Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T18:34:18.622Z Has data issue: false hasContentIssue false

14 - Summarizing what we know about the photon

Published online by Cambridge University Press:  25 January 2010

Harry Paul
Affiliation:
Humboldt-Universität zu Berlin
Igor Jex
Affiliation:
FNSPE Czech Technical University of Prague
Get access

Summary

How can we construct a picture of the photon from the wealth of observation material available to us? The photon appears to have a split personality: it is neither a wave nor a particle but something else which, depending on the experimental situation, exhibits a wave- or a particle-like behavior. In other words, in the photon (as in material particles such as the electron) the particle–wave dualism becomes manifest. Whereas classically the wave and the particle pictures are separate, quantum mechanics accomplishes a formal synthesis through a unified mathematical treatment.

Let us look first at the wave aspect familiar from classical electrodynamics, which seems to be the most natural description. It makes all the different interference phenomena understandable, such as the “interference of the photon with itself” on the one hand and the appearance of spatial and temporal intensity correlations in a thermal radiation field on the other (which are obviously brought about by superposition of elementary waves emitted independently from different atoms). It might come as a surprise (at least for those having quantum mechanical preconceptions) that the classical theory is valid down to arbitrarily small intensities: the visibility of the interference pattern does not deteriorate even for very small intensities – the zero point fluctuations of the electromagnetic field advocated by quantum mechanics do not have a disturbing effect – and is valid not only for conventional interference experiments but also for interference between independently generated light beams (in the form of laser light).

Type
Chapter
Information
Introduction to Quantum Optics
From Light Quanta to Quantum Teleportation
, pp. 215 - 218
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×