein, J. M., P. B., Borwein, and F. G., Garvan.Some cubic modular identities of Ramanujan. Trans. Amer. Math. Soc., 343:35–47, 1994.Google Scholar
Borwein, J. M. and K.-K. S., Choi. On the representations of xy + yz + zx. Exp. Math., 9: 153–158, 2000.Google Scholar
Borwein, J. M. and A. S., Lewis.Partially-finite convex programming in L 1:entropy maximization. SIAM J. Optimization, 3:248–267, 1993.Google Scholar
Borwein, J. M., A., Straub, and J. G., Wan.Three-step and four-step random walk integrals. Exp. Math., 22:1–14, 2013.Google Scholar
Borwein, J. M., A., Straub, J. G., Wan, and W., Zudilin. Densities of short uniform random walks. Can. J. Math., 64:961–990, 2012, with an appendix by Don Zagier.Google Scholar
Borwein, J. M. and J., Vanderwerff. Convex Functions: Constructions, Characterizations and Counterexamples. Encyclopedia of Mathematics and Its Applications, vol. 109, Cambridge University Press, 2010.
Borwein, J. M. and I. J., Zucker.Elliptic integral evaluation of the Gamma function at rational values of small denominator. IMA J. Numer. Anal., 12:519–526, 1992.Google Scholar
Borwein, J. M. and R. E., Crandall.Closed forms: what they are and why we care. Not. Amer. Math. Soc., 60(1):60–65, 2013.Google Scholar
Boyd, D. W.Mahler's measure and special values of L-functions. Exp. Math., 7: 37–82, 1998.Google Scholar
Broadhurst, D.Elliptic integral evaluation of a Bessel moment by contour integration of a lattice Green function. 2008. Preprint: arXiv:0801.0891v1.
Brown, E. and C. J., Parry.The imaginary bicyclic biquadratic fields with class number 1. J. Reine Angew. Math., 266:118–120, 1974.Google Scholar
Buhler, J. P. and R. E., Crandall.On the convergence problem for lattice sums. J. Phys. A: Math. Gen., 23:2523–2528, 1990.Google Scholar
Burrows, E. L. and S. F. A., Kettle. Madelung constants and other lattice sums. J. Chem. Ed., 52: 58–59, 1975.Google Scholar
Campbell, E. S.Existence of a well defined specific energy for an ionic crystal – justification of Ewald's formulae and of their use to deduce equations for multipole lattices. J. Phys. Chem. Solids, 24:197, 1963.Google Scholar
Cayley, A.The Collected Mathematical Papers, vol. 1. Cambridge University Press, Cambridge, 1889.
Cayley, A.An Elementary Treatise on Elliptic Functions, 2nd edition. Deighton, Bell and Co., 1895.
Chaba, A. N. and R. K., Pathria.Evaluation of a class of lattice sums in arbitrary dimensions. J. Math. Phys., 16:1457–1460, 1975.Google Scholar
Chaba, A. N. and R. K., Pathria.Evaluation of lattice sums using Poisson's summation formula. 2. J. Phys. A, 9:1411–1423, 1976a.Google Scholar
Chaba, A. N. and R. K., Pathria.Evaluation of lattice sums using Poisson's summation formula. 3. J. Phys. A, 9:1801–1810, 1976b.Google Scholar
Chaba, A. N. and R. K., Pathria.Evaluation of lattice sums using Poisson's summation formula. 4. J. Phys. A, 10:1823–1832, 1977.Google Scholar
Chen, L. C. and F. Y., Wu.The random cluster model and a new integration identity. J. Phys. A: Math. Gen., 38:6271–6276, 1005.Google Scholar
Chin, S. K., N. A., Nicorovici, and R. C., McPhedran.Green's function and lattice sums for electromagnetic scattering by a square array of cylinders. Phys.Rev.E, 49, 1994.
Chowla, S.An extension of Heilbronn's class number theorem. Quart. J. Math. Oxford, 5: 304–307, 1934.Google Scholar
Clausen, T.Ueber die Fälle wenn die Reihe ein Quadrat von der Form hat. J. Math., 3:89–95, 1828.Google Scholar
Clausius, R.Die Mechanische Behandlung der Electricität. Braunschweig, Vieweg, 1879.
Cockayne, E.Comment on ‘stability of the Wigner electron crystal on the perovskite lattice’. J. Phys: Condens. Matter, 3:8757, 1991.Google Scholar
Cohn, H.A Classical Invitation to Algebraic Numbers and Class Fields. Springer-Verlag, Berlin and New York, 1978.
Coldwell-Horsfall, R. A. and A. A., Maradudin. Zero point energy of an electron lattice. J. Math. Phys., 1: 395–404, 1960.Google Scholar
Colquitt, D. J., M. J., Nieves, I. S., Jones, A. B., Movchan, and N. V., Movchan.Localisation for an infinite line defect in an infinite square lattice. Preprint: arXiv:1208.1871v2:1-24, 2012.
Conrey, J. B.The Riemann hypothesis. Not. Amer. Math. Soc., 50:341–353, 2003.Google Scholar
Courant, R.Über partielle Differenzengleichung. In Proc. Atti Congresso Internazionale Dei Matematici, Bologna, vol. 3, pp. 83–89, 1929.Google Scholar
Courant, R., K., Friedrichs, and H., Lewy. Über die partiellen Differenzengleichung der mathematischen Physik. Math. Ann., 100:32–74, 1928.Google Scholar
Crandall, R. E.New representations for the Madelung constant. Exp. Math., 8: 367–379, 1999.Google Scholar
Crandall, R. E.The Poisson equation and ‘natural’ Madelung constants. 2012. Preprint.
R. E., Crandall and J. P., Buhler.Elementary function expansions for Madelung constants. J. Math. Phys., 20:5497–5510, 1987.Google Scholar
R. E., Crandall and J. F., Delord.The potential within a crystal lattice. J. Math. Phys., 20: 2279–2292, 1987.Google Scholar
Davies, H.Poisson's partial differential equation. Quart. J. Math, 6:232–240, 1955.Google Scholar
De Wette, F. W.Electric field gradients in pointion and uniform-background lattices. Phys. Rev., 123:103, 1961.Google Scholar
De Wette, F. W. and G. E., Schacher.Internal fields in general dipole lattices. Phys.Rev. A, 137: 78–91, 1965.Google Scholar
Delves, R. T. and G. S., Joyce.On the Green function for the anisotropic simple cubic lattice. Ann. Phys., 291:71–133, 2001.Google Scholar
Delves, R. T. and G. S., Joyce.Exact product form for the anisotropic simple cubic lattice Green function. J. Phys. A: Math. Theor., 39:4119–4145, 2006.Google Scholar
Delves, R. T. and G. S., Joyce.Derivation of exact product forms for the simple cubic lattice Green function using Fourier generating functions and Lie group identities. J. Phys. A: Math. Theor., 40: 8329–8343, 2007.Google Scholar
Deninger, C.Deligne periods of mixed motives, K-theory and the entropy of certain Zn – actions. J. Amer. Math. Soc., 10:259–281, 1997.Google Scholar
Dickson, L. E.An Introduction to the Theory of Numbers. Dover, New York, 1957.
Dietz, B. and K., Zyczkowski. Level-spacing distributions beyond the Wigner surmise. Z. Phys. Condens. Matter, 84:157–158, 1991.Google Scholar
Domb, C.On multiple returns in the random walk problem. Proc. Camb. Phil. Soc., 50: 586–591, 1954.Google Scholar
Doyle, P. G. and L. J., Snell.Random Walks and Electric Networks. Carus Mathematical Monographs, MAA, 1984.
Duffin, R. J.Discrete potential theory. Duke Math. J., 20:233–251, 1953.Google Scholar
Emersleben, O.Zetafunktionen und elektrostatische Gitterpotentiale. I. Phys. Z., 24:73–80, 1923a.Google Scholar
Emersleben, O.Zetafunktionen und elektrostatische Gitterpotentiale. II. Phys. Z., 24:97–104, 1923b.Google Scholar
Emersleben, O.Die elektrostatische Gitterenergie eines neutralen ebenen, insbesondere alternierenden quadratischen Gitters. Z. Phys., 127:588–609, 1950a.Google Scholar
Emersleben, O.Über die Berechnung der Gitterenergie endlicher Kristallstücke. Z. Angew. Math. Mech., 30:252–254, 1950b.Google Scholar
Emersleben, O.Über die Konvergenz der Reihen Epsteinscher Zetafunktionen, Math. Nachr., 4: 468–480, 1951.Google Scholar
Emersleben, O.Z. Phys. Chem., 194: 170–190, 1952.
Emersleben, O.Über Summen Epsteinscher Zetafunktionen regelmäßig verteilter ‘unterer’ Parameter. Math. Nachr., 13: 59–72, 1954.Google Scholar
Emersleben, O.Über Funktionalgleichungen zwischen Epsteinscher Zetafunktionen gleichen Arguments. Math. Nachr., 44: 205–230, 1970.Google Scholar
Engblom, S.Gaussian quadratures with respect to discrete measures. Uppsala University Technical Reports, 7: 1–17, 2006.Google Scholar
Epstein, P.Zur Theorie allgemeiner Zetafunktionen. Math. Ann., 56: 615–644, 1903.Google Scholar
Evjen, H.On the stability of certain heteropolar crystals. Phys. Rev., 39: 675–687, 1932.Google Scholar
Ewald, P.Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys., 64: 253–287, 1921.Google Scholar
Ferguson, Helaman and Claire, Ferguson. Sculpture inspired by work with Alfred Gray: Kepler elliptic curves and minimal surface sculptures of the planets. Contemp. Math., 288: 39–53, 2000.Google Scholar
Fetter, A. L.Evaluation of lattice sums for clean type-II superconductors. Phys. Rev. B, 11: 2049–2052, 1975.Google Scholar
Foldy, L. L.Electrostatic stability of Wigner and Wigner-Dyson lattices. Phys. Rev. B, 17: 4889–4894, 1978.Google Scholar
Folsom, A., W., Kohnen, and S., Robins. Conic theta functions and their relations to theta functions. 2011. Preprint.
Forrester, P. J. and M. L., Glasser.Some new lattice sums including an exact result for the electrostatic potential within the NaCl lattice. J. Phys. A, 15:911–914, 1982.Google Scholar
Fuchs, K.A quantum mechanical investigation of the cohesive forces of metallic copper. Proc. Roy. Soc. London A, 151: 585–602, 1935.Google Scholar
Fumi, F. G. and M. P., Tosi.On the Naor relations between Madelung constants for cubic ionic lattices. Phil. Mag., 2:284, 1957.Google Scholar
Fumi, F. G. and M. P., Tosi.Extension of the Madelung method for the evaluation of lattice sums. Phys. Rev., 117:1466–1468, 1960.Google Scholar
Garnett, J. C. M.Colours in metal glasses and in metallic films. Phil. Trans. Roy. Soc. London, 203:385–420, 1904.Google Scholar
Glaisher, J. W. L.Messenger ofMathematics, vol. 24, p. 27, 1895.
Glasser, M. L.A Watson sum for a cubic lattice. J. Math. Phys., 13:1145, 1972.Google Scholar
Glasser, M. L.The evaluation of lattice sums. I. Analytic procedures. J. Math. Phys., 14:409–413, 1973a.Google Scholar
Glasser, M. L.The evaluation of lattice sums. II. Number-theoretic approach. J. Math. Phys., 14:701–703, 1973b.Google Scholar
Glasser, M. L.The evaluation of lattice sums. III. Phase modulated sums. J. Math. Phys., 15: 188–189, 1974.Google Scholar
Glasser, M. L.The evaluation of lattice sums. IV. A five-dimensional sum. J. Math. Phys., 16: 1237–1238, 1975.Google Scholar
Glasser, M. L.Definite integrals of the complete elliptic integral K. J. Res. NBS., 80B:313–323, 1976.Google Scholar
Glasser, M. L.A note on a hyper-cubic Mahler measure and associated Bessel integral. J. Phys. A, 45:494002, 2012.Google Scholar
Glasser, M. L. and G., Lamb. A lattice spanning tree entropy function. J. Phys. A: Math. Gen., 38:L471–L475, 2005.Google Scholar
Glasser, M. L. and E., Montaldi. Staircase polygons and recurrent lattice walks. Phys. Rev. E, 48:2339–2342, 1993.Google Scholar
Glasser, M. L. and V. E., Wood.A closed form evaluation of the elliptical integral. Math. Comput., 25: 535–536, 1971.Google Scholar
Glasser, M. L. and F. Y., Wu.On the entropy of spanning trees on a large triangular lattice. Ramanujan Journal, 10:205–214, 2005.Google Scholar
Glasser, M. L. and I. J., Zucker.Extended Watson integrals for the cubic lattices. Proc. Nat. Acad. Sci. USA, 74:1800–1801, 1977.Google Scholar
Glasser, M. L. and I. J., Zucker.Lattice sums. In Theoretical Chemistry, Advances and Perspectives (H., Eyring and D., Henderson, eds.), vol. 5, pp. 67–139, 1980.
Gordon, B. Some identities in combinatorial analysis. Quart. J. Math., 12:285–290, 1961.Google Scholar
Goursat, E.Sur l'équation différentielle linéaire qui admet pour intégrale la série hypergéometrique. Ann. Sci. École Norm. Sup., 10:S3–S142, 1881.Google Scholar
Graovac, A., H. J., Monkhorst, and M. L., Glasser.Computation of Fourier transform quantities in Hartree-Fock calculations for simple crystals. Int. J. Quantum Chem., 9: 243–259, 1975.Google Scholar
Greenspan, N. T.The End ofthe Certain World: The Life and Science of Max Born. Basic Books, 2005.
Guillera, J. and M., Rogers. Ramanujan series upside-down. Preprint. Submitted for publication on 18 June 2012.
Guttmann, A. J.Lattice Green functions in all dimensions. J. Phys. A: Math. Theor., 43:305205, 2010.Google Scholar
Guttmann, A. J. and T., Prellberg. Staircase polygons, elliptic integrals, Heun functions, and lattice Green functions. Phys. Rev. E, 47:R2233–R2236, 1993.Google Scholar
Guttmann, A. J. and M., Rogers. An integral arising from the chiral sl(n) Potts model. J. Phys. A: Math. Theor., 46:045202, 2013.Google Scholar
Guttmann, A. J. and M., Rogers. Spanning tree generating functions and Mahler measures. J. Phys. A, to appear.
Guy, R. K.Gauss' lattice point problem. In Unsolved Problems in Number Theory, 2nd edition. Springer-Verlag, New York, 1994.
Hall, G. E.Asymptotic properties of generalized Chaba and Pathria lattice sums. J. Math. Phys., 17:259–260, 1976a.Google Scholar
Hall, G. E.Weak phase transitions in asymptotic properties of lattice sums. J. Stat. Phys., 14:521–524, 1976b.Google Scholar
Hall, G. E.Order relations for lattice sums from order relations for theta functions. J. Phys. Chem. Solids, 38:367–373, 1977.Google Scholar
Hardy, G. H.On some definite integral considered by Mellin. Messenger of Mathematics, vol. 49, pp. 85–91, 1919.Google Scholar
Hardy, G. H. and M., Riesz. The General Theory ofDirichlet Series. Cambridge Tracts in Mathematics and Mathematical Physics, Cambridge University Press, Cambridge, 1915.
Hardy, G. H. and E. M., Wright.An Introduction to the Theory of Numbers, 4th edition. Clarendon, Oxford, 1960.
Harris, F. E. and H. J., Monkhorst.Electronic-structure studies of solids. I. Fourier representation method for Madelung sums. Phys. Rev. B, 2: 4400–4405, 1970.Google Scholar
Hautot, A.A new method for the evaluation of slowly convergent series. J. Math. Phys., 15: 1722–1727, 1974.Google Scholar
Hautot, A.New applications of Poisson's summation formula. J. Phys. A, 8:853–862, 1975.Google Scholar
Heller, W. R. and A., Marcus. A note on the propagation of excitation in an idealized crystal. Phys. Rev., 84:809–813, 1951.Google Scholar
Hioe, F. T.A Green's function for a cubic lattice. J. Math. Phys., 19:1064–1067, 1978.Google Scholar
Hirschhorn, M., F., Garvan, and J. M., Borwein.Cubic analogues of the Jacobian theta function 0(q, z). J. Math. Phys., 19:1064, 1978.Google Scholar
Højendahl, K.K. Dan. Vidensk. Selsk. Mat. Fys. Medd., 16:135, 1938.
Hoskins, C. S., M. L., Glasser, and E. R., Smith.Half-space electrostatic sums. J. Phys. A, 10: 879–884, 1977.Google Scholar
Hove, J. and J. A., Krumhansl.The evaluation of lattice sums for cubic crystals. Phys. Rev., 92: 569–572, 1953.Google Scholar
Hund, F.Versuch einer Ableitung der Gittertypen aus der Vorstellung des isotropen polarisierbaren Ions. Z. Phys., 34:833–857, 1925.Google Scholar
Hund, F.Vergleich der elektrostatischen Energien einiger Ionengitter. Z. Phys., 94: 11–21, 1935.Google Scholar
Huxley, M. N.Exponential sums and lattice points II. Proc. London Math. Soc., 66:279–301, 1993.Google Scholar
Iwata, G.Evaluation of the Watson integral of a face-centered lattice. Nat. Sci. Report, Ochanomizu University, 20:13–18, 1969.Google Scholar
Jacobi, C. G.Fundamenta Nova Theoriae Functionum Ellipticarum. Konigsberg, 1829.
Jacobi, C. G.Gesammelte Werke, vol. 3. Chelsea, New York, 1969.
Jones, D. S.Generalized Functions. McGraw-Hill, New York, 1966.
Jones, J. E.On the determination of molecular fields. III. From crystal measurements and kinetic theory data. Proc. Roy. Soc. London A, 106:709–718, 1924.Google Scholar
Jones, J. E. and B. M., Dent.Cohesion at a crystal surface. Trans. Faraday Soc., 24: 92–108, 1928.Google Scholar
Jones, J. E. and A. E., Ingham.On the calculation of certain crystal potential constants, and on the cubic crystal of least potential energy. Proc. Roy. Soc. London A, 107: 636–653, 1925.Google Scholar
Joyce, G. S.Lattice Green function for the anisotropic face centred cubic lattice. J. Phys. C, 4:L53–L56, 1971.Google Scholar
Joyce, G. S.Lattice Green function for the simple cubic lattice. J. Phys. A, 5:L65–L68, 1972.Google Scholar
Joyce, G. S.On the simple cubic lattice Green function. Phil. Trans. Roy. Soc. London, A273:583–610, 1973.Google Scholar
Joyce, G. S.On the cubic lattice Green functions. Proc. Roy. Soc. London, A455:463–477, 1994.Google Scholar
Joyce, G. S.On the cubic modular transformation and the cubic lattice Green functions. J. Math. A: Math. Gen., 31:5105–5115, 1998.Google Scholar
Joyce, G. S.Singular behaviour of the cubic lattice Green functions and associated integrals. J. Phys. A: Math. Gen., 34:3831–3839, 2001.Google Scholar
Joyce, G. S.Application of Mahler measure theory to the face-centred cubic lattice Green function at the origin and its associated logarithmic integral. J. Phys. A: Math. Theor., 45:285001, 2012.Google Scholar
Joyce, G. S. and R. T., Delves.Exact product forms for the simple cubic lattice Green functions: I. J. Phys. A: Math. Gen., 37:3645–3671, 2004.Google Scholar
Joyce, G. S. and R. T., Delves.Exact product forms for the simple cubic lattice Green functions: II. J. Phys. A: Math. Gen., 37:5417–5447, 2004.Google Scholar
Joyce, G. S., R. T., Delves, and I. J., Zucker.Exact evaluation of the Baxter-Bazhanov Green function. J. Phys. A: Math. Gen., 31:1781–1790, 1998.Google Scholar
Joyce, G. S., R. T., Delves, and I. J., Zucker.Exact evaluation for the anisotropic face-centred and simple cubic lattices. J. Phys. A: Math. Gen., 36: 8661–8672, 2003.Google Scholar
Joyce, G. S. and I. J., Zucker.Evaluation of the Watson integral and associated logarithmic integral for the d-dimensional hypercubic lattice. J. Phys. A, 34: 7349–7354, 2001.Google Scholar
Joyce, G. S. and I. J., Zucker.On the evaluation of generalized Watson integrals. Proc. AMS, 133:71–81, 2004.Google Scholar
Kac, V. G.Infinite-dimensional algebras, Dedekind's η-function, classical Möbius function and the very strange formula. Adv. Math., 30:85–136, 1978.Google Scholar
Kanamori, J., T., Moriya, K., Motizuki, and T., Nagamiya. Methods of calculating the crystalline electric field. J. Phys. Soc., 10:93–102, 1956.Google Scholar
Kanemitsu, S., Y., Tanigawa, K., Tsukada, and M., Yoshimoto. Crystal symmetry viewed as zeta symmetry. Chapter 9 in Zeta Functions, Topology and Quantum Physics. Springer, 2005.
Kanemitsu, S. and H., Tsukada. The Legacy ofAlladi Ramakrishnan in the Mathematical Sciences: Crystal Symmetry Viewed as Zeta Symmetry II. Springer, 2010.
Kendall, J.The abnormality of strong electrolytes and the ionization theory of Ghosh. J. Am. Chem. Soc., 44: 717–738, 1922.Google Scholar
Kittel, C.Introduction to Solid State Physics. Wiley, New York, 1953.
Köhler, G.Some eta-identities arising from theta series. Math. Scand., 66: 147–154, 1990.Google Scholar
Kornfeld, H.Die Berechnung elektrostatischer Potentiale und der Energie von Dipol- und Quadrupolgittern. Z. Phys., 22: 27–43, 1924.Google Scholar
Krätzel, E.Bemerkungen zu einem Gitterpunkte. Math. Ann., 179: 90–96, 1969.Google Scholar
Krätzel, E. and W., Nowak. Lattice points in large convex bodies, II. Acta Arith., 62:285–295, 1992.Google Scholar
Krazer, A. and E., Prym. Neue Grundlagen einer Theorie der Allgemeinen Thetafunktionen. Teubner, Leipzig, 1893.
Kummer, E. E.Uber die hypergeometrische Reihe. J. Reine Angew. Math., 15:39–83, 127–172, 1836.Google Scholar
Landau, E.Über eine Aufgabe aus der Theorie der quadratischen Formen. Wien. Sitzungsber., 124: 445–468, 1915.Google Scholar
Landau, E.Zur analytischen Zahlentheorie der definiten quadratischen Formen (über Gitterpunkte in mehrdimensionalen Ellipsoiden). S. B. Preuss. Akad. Wiss., 458–476, 1915.Google Scholar
Landau, E.Über Gitterpunkte in mehrdimensionalen Ellipsoiden. Math. Zeit., 21: 126–132, 1924.Google Scholar
Landau, E.Über Gitterpunkte in mehrdimensionalen Ellipsoiden. Zweite Abhandlung. Math. Zeit., 24:299–310, 1926.Google Scholar
Landau, E.Vorselungen über Zahlentheorie, vol. 2, Part 8, Chapter 6. Chelsea, New York, 1955.
Landauer, R.Electrical conductivity in inhomogeneous media. In Proc.Amer. Inst.Phys. Conf., vol. 40, pp. 2–45, 1978.Google Scholar
Landé, A.Verh. Dtsch. Phys. Ges., 20:217, 1918.
Lin, Y. K.Staggered ice-rule vertex model on the Kagome lattice. J. Phys. A: Math. Gen., 8: 1899–1919, 1975.Google Scholar
Linton, C. M.Lattice sums for the Helmholtz equation. SIAM Review, 52: 630–674, 2010.Google Scholar
Lorentz, H. A.The Theory of Electrons. B. G. Teubner, Leipzig, 1909. Reprint: Dover, New York, 1952.
Lorenz, L.Bidrag tiltalienes theori. Tidsskrift Math., 1:97–114, 1871.Google Scholar
Lorenz, L.Wiedemannsche Ann., 11:70, 1880.
Mackenzie, J. K.General relation between lattice sums. J. Chem. Phys., 26:1769, 1957.Google Scholar
Mackenzie, J. K.A simple formula for evaluating the Madelung constant of a NaCl-type crystal. Can. J. Phys., 35: 500–501, 1957.Google Scholar
Madelung, E.Das elektrische Feld in Systemen von regelmäßig angeordneten Punktladungen. Phys. Z., 19: 524–533, 1918.Google Scholar
Madras, N., C. E., Soteros, S. G., Whittington, et al. The free energy of a collapsing branched polymer. J. Phys. A: Math. Gen., 23: 5327–5350, 1990.Google Scholar
Maradudin, A. A., E. W., Montroll, G. H., Weiss, R., Herman, and W. H., Miles.Green's Functions for Monatomic Simple Cubic Lattices. Académie Royale de Belgique, 1960.
Maradudin, A. A. and G. H., Weiss.A method for evaluating lattice sums. Can. J. Phys., 37: 170–173, 1959.Google Scholar
Martin, Y. and K., Ono. Eta-quotients and elliptic curves. Proc. Amer. Math. Soc., 125:3169–3176, 1997.Google Scholar
McCrea, W. H.A problem on random paths. Math. Gazette, 20:311–317, 1936.Google Scholar
McCrea, W. H. and F. J. W., Whipple. Random paths in two and three dimensions. Proc. Roy. Soc. Edinburgh, 60:281–298, 1940.Google Scholar
McKean, P. and V., Moll. Elliptic Curves: Function Theory, Geometry, Arithmetic. Cambridge University Press, New York, 1997.
McNeil, M. B.Electrostatic energies calculated by plane-wise summation. J. Phys. C, 3: 2020–2021, 1970.Google Scholar
McPhedran, R. C., L. C., Botten, N. P., Nicorovici, and I. J., Zucker.Systematic investigation of two-dimensional static array sums. J. Math. Phys., 48:033501, 2007.Google Scholar
McPhedran, R. C., L. C., Botten, N. P., Nicorovici, and I. J., Zucker.On the Riemann property of angular lattice sums and the one-dimensional limit of two-dimensional lattice sums. Proc. Roy. Soc. A, 464:3327–3352, 2008.Google Scholar
McPhedran, R. C., L. C., Botten, D. J., Williamson, and N. A., Nicorovici.The Riemann hypothesis and the zero distribution of angular lattice sums. Proc. Roy. Soc. London A, 467: 2462–2478, 2011.Google Scholar
McPhedran, R. C., G. H., Smith, N. A., Nicorovici, and L. C., Botten.Distributive and analytic properties of lattice sums. J. Math. Phys., 45: 2560–2578, 2004.Google Scholar
Miller, J. Jr. Lie Theory and Special Functions. Academic Press, New York, 1968.
Misra, R.On the stability of crystal lattices. II. Proc. Camb. Phil. Soc., 36: 173–182, 1940.Google Scholar
Mityushev, V. V.Transport properties of doubly-periodic arrays of circular cylinders. Z. Angew. Math. Mech., 77: 115–120, 1997.Google Scholar
Mityushev, V. V. and P. M., Adler.Longitudinal permeability of spatially periodic rectangular arrays of circular cylinders. I. A single cylinder in the unit cell. Z. Angew. Math. Mech., 82: 335–345, 2002.Google Scholar
Molière, G.Z. Kristallogr., 101:383, 1939.
Monien, H.Gaussian quadrature for sums: a rapidly convergent summation scheme. Math. Comp., 79: 857–869, 2010.Google Scholar
Montaldi, E.The evaluation of Green's functions for cubic lattices, revisited. Lettera al Nuovo Cimento, 30:403–409, 1981.Google Scholar
Montroll, E. W.Theory of the vibration of simple cubic lattices with nearest neighbor interaction. In Proc. 3rd Berkeley Symp. on Math. Stats. and Probability, vol.3, pp. 209–246, 1956.Google Scholar
Moroz, A.On the computation of the free-space doubly-periodic Green's function of the three-dimensional Helmholtz equation. J. Electromagn. Waves Appl., 16: 457–465, 2002.Google Scholar
Mossotti, O. F.Memorie di Matematica e di Fisica della Società Italiana delle Scienze Residente inModena, 24:49–74, 1850.
Movchan, A. B., N. A., Nicorovici, and R. C., McPhedran.Green's tensors and lattice sums for elastostatics and elastodynamics. Proc. Roy. Soc. London A, 453: 643–662, 1997.Google Scholar
Naor, P.Linear dependence of lattice sums. Z. Kristallogr. Kristallgeom., 110: 112–126, 1958.Google Scholar
Nicholson, M. M.Surface tension in ionic crystals. Proc. Roy. Soc. London A, 228:490–510, 1955.Google Scholar
Nicorovici, N. A., C. G., Poulton, and R. C., McPhedran.Analytical results for a class of sums involving Bessel functions and square arrays. J. Math. Phys., 37: 2043–2052, 1996.Google Scholar
Nijboer, B. R. A. and F. W., de Wette. On the calculation of lattice sums. Physica (Utrecht), 23: 309–321, 1957.Google Scholar
Nijboer, B. R. A. and F. W., de Wette. The internal field in dipole lattices. Physica (Utrecht), 24: 422–431, 1958.Google Scholar
Novâk, B.Über eine Methode der Ω-abschätzungen. Czech. Math. J., 21:257–279, 1971.Google Scholar
Novâk, B.New proofs of a theorem of Edmund Landau. Acta Arith., 31:101–105, 1976.Google Scholar
Olver, F. W. J., D. W., Lozier, R. F., Boisvert, and C. W., Clark (eds.). NIST Handbook of Mathematical Functions, Cambridge University Press, New York, 2010.
Ornstein, L. S. and F., Zernike. Magnetische eigenschappen van cubische Kristalnetten. Proc. K. Akad. Wet. Amst., 21:911, 1918.Google Scholar
Peng, H. W. and S. C., Powers.On the stability of crystal lattices. VIII. Stability of rhombohedral Bravais lattices. Proc. Camb. Phil. Soc., 38:67–81, 1942.Google Scholar
Perrins, W. T., D. R., McKenzie, and R. C., McPhedran.Transport properties of regular arrays of cylinders. Proc. Roy. Soc. London A, 369:207–225, 1979.Google Scholar
Peters, M.The Diophantine equation xy + yz + xz = n and indecomposable binary quadratic forms. Exp. Math., 13:273–274, 2004.Google Scholar
Petkovsek, M., H., Wilf, and D., Zeilberger. A = B.A. K. Peters, Wellesley, 1996.
Placzek, G., B. R. A., Nijboer, and L., van Hove. Effect of short wavelength interference on neutron scattering by dense systems of heavy nuclei. Phys. Rev., 82:392–403, 1951.Google Scholar
Pölya, G.Uber eine Aufgabe der Wahrscheinlichkeitstheorie betreffend die Irrfahrt im Strassennetz. Math. Ann., 84:149–60, 1921.Google Scholar
Poulton, C. G., L. C., Botten, R. C., McPhedran, and A. B., Movchan.Source-neutral Green's functions for periodic problems and their equivalents in electromagnetism. Proc. Roy. Soc. London A, 455: 1107–1123, 1999.Google Scholar
Prudnikov, A. P., Y. A., Brychkov, and O. I., Marichev.Integrals and Series. 1. Elementary Functions. Gordon and Breach, New York, 1986.
Ramanujan, S.Modular equations and approximations to π. Quart. J. Math., 45: 350–372, 1914.Google Scholar
Ramanujan, S.On certain arithmetical functions. Trans. Camb. Phil. Soc., 22: 159–184, 1916.Google Scholar
Rashid, M.A. Lattice Green's functions for cubic lattices. J. Math. Phys., 21: 2549–2552, 1980.Google Scholar
Rayleigh, Lord. On the influence of obstacles arranged in rectangular order upon the properties of a medium. Phil. Mag., 34: 481–502, 1892.Google Scholar
Redlack, A. and J., Grindlay. The electrostatic potential in a finite ionic crystal. Can. J. Phys, 50: 2815–2825, 1972.Google Scholar
Redlack, A. and J., Grindlay. Coulombic potential lattice sums. J. Phys. Chem. Solid, 36:73–82, 1975.Google Scholar
Riesz, M.Sur un théorème de la moyenne et ses applications. Acta Univ. Hungaricae Franc.-Jos., 1: 114–126, 1923.Google Scholar
Rodriguez-Villegas, F.Modular Mahler measures I. In Topics in Number Theory, pp. 17–48. Kluwer, Dordrecht, 1999.
Rogers, M.New5F4 hypergeometric transformations, three-variable Mahlermeasures, and formulas for 1/π. Ramanujan Journal, 18:327–340, 2009.Google Scholar
Rogers, M.Hypergeometric formulas for lattice sums and Mahler measures. IMRN, 17: 4027–4058, 2011.Google Scholar
Rogers, M., J. G., Wan, and I. J., Zucker.Moments of elliptical integrals and critical L-values. Preprint: arXiv:1303.2259, 2013.
Rogers, M. and W., Zudilin. From L-series of elliptic curves to Mahler measures. Compositio Math., 148: 385–414, 2012.Google Scholar
Rosengren, A.On the number of spanning trees for the 3D simple cubic lattice. J. Phys. A: Math. Gen., 20:L923–L927, 1987.Google Scholar
Rudge, W. E.Generalized Ewald potential problem. Phys. Rev., 181:1020–1024, 1969.Google Scholar
Sakamoto, Y.Madelung constants of simple crystals expressed in terms of Born's basic potentials of 15 figures. J. Chem. Phys., 28:164–165, 1958.Google Scholar
Sakamoto, Y.J. Sci. Hiroshima Univ., 27:111, 1964.
Sakamoto, Y.J. Sci. Hiroshima Univ., 38: 239–270, 1974.
Schoeneberg, B.Elliptic Modular Functions. Springer-Verlag, New York, 1974.
Selberg, A. and S., Chowla. On Epstein's zeta function (I). Proc. Nat. Acad. Sci. USA, 35: 371–374, 1949.Google Scholar
Selberg, A. and S., Chowla. On Epstein's zeta-function. J. Reine Angew. Math., 227: 86–110, 1967.Google Scholar
Sherman, J.Crystal energies of ionic compounds and thermochemical applications. Chem. Rev., 11:93–170, 1932.Google Scholar
Sholl, C. A.The calculation of electrostatic energies of metals by plane-wise summation. Proc. Phys. Soc., 92:434–445, 1967.Google Scholar
Shrock, R. and F. Y., Wu.Spanning trees on graphs and lattices in d-dimensions. J. Phys. A: Math. Gen., 33:3881–3902, 2000.Google Scholar
Smith, H. J. S.Report on the Theory of Numbers. Chelsea, New York, 1865.
Srivastava, H. M. and J., Choi. Series Associated with the Zeta and Related Functions. Kluwer Academic, Dordrecht, 2001.
Stepanets, G. F. and A. A., Lopatkin.Russ. J. Phys. Chem. (Engl. Transl.), 41: 1481–1484, 1967.
Stewart, I.How to Cut a Cake and Other Mathematical Conundrums. Oxford University Press, New York, 2006.
Takahasi, U. and Y., Sakamoto. J. Sci. Hiroshima Univ., 24:118–130, 1960.
Taylor, P. R.On the Riemann zeta function. Quart. J. Oxford, 16:1–21, 1945.Google Scholar
Temperley, H. N. V.Combinatorics. In Proc. Oxford Conf. on Combinatorial Mathematics, pp. 356–357, 1972.
Tikson, M.Tabulation of an integral arising in the theory of cooperative phenomena. J. Res. Nat. Bur. Stds., 50:177–178, 1953.Google Scholar
Titchmarsh, E. C.The Theory ofthe Riemann Zeta Function. Oxford University Press, London and New York, 1951.
Topping, J.On the mutual potential energy of a plane network of doublets. Proc. Roy. Soc. London A, 114:67–72, 1927.Google Scholar
Tosi, M. P.Cohesion of ionic solids in the Born model. Solid State Phys., 16:1, 1964.Google Scholar
Tyagi, S.New series representation for the Madelung constant. Progr. Theor. Phys., 114: 517–521, 2005.Google Scholar
van der Hoff, B. M. E. and C. L., Benson.A method for the evaluation of some lattice sums occurring in calculations of physical properties of crystals. Can. J. Phys., 31:1087–1094, 1953.Google Scholar
van Pepye, W. F. ZürTheorie der magnetischen anisotropic kubischer Kristalle beim absoluten Nullpunkt. Physica, 5:465–82, 1938.Google Scholar
Waddington, T. C.Lattice energies and their significance in inorganic chemistry. Adv. Inorg. Chem. Radiochem., 1:157, 1959.Google Scholar
Walfisz, A.Über Gitterpunkte in mehrdimensionalen Ellipsoiden. Math. Zeit., 19: 300–307, 1924.Google Scholar
Walfisz, A.Convergence abscissae of certain Dirichlet series. Akad. Nauk Gruzin. SSR. Trudy Tbiliss. Mat. Inst. Razmadze, 22:33–75, 1956.Google Scholar
Wan, J. G.Moments of products of elliptic integrals. Adv. Appl. Math., 48:121–141, 2012.Google Scholar
Watson, G. N.The expansion of products of hypergeometric functions. Quart. J. Math., 39: 27–51, 1908.Google Scholar
Watson, G. N.A Treatise on the Theory ofBessel Functions. Cambridge University Press, Cambridge, 1922.
Watson, G. N.Three triple integrals. Quart. J. Math. Oxford, 10:266–276, 1939.Google Scholar
Whittaker, E. T. and G. N., Watson.A Course ofModern Analysis, 4th edition. Cambridge University Press, Cambridge, 1946.
Wigner, E. P.On the interaction of electrons in metals. Phys. Rev., 46:1002–1011, 1934.Google Scholar
Wilton, J. R.A series of Bessel functions connected with the theory of lattice points. Proc. London Math. Soc., 29:168–188, 1928.Google Scholar
Wu, F. Y.Number of spanning trees on a lattice. J. Phys. A: Math. Gen., 10:L113–115, 1977.Google Scholar
Y., Zhou. Legendre functions, spherical rotations, and multiple elliptic integrals. arXiv:1301.1735 [math. CA], preprint, 2013.
Zucker, I. J.Exact results for some lattice sums in 2, 4, 6 and 8 dimensions. J. Phys. A, 7: 1568–1575, 1974.Google Scholar
Zucker, I. J.Madelung constants and lattice sums for invariant cubic lattice complexes and certain tetragonal structures. J. Phys. A, 8:1734–1745, 1975.Google Scholar
Zucker, I. J.New Jacobian θ functions and the evaluation of lattice sums. J. Math. Phys., 16: 2189–2191, 1975.Google Scholar
Zucker, I. J.Functional equations for poly-dimensional zeta functions and the evaluation of Madelung constants. J. Phys. A: Math. Gen., 9: 499–505, 1976.Google Scholar
Zucker, I. J.The evaluation in terms of Γ-functions of the periods of elliptic curves admitting complex multiplication. Math. Proc. Camb. Phil. Soc., 82: 111–118, 1977.Google Scholar
Zucker, I. J.The summation of series of hyperbolic functions. SIAM J. Math. Anal., 10: 192–206, 1979.Google Scholar
Zucker, I. J.Some infinite series of exponential and hyperbolic functions. SIAM J. Math. Anal., 15:406–413, 1984.Google Scholar
Zucker, I. J.Further relations amongst infinite series and products II. The evaluation of 3-dimensional lattice sums. J. Phys. A, 23:117–132, 1990.Google Scholar
Zucker, I. J.Stability of the Wigner electron crystal on the perovskite lattice. J. Phys: Condens. Matter, 3:2595–2596, 1991.Google Scholar
Zucker, I. J.70 years of the Watson integrals. J. Stat. Phys., 143: 591–612, 2011.Google Scholar
Zucker, I. J. and R. C., McPhedran.Problem 11294. Amer. Math. Monthly, 114:452, 2007.Google Scholar
Zucker, I. J. and M. M., Robertson.Some properties of Dirichlet L-series. J. Phys. A, 9: 1207–1214, 1976.Google Scholar
Zucker, I. J. and M. M., Robertson.Systematic approach to the evaluation of. J. Phys. A, 9: 1215–1225, 1976.Google Scholar
Zucker, I. J. and M. M., Robertson.Further aspects of the evaluation of. Math. Proc. Camb. Phil. Soc., 95: 5–13, 1984.Google Scholar
Zvengrowski, P. and F., Saidak. On the modulus of the Riemann zeta function in the critical strip. Math. Slovaca, 53: 145–272, 2003.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • J. M. Borwein, University of Newcastle, New South Wales, M. L. Glasser, Clarkson University, New York, R. C. McPhedran, University of Sydney, J. G. Wan, Singapore University of Technology and Design, I. J. Zucker, King's College London
  • Book: Lattice Sums Then and Now
  • Online publication: 05 September 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139626804.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • J. M. Borwein, University of Newcastle, New South Wales, M. L. Glasser, Clarkson University, New York, R. C. McPhedran, University of Sydney, J. G. Wan, Singapore University of Technology and Design, I. J. Zucker, King's College London
  • Book: Lattice Sums Then and Now
  • Online publication: 05 September 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139626804.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • J. M. Borwein, University of Newcastle, New South Wales, M. L. Glasser, Clarkson University, New York, R. C. McPhedran, University of Sydney, J. G. Wan, Singapore University of Technology and Design, I. J. Zucker, King's College London
  • Book: Lattice Sums Then and Now
  • Online publication: 05 September 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139626804.014
Available formats
×