Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-16T08:24:44.739Z Has data issue: false hasContentIssue false

5 - Surface Engineering by Other Means

Published online by Cambridge University Press:  20 January 2017

P. A. Dearnley
Affiliation:
Boride Services Ltd.
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arata, Y. (1986), Plasma, electron & laser beam technology, American Society for Metals, Ohio, USA.Google Scholar
Baker, T. N. and Selamat, M. S. (2008), ‘Surface engineering of Ti-6Al-4V by nitriding and powder alloying using a CW CO2 laser’, Materials Science & Technology 24 (2), 189200.CrossRefGoogle Scholar
Bell, T., Bergmann, H. W., Lanagan, J., Staines, A. M. and Morton, P. H. (1986), ‘Surface engineering of titanium with nitrogen’, Surface Engineering 2 (2), 133143.CrossRefGoogle Scholar
Bengough, G. D. and Stuart, J. M. (1923), British Patent 223,994.Google Scholar
Bergmann, H. W. (1985), ‘Current status of laser surface melting of cast iron’, Surface Engineering 1 (2), 137155.CrossRefGoogle Scholar
Bloyce, A. and Dearnley, P. A. (1987), Unpublished research, Wolfson Institute for Surface Engineering, University of Birmingham, UK.Google Scholar
Brace, A. (1997), ‘Seventy years of sulphuric acid anodizing’, Transaction of the Institute of Metal Finishing 75 (5), B101B106.Google Scholar
Burnell, C. D. C., Brandt, J.-M., Petrak, M. J. and Bourne, R. B. (2011), ‘Posterior condyle surface damage on retrieved femoral knee components’, Journal of Arthroplasty 26 (8) 14601467.CrossRefGoogle ScholarPubMed
Canning (1982), The Canning Handbook, 23rd edn, W. Canning, Plc, Birmingham, UK.Google Scholar
Child, H. C. (1980), Surface hardening of steel, Oxford University Press, Oxford.Google Scholar
Clark, R. A. (1977), ‘Continuous anodising’, Finishing Industries, October, 22–23.Google Scholar
Curran, J. A. and Clyne, T. W. (2005), ‘Thermo-physical properties of plasma electrolytic oxide coatings on aluminium’, Surface & Coatings Technology 199, 168176.CrossRefGoogle Scholar
Dearnaley, G. and Hartley, N. E. W. (1978), ‘Ion implantation into metals and carbides’, Thin Solid Films 54, 215232.CrossRefGoogle Scholar
Dearnley, P. A., Dahm, K. L. and Cimenoglu, H. (2004), ‘The corrosion-wear behaviour of thermally oxidised CP-Ti and Ti-6Al-4V’, Wear 256, 469479.CrossRefGoogle Scholar
Dearnley, P. A., Gummersbach, J., Weiss, H., Ogwu, A. A. and Davies, T. J. (1999), ‘The sliding wear resistance and frictional characteristics of surface modified aluminium alloys under extreme pressure’, Wear 225 –229, 127134.CrossRefGoogle Scholar
Dearnley, P. A., OestGaard, M., Betts, A. J. and Wright, G. A. (1996), ‘Corrosion response of fusion coated austenitic stainless steel’, British Corrosion Journal 31 (3), 235238.CrossRefGoogle Scholar
Dong, H. and Bell, T. (2000), ‘Enhanced wear resistance of titanium surfaces by a new thermal oxidation treatment’, Wear 238, 131137.CrossRefGoogle Scholar
Dong, H. and Li, X. (2000), ‘Oxygen boost diffusion for the deep case hardening of titanium alloys’, Materials Science & Engineering A 280 (2), 131137.Google Scholar
Draper, C. W. and Poate, J. M. (1985), ‘Laser surface alloying’, International Metals Reviews 30 (2), 85108.CrossRefGoogle Scholar
Fromson, H. A. (1981), ‘Continuous coil anodizing’, Plating and Surface Finishing, May, 98–100.Google Scholar
Gower, C. H. R. and O’Brien, S. (1927), British Patent, 290,291.Google Scholar
Grainger, S. (1989), Engineering coatings, Abington Publishing, Cambridge, UK, 3435.Google Scholar
Gurrutxaga-Lerma, B., Balint, D. S., Dini, D., Eakins, D. E. and Sutton, A. P. (2015), ‘Attenuation of the dynamic yield point of shock aluminium elastodynamic simulations of dislocation dynamics’, Physical Review Letters 114, 174301.CrossRefGoogle ScholarPubMed
Hall, J. and Lausmaa, J. (2000), ‘Properties of new porous oxide surface on titanium implants’, Applied Osseointegration 1 (1), 58.Google Scholar
Hatamleh, O., Lyons, J. and Forman, R. (2007), ‘Laser and shot peening effects on fatigue crack growth in friction stir welded 7075-T351’, International Journal of Fatigue 29 (3), 421434.CrossRefGoogle Scholar
Hallstead, A. and Rawlings, R. D. (1984), ‘Structure and hardness of Co-Mo-Cr-Si wear resistant alloys’, Metal Science 18, 491500.CrossRefGoogle Scholar
Hallstead, A. and Rawlings, R. D. (1985), ‘The fracture behaviour of two Co-Mo-Cr-Si wear resistant alloys’, Journal of Materials Science 20, 12481256.CrossRefGoogle Scholar
Haygarth, J. C. and Fenwick, L. J. (1984), ‘Improved wear resistance of zirconium by enhanced oxide films’, Thin Solid Films 118 (3), 351362.CrossRefGoogle Scholar
Hill, M. R., DeWald, A. T., Demma, A. G. and Hickel, H. A. (2003), ‘Laser peening technology’, Advanced Materials & Processes (ASM International) 161 (8, August).Google Scholar
HMSO (1986), Wear resistant surfaces in engineering – A guide to their production properties and selection, Department of Trade and Industry, Her Majesty’s Stationary Office, London.Google Scholar
Hochman, R. F., Kim, H. J. and Marek, M. (1986), ‘Corrosion properties of ion plated and implanted metal surfaces’, in Ion plating and implantation, American Society for Metals, 123131, edited by Hochman, R. F..Google Scholar
Hu, C., Selamat, S. B., Ubni, H. S. and Baker, T. N. (1998), ‘Characterisation of surface MMC layers developed in Ti-6Al-4V alloy using combination of SiCp and dilute nitrogen environment’, Materials Science & Technology 14, 10451052.CrossRefGoogle Scholar
Hume-Rothery, W. (1966), The structures of alloys of iron, Pergamon Press, Oxford, 157159, 319321.Google Scholar
Jones, D. A. (1996), Principles and prevention of corrosion, Prentice Hall, Upper Saddle River, USA, 224226.Google Scholar
Kübler, K.-H. and Mages, W. J. (1986), ‘Handbuch der hochfesten Schrauben’, Verlag W. Girardet, Essen, 253.Google Scholar
Kwaitowski, L. (2004), ‘Phosphate coatings porosity: Review of new approaches’, Surface Engineering 20 (4), 292298.Google Scholar
Lebaili, S., Durand-Charre, M. and Hamar-Thibault, S. (1988), ‘The metallurgical structure of as-solidified Ni-Cr-B-Si-C hardfacing alloys’, Journal of Materials Science 23, 36033611.CrossRefGoogle Scholar
Majumdar, J. D., Mordike, B. L. and Manna, I. (2000), ‘Friction and wear behaviour of Ti following laser surface alloying with Si, Al and Si + Al’, Wear 242, 1827.CrossRefGoogle Scholar
Malyschev, V. (1995), ‘Mikrolichtbogen-Oxidation’, Oberflächentechnik 49 (8), 606608.Google Scholar
Martyak, N. M. (1996), ‘Internal stresses in zinc chromate coatings’, Surface and Coatings Technology 88, 139146.CrossRefGoogle Scholar
Masaki, K., Ochi, Y., Matsumuru, T. and Sano, Y. (2007), ‘Effect of laser peening treatment on high cycle fatigue of degassing processed cast aluminum alloy’, Materials Science & Engineering 468A, 171175.CrossRefGoogle Scholar
Mason, S. E. and Rawlings, R. D. (1989), ‘Structure and hardness of Ni-Mo-Cr-Si wear resistant alloys’, Materials Science & Technology 5, 180185.CrossRefGoogle Scholar
Mason, S. E. and Rawlings, R. D. (1994), ‘Effect of iron additions on microstructure and mechanical properties of Ni-Cr-Mo-Si hardfacing alloy’, Materials Science & Technology 10, 924928.CrossRefGoogle Scholar
McKellop, H. (2002), US Patent 6,494,917 B1.Google Scholar
Mridha, S. and Baker, T. N. (1996), ‘Metal matrix composite layers formed by laser processing of commercial purity Ti-SiCp in a nitrogen environment’, Materials Science & Technology 12, 595602.CrossRefGoogle Scholar
Nilsson, J.-O., Hörnstrom, S.-E., Hedlund, E., Klang, H. and Uvdal, K. (1992), ‘Characterization of chromatized hot dip galvanized steel and 55%AlZn coated steel using ESCA and AES’, Surface and Interface Analysis 19, 379385.CrossRefGoogle Scholar
Oñate, J. I., Dennis, J. K. and Hamilton, S. (1987), ‘Nitrogen implantation of tool steels’, Heat Treatment of Metals 14 (3), 7782.Google Scholar
Oñate, J. I., Dennis, J. K. and Hamilton, S. (1990), ‘Wear behaviour of nitrogen implanted AISI 420 martensitic stainless steel’, Surface and Coatings Technology 42, 119131.CrossRefGoogle Scholar
Opitz, H. and König, W. (1970), ‘Basic research on the wear of high speed steel cutting tools’, in Materials for Metal Cutting, ISI Publication 126, Iron and Steel Institute, London, 614.Google Scholar
Pollak, C. (1896), German Patent 92,564.Google Scholar
Schmidt, R. D. and Ferriss, D. P. (1975), ‘New materials resistant to wear and corrosion to 1000°C’, Wear 32, 279289.CrossRefGoogle Scholar
Schreckenbach, J. (1991), ‘ANOF-Schichten auf Aluminium’, Metalloverfläche 45 (10), 437440.Google Scholar
Schubert, E. and Bergmann, H. W. (1993), ‘Surface modification of ceramic materials using excimer lasers’, Surface Engineering 9 (1), 7781.CrossRefGoogle Scholar
Selvan, J. S., Subramanian, K., Nath, A. K. and Kumar, H. (1999), ‘Laser boronising of Ti=6Al-4V as a result of laser alloying with pre-placed BN’, Materials Science & Engineering A260, 178187.CrossRefGoogle Scholar
Sivakumar, R. and Mordike, B. L. (1987), ‘Laser melting of plasma sprayed NiCoCrAlY coatings’, Surface Engineering 3 (4), 299309.CrossRefGoogle Scholar
Sivakumar, R. and Mordike, B. L. (1988), ‘Laser melting of plasma sprayed ceramic coatings’, Surface Engineering 4 (2), 127140.CrossRefGoogle Scholar
Steen, W. M. (2003), Laser material processing, 3rd edn, Springer-Verlag, London.CrossRefGoogle Scholar
Stolzenfels, G. and Trapp, H. D. (1971), ‘Die Phosphatierung und Chromatierung von Nichteisenmetallan’, Metallwissenschaft und Technik 6, 661665.Google Scholar
Stratton, P. (2002), ‘Titanium – Making the hard harder’, Materials World, Thermal Processing Supplement, November, 11–12.Google Scholar
Suzuki, T. (1968), British Patent 1,245,820.Google Scholar
Tassin, C., Laroudie, F., Pons, M. and Lelait, L. (1995), ‘Carbide reinforced coatings on AISI 316L stainless steel by laser surface alloying’, Surface and Coatings Technology 76 –77, 450455.CrossRefGoogle Scholar
Tekin, K. C., Malayoglu, U. and Shrestha, S. (2012), ‘Tribological properties of plasma electrolytic oxide coatings on magnesium alloys’, Tribology – Materials, Surface and Interfaces 6 (2), 6774.CrossRefGoogle Scholar
Thelning, K.-E. (1981), Steel and its heat treatment – Bofors Handbook, Butterworths, London.Google Scholar
Turlach, G. (1985), ‘Improving fatigue strength of aerospace metal fasteners by surface work hardening’, Surface Engineering 1 (1), 1722.CrossRefGoogle Scholar
von Wilkowski, W. (1979), ‘Chromatieren’, Galvanotechnik 70 (8), 712719.Google Scholar
Walker, J. C., Cook, R. B., Murray, J. W. and Clare, A. T. (2013), ‘Pulsed electron beam surface melting of Co-Cr-Mo alloy for biomedical applications, Wear 301, 250256.CrossRefGoogle Scholar
Watkins, K. G., McMahon, M. A. and Steen, W. M. (1997), ‘Microstructure and corrosion properties of laser surface processed aluminium alloys: A review’, Materials Science & Engineering A231, 5561.CrossRefGoogle Scholar
Weiss, H., Engel, S. and Fjodorov, W. A. (1996), ‘Characterization of Al2O3 coatings on aluminium alloys deposited by the micro-arc anodic oxidation process’, in Surface Modifications IX, The Minerals, Metals & Materials Society, Warrendale, USA, 583594, edited by Sudarshan, T. S..Google Scholar
Wirtz, G. P., Brown, S. D. and Kriven, W. M. (1991),’Ceramic coatings by anodic spark deposition’, Materials and Manufacturing Processes 6 (1), 87115.CrossRefGoogle Scholar
Wranglén, G. (1985), An introduction to corrosion and protection of metals, Chapman and Hall, London, 9293.CrossRefGoogle Scholar
Zum Gahr, K.-H. (1987), Microstructure and wear of materials, Tribology Series 10, Elsevier, Amsterdam.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×