Skip to main content Accessibility help
  • Print publication year: 2009
  • Online publication date: December 2009

1 - Molecular mechanisms establishing consistent left–right asymmetry during vertebrate embryogenesis

from Section 1 - Asymmetry, handedness and language lateralization


Adams, D. S., Robinson, K. R., Fukumoto, T. et al. (2006). Early, H+-V-ATPase-dependent proton flux is necessary for consistent left–right patterning of non-mammalian vertebrates. Development, 133, 1657–71.
Afzelius, B. A. (1985). The immotile-cilia syndrome: a microtubule associated defect. CRC Crit Rev Biochem, 19, 63–87.
Aird, I. (1959). Conjoined twins. B Med J, 1, 1313–15.
Beere, D., Hargreaves, J., Sperber, G. & Cleaton-Jones, P. (1990). Mirror image supplemental primary incisor teeth in twins: case report and review. Pediatr Dent, 12, 390–2.
Bisgrove, B. W., Essner, J. J. & Yost, H. J. (1999). Regulation of midline development by antagonism of lefty and nodal signaling. Development, 126, 3253–62.
Bisgrove, B. W., Essner, J. J. & Yost, H. J. (2000). Multiple pathways in the midline regulate concordant brain, heart and gut left-right asymmetry. Development, 127, 3567–79.
Bisgrove, B. W., Morelli, S. H. & Yost, H. J. (2003). Genetics of human laterality disorders: insights from vertebrate model systems. Annu Rev Genomics Hum Genet, 4, 1–32.
Bowyer, R., Stewart, K. M., Kie, J. G. & Gasaway, W. C. (2001). Fluctuating asymmetry in antlers of Alaskan moose: size matters. J Mammal, 82, 814–24.
Brown, N., McCarthy, A. & Wolpert, L. (1991). Development of handed body asymmetry in mammals. CIBA Found Symp, 162, 182–96.
Brown, N. & Wolpert, L. (1990). The development of handedness in left/right asymmetry. Development, 109, 1–9.
Bruneau, B. G., Logan, M., Davis, N. et al. (1999). Chamber-specific cardiac expression of Tbx5 and heart defects in Holt–Oram syndrome. Dev Biol, 211, 100–8.
Burdine, R. & Schier, A. (2000). Conserved and divergent mechanisms in left–right axis formation. Genes Dev, 14, 763–76.
Burn, J. (1991). Disturbance of morphological laterality in humans. CIBA Found Symp 162, 282–296.
Carton, A. & Rees, R. (1987). Mirror image dental anomalies in identical twins. Br Dent J, 162, 193–4.
Clericuzio, C. L. (1993). Clinical phenotypes and Wilms tumor. Med Pediatr Oncol, 21, 182–7.
Cockayne, E. (1938). The genetics of transposition of the viscera. Quart J Med, 31, 479–93.
Concha, M. L., Burdine, R. D., Russell, C., Schier, A. F. & Wilson, S. W. (2000). A nodal signaling pathway regulates the laterality of neuroanatomical asymmetries in the zebrafish forebrain. Neuron, 28, 399–409.
Cooke, J. (2004). The evolutionary origins and significance of vertebrate left–right organisation. Bioessays, 26, 413–21.
Cote, F., Fligny, C., Bayard, E. et al. (2007). Maternal serotonin is crucial for murine embryonic development. Proc Natl Acad Sci USA, 104, 329–34.
Cuniff, C., Jones, K., Jones, M. et al. (1988). Laterality defects in conjoined twins: implications for normal asymmetry in human embryogenesis. Am J Med Genet, 31, 669–77.
Danilchik, M. V., Brown, E. E. & Riegert, K. (2006). Intrinsic chiral properties of the Xenopus egg cortex: an early indicator of left–right asymmetry? Development, 133, 4517–26.
Danos, M. C. & Yost, H. J. (1995). Linkage of cardiac left–right asymmetry and dorsal–anterior development in Xenopus. Development, 121, 1467–74.
Delaney, M. & Boyd, T. K. (2007). Case report of unilateral clefting: is sonic hedgehog to blame? Pediatr Dev Pathol, 10, 117–20.
Delhaas, T., Arts, T., Bovendeerd, P. H., Prinzen, F. W. & Reneman, R. S. (1993). Subepicardial fiber strain and stress as related to left ventricular pressure and volume. Am J Physiol, 264, H1548–59.
Delhaas, T., Decaluwe, W., Rubbens, M., Kerckhoffs, R. & Arts, T. (2004). Cardiac fiber orientation and the left–right asymmetry determining mechanism. Ann NY Acad Sci, 1015, 190–201.
Duboc, V., Rottinger, E., Lapraz, F., Besnardeau, L. & Lepage, T. (2005). Left–right asymmetry in the sea urchin embryo is regulated by nodal signaling on the right side. Dev Cell, 9, 147–58.
Esser, A. T., Smith, K. C., Weaver, J. C. & Levin, M. (2006). Mathematical model of morphogen electrophoresis through gap junctions. Dev Dyn, 235, 2144–59.
Essner, J. J., Amack, J. D., Nyholm, M. K., Harris, E. B. & Yost, H. J. (2005). Kupffer’s vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left–right development of the brain, heart and gut. Development, 132, 1247–60.
Essner, J. J., Branford, W. W., Zhang, J. & Yost, H. J. (2000). Mesendoderm and left–right brain, heart and gut development are differentially regulated by pitx2 isoforms. Development, 127, 1081–93.
Fraumeni, J. F., Jr., Geiser, C. F. & Manning, M. D. (1967). Wilms’ tumor and congenital hemihypertrophy: report of five new cases and review of literature. Pediatrics, 40, 886–99.
Fukumoto, T., Blakely, R. & Levin, M. (2005a). Serotonin transporter function is an early step in left–right patterning in chick and frog embryos. Dev Neurosci, 27, 349–63.
Fukumoto, T., Kema, I. P. & Levin, M. (2005b) Serotonin signaling is a very early step in patterning of the left–right axis in chick and frog embryos. Curr Biol, 15, 794–803.
Gebbia, M., Ferrero, G. B., Pilia, G. et al. (1997). X-linked situs abnormalities result from mutations in ZIC3. Nat Genet, 17, 305–8.
Gedda, L., Brenci, G., Franceschetti, A., Talone, C. & Ziparo, R. (1981). Study of mirror imaging in twins. Prog Clin Biol Res, 69A, 167–8.
Govind, C. K. (1992). Claw asymmetry in lobsters: case study in developmental neuroethology. J Neurobiol, 23, 1423–45.
Guo, N., Hawkins, C. & Nathans, J. (2004). Frizzled6 controls hair patterning in mice. Proc Natl Acad Sci USA, 101, 9277–81.
Guthrie, S. C. (1984). Patterns of junctional communication in the early amphibian embryo. Nature, 311, 149–51.
Harland, R. & Gerhart, J. (1997). Formation and function of Spemann’s organizer. Annu Rev Cell Dev Biol, 13, 611–67.
Hatcher, C. J., Goldstein, M. M., Mah, C. S., Delia, C. S. & Basson, C. T. (2000). Identification and localization of TBX5 transcription factor during human cardiac morphogenesis. Dev Dyn, 219, 90–5.
Hibino, T., Ishii, Y., Levin, M. & Nishino, A. (2006). Ion flow regulates left–right asymmetry in sea urchin development. Dev Genes Evol, 216, 265–76.
Hirokawa, N., Tanaka, Y., Okada, Y. & Takeda, S. (2006). Nodal flow and the generation of left–right asymmetry. Cell, 125, 33–45.
James, W. (1983). Twinning, handedness, and embryology. Percept Mot Skills, 56, 721–2.
Jefferies, R. P. S., Brown, N. A. & Daley, P. E. J. (1996). The early phylogeny of chordates and echinoderms and the origin of chordate left–right asymmetry and bilateral symmetry. Acta Zool (Stockholm), 77, 101–22.
Kapur, R., Jack, R. & Siebert, J. (1994). Diamniotic placentation associated with omphalopagus conjoined twins. Am J Med Genet, 52, 188–95.
Kawakami, Y., Raya, A., Raya, R. M., Rodriguez-Esteban, C. & Belmonte, J. C. (2005). Retinoic acid signalling links left–right asymmetric patterning and bilaterally symmetric somitogenesis in the zebrafish embryo. Nature, 435, 165–71.
Kennedy, D., O’Craven, K., Ticho, B. et al. (1999). Structural and functional brain asymmetries in human situs inversus totalis. Neurology, 53, 1260–5.
Kloeppel, R., Rothe, K., Hoermann, D. et al. (2002). Proteus syndrome. J Comput Assist Tomogr, 26, 262–5.
Kosaki, K. & Casey, B. (1998). Genetics of human left–right axis malformations. Semin Cell Dev Biol, 9, 89–99.
Krzelj, V., Kragic, I., Glavina-Durdov, M. et al. (2000). Ivemark syndrome: asplenia with kidney collecting duct cysts and polysplenia with cerebellar cyst. Turk J Pediatr, 42, 234–8.
Layton, W. M., Jr. (1976). Random determination of a developmental process: reversal of normal visceral asymmetry in the mouse. J Hered, 67, 336–8.
Layton, W. M., Jr. (1978). Heart malformations in mice homozygous for a gene causing situs inversus. Birth Defects Orig Artic Ser, 14, 277–93.
Leung, A. K., Fong, J. H. & Leong, A. G. (2002). Hemihypertrophy. J R Soci Health, 122, 24–7.
Levin, M. (1997). Left–right asymmetry in vertebrate embryogenesis. Bioessays, 19, 287–96.
Levin, M. (1998). Left–right asymmetry and the chick embryo. Semin Cell Dev Biol, 9, 67–76.
Levin, M. (2004). The embryonic origins of left–right asymmetry. Crit Rev Oral Biol Med, 15, 197–206.
Levin, M. (2005). Left–right asymmetry in embryonic development: a comprehensive review. Mech Dev, 122, 3–25.
Levin, M. (2006). Is the early left–right axis like a plant, a kidney, or a neuron? The integration of physiological signals in embryonic asymmetry. Birth Defects Res C Embryo Today, 78, 191–223.
Levin, M., Buznikov, G. A. & Lauder, J. M. (2006). Of minds and embryos: left–right asymmetry and the serotonergic controls of pre-neural morphogenesis. Dev Neurosci, 28, 171–85.
Levin, M., Johnson, R., Stern, C., Kuehn, M. & Tabin, C. (1995). A molecular pathway determining left–right asymmetry in chick embryogenesis. Cell, 82, 803–14.
Levin, M. & Mercola, M. (1998). Gap junctions are involved in the early generation of left–right asymmetry. Dev Biol, 203, 90–105.
Levin, M. & Mercola, M. (1999). Gap junction-mediated transfer of left–right patterning signals in the early chick blastoderm is upstream of Shh asymmetry in the node. Development, 126, 4703–14.
Levin, M. & Palmer, A. R. (2007). Left-right patterning from the inside out: widespread evidence for intracellular control. Bioessays, 29, 271–87.
Levin, M., Roberts, D., Holmes, L. & Tabin, C. (1996). Laterality defects in conjoined twins. Nature, 384, 321.
Levin, M., Thorlin, T., Robinson, K. R., Nogi, T. & Mercola, M. (2002). Asymmetries in H+/K+-ATPase and cell membrane potentials comprise a very early step in left-right patterning. Cell, 111, 77–89.
Levy, J. & Levy, J. M. (1978). Human lateralization from head to foot: sex-related factors. Science, 200, 1291–2.
Lewin, S. O. & Opitz, J. M. (1986). Fibular a/hypoplasia: review and documentation of the fibular developmental field. Am J Med Genet Suppl, 2, 215–38.
Liang, J. O., Etheridge, A., Hantsoo, L. et al. (2000). Asymmetric nodal signaling in the zebrafish diencephalon positions the pineal organ. Development, 127, 5101–12.
Lohr, J. L., Danos, M. C. & Yost, H. J. (1997). Left–right asymmetry of a nodal-related gene is regulated by dorsoanterior midline structures during Xenopus development. Development, 124, 1465–72.
Lowe, L. A., Supp, D. M., Sampath, K. et al. (1996). Conserved left–right asymmetry of nodal expression and alterations in murine situs inversus. Nature, 381, 158–61.
Marszalek, J. R., Ruiz-Lozano, P., Roberts, E., Chien, K. R. & Goldstein, L. S. (1999). Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc Natl Acad Sci USA, 96, 5043–8.
McGrath, J., Horwich, A. L. & Brueckner, M. (1992). Duplication/deficiency mapping of situs inversus viscerum (iv), a gene that determines left–right asymmetry in the mouse. Genomics, 14, 643–8.
McGrath, J., Somlo, S., Makova, S., Tian, X. & Brueckner, M. (2003). Two populations of node monocilia initiate left–right asymmetry in the mouse. Cell, 114, 61–73.
McManus, I. C., Martin, N., Stubbings, G. F., Chung, E. M. & Mitchison, H. M. (2004). Handedness and situs inversus in primary ciliary dyskinesia. Proc R Soc Lond B Biol Sci, 271, 2579–82.
Meinhardt, H. (2002). The radial–symmetric hydra and the evolution of the bilateral body plan: an old body became a young brain. Bioessays, 24, 185–91.
Meno, C., Gritsman, K., Ohishi, S. et al. (1999). Mouse Lefty2 and zebrafish antivin are feedback inhibitors of nodal signaling during vertebrate gastrulation. Mol Cell, 4, 287–98.
Meno, C., Saijoh, Y., Fujii, H. et al. (1996). Left–right asymmetric expression of the TGF beta-family member lefty in mouse embryos. Nature, 381, 151–5.
Miller, S. & White, R. (1998). Right–left asymmetry of cell proliferation predominates in mouse embryos undergoing clockwise axial rotation. Anat Rec, 250, 103–8.
Mittwoch, U. (2001). Genetics of mammalian sex determination: some unloved exceptions. J Exp Zool, 290, 484–9.
Morison, D., Reyes, C. V. & Skorodin, M. S. (1994). Mirror-image tumors in mirror-image twins. Chest, 106, 608–10.
Nakamura, T., Mine, N., Nakaguchi, E. et al. (2006). Generation of robust left–right asymmetry in the mouse embryo requires a self-enhancement and lateral-inhibition system. Dev Cell, 11, 495–504.
Nerurkar, N. L., Ramasubramanian, A. & Taber, L. A. (2006). Morphogenetic adaptation of the looping embryonic heart to altered mechanical loads. Dev Dyn, 235, 1822–9.
Neville, A. C. (1976). Animal Asymmetry. London: Edward Arnold.
Newbury-Ecob, R. A., Leanage, R., Raeburn, J. A. & Young, I. D. (1996). Holt–Oram syndrome: a clinical genetic study. J Med Genet, 33, 300–7.
Nonaka, S., Tanaka, Y., Okada, Y. et al. (1998). Randomization of left–right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell, 95, 829–37.
Nonaka, S., Yoshiba, S., Watanabe, D. et al. (2005). De novo formation of left–right asymmetry by posterior tilt of nodal cilia. PLoS Biol, 3, e268.
Okada, Y., Nonaka, S., Tanaka, Y. et al. (1999). Abnormal nodal flow precedes situs inversus in iv and inv mice. Mol Cell, 4, 459–68.
Okada, Y., Takeda, S., Tanaka, Y., Belmonte, J. C. & Hirokawa, N. (2005). Mechanism of nodal flow: a conserved symmetry breaking event in left–right axis determination. Cell, 121, 633–44.
Olson, D. J., Christian, J. L. & Moon, R. T. (1991). Effect of wnt-1 and related proteins on gap junctional communication in Xenopus embryos. Science, 252, 1173–6.
Opitz, J. M. & Utkus, A. (2001). Comments on biological asymmetry. Am J Med Genet, 101, 359–69.
Oviedo, N. J. & Levin, M. (2007). Gap junctions provide new links in left–right patterning. Cell, 129, 645–7.
Palmer, A. R. (2004). Symmetry breaking and the evolution of development. Science, 306, 828–33.
Pasteur, L. (1860). Researches on molecular asymmetry. Alembic Club Reprint 14.
Patterson, K. D., Drysdale, T. A. & Krieg, P. A. (2000). Embryonic origins of spleen asymmetry. Development, 127, 167–75.
Paulozzi, L. J. & Lary, J. M. (1999). Laterality patterns in infants with external birth defects. Teratology, 60, 265–71.
Pennekamp, P., Karcher, C., Fischer, A. et al. (2002). The ion channel polycystin-2 is required for left–right axis determination in mice. Curr Biol, 12, 938–43.
Potter, R. H. & Nance, W. E. (1976). A twin study of dental dimension. I. Discordance, asymmetry, and mirror imagery. Am J Phys Anthropol, 44, 391–5.
Qiu, D., Cheng, S. M., Wozniak, L. et al. (2005). Localization and loss of function implicates ciliary proteins in early, cytoplasmic roles in left–right asymmetry. Dev Dyn, 234, 176–89.
Ramsdell, A. F. (2005). Left–right asymmetry and congenital cardiac defects: getting to the heart of the matter in vertebrate left–right axis determination. Dev Biol, 288, 1–20.
Raya, A., Kawakami, Y., Rodriguez-Esteban, C. et al. (2004). Notch activity acts as a sensor for extracellular calcium during vertebrate left–right determination. Nature, 427, 121–8.
Rife, D. C. (1933). Genetic studies of monozygotic twins, III: mirror-imaging. J Hered, 24, 443–6.
Rodriguez-Medina, M. A., Reyes, A., Chavarria, M. E. et al. (2002). Asymmetric calmodulin distribution in the hypothalamus: role of sexual differentiation in the rat. Pharmacol Biochem Behav, 72, 189–95.
Sarkar, S., Prakash, D., Marwaha, R. K., Samujh, R. & Rao, K. L. (1992). Congenital hemihypertrophy and Wilms’ tumor. Indian Pediatr, 29, 1160–2.
Sarmah, B., Latimer, A. J., Appel, B. & Wente, S. R. (2005). Inositol polyphosphates regulate zebrafish left-right asymmetry. Dev Cell, 9, 133–45.
Schilling, T. F., Concordet, J. P. & Ingham, P. W. (1999). Regulation of left–right asymmetries in the zebrafish by Shh and BMP4. Dev Biol, 210, 277–87.
Schreiner, C. M., Scott, W. J., Jr., Supp, D. M. & Potter, S. S. (1993). Correlation of forelimb malformation asymmetries with visceral organ situs in the transgenic mouse insertional mutation, legless. Dev Biol, 158, 560–2.
Schweickert, A., Weber, T., Beyer, T. et al. (2007). Cilia-driven leftward flow determines laterality in Xenopus. Curr Biol, 17, 60–6.
Shimeld, S. M. & Levin, M. (2006). Evidence for the regulation of left–right asymmetry in Ciona intestinalis by ion flux. Dev Dyn, 235, 1543–53.
Shiratori, H. & Hamada, H. (2006). The left–right axis in the mouse: from origin to morphology. Development, 133, 2095–104.
Singh, G., Supp, D. M., Schreiner, C. et al. (1991). Legless insertional mutation: morphological, molecular, and genetic characterization. Genes Dev, 5, 2245–55.
Smith, A. T., Sack, G. H., Jr. & Taylor, G. J. (1979). Holt–Oram syndrome. J Pediatr, 95, 538–43.
Sommer, I., Ramsey, N., Bouma, A. & Kahn, R. (1999). Cerebral mirror-imaging in a monozygotic twin. Lancet, 354, 1445–6.
Sommer, I. E., Ramsey, N. F., Mandl, R. C. & Kahn, R. S. (2002). Language lateralization in monozygotic twin pairs concordant and discordant for handedness. Brain, 125, 2710–18.
Speder, P., Petzoldt, A., Suzanne, M. & Noselli, S. (2007). Strategies to establish left/right asymmetry in vertebrates and invertebrates. Curr Opin Genet Dev, 17(4), 351–8.
Stalens, J. P., Maton, P., Gosseye, S., Clapuyt, P. & Ninane, J. (1993). Hemihypertrophy, bilateral Wilms’ tumor, and clear-cell adenocarcinoma of the uterine cervix in a young girl. Med Pediatr Oncol, 21, 671–5.
Sun, T., Collura, R. V., Ruvolo, M. & Walsh, C. A. (2006). Genomic and evolutionary analyses of asymmetrically expressed genes in human fetal left and right cerebral cortex. Cereb Cortex, 16 Suppl 1, i18–25.
Sun, T., Patoine, C., Abu-Khalil, A. et al. (2005). Early asymmetry of gene transcription in embryonic human left and right cerebral cortex. Science, 308, 1794–8.
Sun, T. & Walsh, C. A. (2006). Molecular approaches to brain asymmetry and handedness. Nat Rev Neurosci, 7, 655–62.
Supp, D. M., Witte, D. P., Potter, S. S. & Brueckner, M. (1997). Mutation of an axonemal dynein affects left–right asymmetry in inversus viscerum mice. Nature, 389, 963–6.
Tabin, C. (2005). Do we know anything about how left–right asymmetry is first established in the vertebrate embryo? J Mol Histol, 36(5), 317–23.
Tabin, C. J. & Vogan, K. J. (2003). A two-cilia model for vertebrate left–right axis specification. Genes Dev, 17, 1–6.
Takeda, S., Yonekawa, Y., Tanaka, Y. et al. (1999). Left–right asymmetry and kinesin superfamily protein KIF3A: new insights in determination of laterality and mesoderm induction by kif3A-/- mice analysis. J Cell Biol, 145, 825–36.
Tanaka, S., Kanzaki, R., Yoshibayashi, M., Kamiya, T. & Sugishita, M. (1999). Dichotic listening in patients with situs inversus: brain asymmetry and situs asymmetry. Neuropsychologia, 37, 869–74.
Tanaka, Y., Okada, Y. & Hirokawa, N. (2005). FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left–right determination. Nature, 435, 172–7.
Torgersen, J. (1950). Situs inversus, asymmetry and twinning. Am J Hum Genet, 2, 361–370.
Tsukui, T., Capdevila, J., Tamura, K. et al. (1999). Multiple left–right asymmetry defects in Shh(–/–) mutant mice unveil a convergence of the shh, and retinoic acid pathways in the control of Lefty-1. Proc Natl Acad Sci USA, 96, 11376–81.
Vermot, J. & Pourquie, O. (2005). Retinoic acid coordinates somitogenesis and left–right patterning in vertebrate embryos. Nature, 435, 215–20.
Voronov, D. A., Alford, P. W., Xu, G. & Taber, L. A. (2004). The role of mechanical forces in dextral rotation during cardiac looping in the chick embryo. Dev Biol, 272, 339–50.
Wang, S., Yu, X., Zhang, T. et al. (2004). Chick Pcl2 regulates the left–right asymmetry by repressing Shh expression in Hensen’s node. Development, 131, 4381–91.
Wang, Y., Badea, T. & Nathans, J. (2006). Order from disorder: self-organization in mammalian hair patterning. Proc Natl Acad Sci USA, 103, 19800–5.
Wang, Y. & Nathans, J. (2007). Tissue/planar cell polarity in vertebrates: new insights and new questions. Development, 134, 647–58.
Whitman, M. & Mercola, M. (2001). TGF-beta superfamily signaling and left–right asymmetry. Sci STKE, 2001(64), RE1.
Winer-Muram, H. (1995). Adult presentation of heterotaxic syndromes and related complexes. J Thorac Imaging, 10, 43–57.
Yager, J. (1984). Asymmetry in monozygotic twins. Am J Psychiatry, 141, 719–20.
Yost, H. J. (1991). Development of the left–right axis in amphibians. Ciba Found Symp, 162, 165–76.