Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T10:40:47.644Z Has data issue: false hasContentIssue false

7 - Functional aspects of short-lived plants

Published online by Cambridge University Press:  23 December 2009

W. Richard J. Dean
Affiliation:
University of Cape Town
Suzanne Milton
Affiliation:
University of Cape Town
Get access

Summary

Introduction

Life in hot deserts is challenging for plants as they face severe physiological stress from drought and heat. Even during the rainy season, the availability of moisture is unpredictable in timing, amount and space (Mott and Chouard, 1979). There are two main survival strategies of plants growing under these conditions; firstly drought tolerance, which is usually exhibited by perennial plant species, and secondly, drought avoidance, a strategy common in short-lived species. In this chapter, short-lived plants include all those that complete their entire life cycle within one year and whose shoot and root systems die after seed production. To contrast these species with perennials (Midgley and Van Der Heyden, this volume), the term annual will be used in this chapter although most of the species complete their life cycles within a much shorter period.

Annual plants in hot deserts are frequently considered as paragons of adaptation (Mulroy and Rundel, 1977; Fox, 1992). The view that adaptation is important in the evolution of these plants is persuasive because these features are repeated among related taxa in deserts around the world (Gutterman, 1982). Moreover, the annual habit is thought to be a derived trait in most angiosperm taxa (Johnson, 1968; Axelrod, 1979).

Annuals constitute a large percentage of the flora of hot deserts, and this fraction tends to increase with environmental variability (Schaffer and Gadgil, 1975; Fox, 1989). The annuals, as a percentage of the flora of a number of sites in the karoo, are compared with the normal spectrum (Mueller-Dombois and Ellenberg, 1974) as well as with other desert areas in Table 7.1.

Type
Chapter
Information
The Karoo
Ecological Patterns and Processes
, pp. 107 - 122
Publisher: Cambridge University Press
Print publication year: 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×