Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-25T02:32:52.626Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  28 April 2017

Michael K. Shepard
Affiliation:
Bloomsburg University of Pennsylvania
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Airy, G.B. 1835. On the diffraction of an object-glass with circular aperture. Trans. Camb. Philos. Soc., 5, 283291.Google Scholar
Akimov, L.A. 1979. On the brightness distribution across the lunar disk and planets. Astron. Zh., 56, 412418 (in Russian).Google Scholar
Akimov, L.A. 1988. Light reflection by the Moon. I. Kinemat. Phys. Celest. Bodies, 4 (1), 310 (in Russian).Google Scholar
Arago, F. and Fresnel, A. 1819. On the action of rays of polarized light upon each other. In Crew, H., ed., The Wave Theory of Light – Memoirs by Huygens, Young and Fresnel. American Book Company: New York, NY. 145155.Google Scholar
Barabashev, N.P. 1922. Bestimmung del’ Erd albedo und des Refiexionsgesetzes für die Oberflache del’ Mondmeere Theorie del’ Rillen. Astron. Nachr., 217, 445452.Google Scholar
Baranne, A. and Launay, F. 1997. Cassegrain: A famous unknown of instrumental astronomy. J. Optics, 28 (4), 158172.Google Scholar
Bartholin, E. 1670. An account of sundry experiments, made and communicated by that learned mathematician, Dr. Erasm. Bartolin, upon a chrystal-like body sent out of Iceland. Philos. Trans. (1665–1678), 5, 20392048.Google Scholar
Bell, L. 1917. The physical interpretation of albedo. Astrophys. J., 45, 1.CrossRefGoogle Scholar
Belskaya, I. and Shevchenko, V.G. 2000. Opposition effect of asteroids. Icarus, 147, 94105.CrossRefGoogle Scholar
Belskaya, I., Cellino, A., Gil-Hutton, R., Muinonen, K., and Shkuratov, Y. 2015. Asteroid Polarimetry. In Michel, P., DeMeo, F.E., and Bottke, W.F., eds., Asteroids IV. University of Arizona Press: Tucson, AZ. 151164Google Scholar
Berry, E.M. 1923. Diffuse reflection of light from a matt surface. J. Opt. Soc. Am., 7, 627633.Google Scholar
Bessell, M.S. 1979. UBVRI photometry. II – The Cousins VRI system, its temperature and absolute flux calibration, and relevance for two-dimensional photometry. Astron. Soc. Pac., 91, 589607.Google Scholar
Bessell, M.S. 1990. UBVRI passbands. Publ. Astron. Soc. Pac., 102, 11811199.Google Scholar
Bessell, M.S. 2005. Standard photometric systems. Ann. Rev. Astron. Astrophys., 43, 293336.Google Scholar
Bhandari, A., Hamre, B., Frette, O., et al. 2011. Bidirectional reflectance distribution function of Spectralon white reflectance standard illuminated by incoherent unpolarized and plane-polarized light. Appl. Opt., 50, 24312442.CrossRefGoogle ScholarPubMed
Birnbaum, M.M. 1982. Voyager spacecraft images of Jupiter and Saturn. Appl. Opt., 21, 214227.Google Scholar
Blewett, D.T., Lucey, P.G., Hawke, B.R., Ling, G.G., and Robinson, M.S. 1997. A comparison of mercurian reflectance and spectral quantities with those of the Moon. Icarus, 129, 217231.Google Scholar
Bockelee-Morvan, D., Gil-Hutton, R., Hestroffer, D., et al. 2015. Physical Study of Comets and Minor Planets, Legacy Report-2015, Division F Commission 15. Trans. IAU, Vol XXIXA, Proc. XXVIII IAU General Assembly, August 2012.Google Scholar
Bohren, C.F. and Huffman, D.R. 1983. Absorption and Scattering of Light by Small Particles. John Wiley & Sons: New York, NY.Google Scholar
Bottke, W.F. Jr., Vokrouhlicky, D., Rubincam, D.P., and Nesvorny, D. 2006. The Yarkovsky and YORP effects: Implications for asteroid dynamics. Ann. Rev. Earth Planet. Sci., 34, 157191.CrossRefGoogle Scholar
Bouguer, P. 1729. Essai d’Optique, sur la gradation de la lumiere. Claude Jombert: Paris, France.Google Scholar
Bowell, E. and Lumme, K. 1979. Colorimetry and magnitudes of asteroids. In Gehrels, T., ed., Asteroids. University of Arizona Press: Tucson, AZ. 132169.Google Scholar
Bowell, E., Hapke, B., Domingue, D., et al. 1989. Application of photometric models to asteroids. In Binzel, R.P., Gehrels, T., and Matthews, M.S., eds., Asteroids II. University of Arizona Press: Tucson, AZ. 524556.Google Scholar
Bowman-Cisneros, E. and Eliason, E. 2011. LROC RDR Data Products, Software Interface Specification, v. 1.4. University of Arizona Press: Tucson, AZ.Google Scholar
Buratti, B.J., Hiller, J.K., and Wang, M. 1996. The lunar oppositions surge: Observation by Clementine. Icarus, 124, 490499.Google Scholar
Bureau International des Poids et Mesures (BIPM). 1979. 16th Conference Generale des Poids et Mesures (CGPM) Resolution 3. www.bipm.org/en/CGPM/db/16/3/.Google Scholar
Cellino, A., Belskaya, I.N., Bendjoya, Ph., et al. 2006. The strange polarimetric behavior of Asteroid (234) Barbara. Icarus, 180, 565567.Google Scholar
Cellino, A., Bagnulo, S., and Gil-Hutton, R. 2015. On the calibration of the relation between geometric albedo and polarimetric properties for the asteroids. Mon. Not. R. Astron. Soc., 451, 34733488.Google Scholar
Cellino, A., Bagnulo, S., Gil-Hutton, R., et al. 2016. A polarimetric study of asteroids: Fitting phase-polarization curves. Mon. Not. R. Astron. Soc., 455, 20912200.Google Scholar
Chandrasekhar, S. 1960. Radiative Transfer. Dover: NY.Google Scholar
Cheng, A.F., Weaver, H.A., Conard, S.J., et al. 2008. Long-range reconnaissance imager on new horizons. Space Sci. Rev., 140, 189215.Google Scholar
Clegg, R.N., Jolliff, B.L., Robinson, M.S., Hapke, B.W., and Plescia, J.B. 2014. Effects of rocket exhaust on lunar soil reflectance properties. Icarus, 227, 176194.CrossRefGoogle Scholar
Cord, A.M., Pinet, P.C., Daydou, Y., and Chevrel, S.D. 2003. Planetary regolith surface analogs: Optimized determination of Hapke parameters using multi-angular spectro-imaging laboratory data. Icarus, 165, 414427.Google Scholar
Cord, A.M., Pinet, P.C., Daydou, Y., and Chevrel, S.D. 2005. Experimental determination of the surface photometric contribution in the spectral reflectance deconvolution processes for a simulated martian crater-like regolithic target. Icarus, 175, 7891.CrossRefGoogle Scholar
Cox, A.N. (ed.) 2000. Allen’s Astrophysical Quantities. AIP Press, Springer-Verlag: New York, NY.Google Scholar
Cruikshank, D., Dalle Ore, C.M., Geballe, T.R., et al. 2001. Constraints on the composition of Trojan Asteroid 624 Hektor. Icarus, 153, 348360.Google Scholar
Danjon, A. 1949. Photometrie et colorimetrie des planetes Mercure et Venus. Bull. Astron., 14, 315345.Google Scholar
Danjon, A. 1953. Correction to Danjon 1949. Bull. Astron., 17, 363.Google Scholar
Dershowitz, N. and Reingold, E.M. 2008. Calendrical Calculations. 3rd Ed. Cambridge University Press: Cambridge, UK.Google Scholar
DiLaura, D.L. 2001. Lambert’s Photometry, or, On the Measure and Gradations of Light, Colors and Shade. Translation from the Latin with Introductory monograph and notes. Illuminating Engineering Society of North America: New York, NY.Google Scholar
DiLaura, D.L. 2006. A History of Light and Lighting: In Celebration of the Centenary of the Illuminating Engineering Society of North America. Illuminating Engineering Society of North America: New York, NY.Google Scholar
Dollfus, A. and Geake, J.E. 1977. Polarimetric and photometric studies of lunar samples. Philos. Trans. Roy. Soc. Lond., 285, 397402.Google Scholar
Dollfus, A., Wolff, M., Geake, J.E., Lupishko, D.F., and Dougherty, L.M. 1989. Photopolarimetry of asteroids. In Binzel, R.P., Gehrels, T., and Matthews, M.S., eds., Asteroids II. University of Arizona Press: Tucson, AZ. 594615.Google Scholar
Domingue, D.L., Vilas, F., Holsclaw, G.M., et al. 2010. Whole-disk spectrophotometric properties of Mercury: Synthesis of MESSENGER and ground-based observations. Icarus, 209, 101124.Google Scholar
Domingue, D.L., Murchie, S.L., Denevi, B.W., et al. 2011. Photometric correction of Mercury’s global color mosaic. Planet. Space Sci., 59, 18731887.Google Scholar
Domingue, D.L., Murchie, S.L., Denevi, B.W., Ernst, C.M., and Chabot, N.L. 2015. Mercury’s global color mosaic: An update from MESSENGER’s orbital observations. Icarus, 257, 477488.Google Scholar
Durech, J., Sidorin, V., and Kaasalainen, M. 2010. DAMIT: A database of asteroid models. Astron. Astrophys., 513, DOI: 10.1051/0004-6361/200912693.Google Scholar
Evans, J.V. and Pettengill, G.H. 1963. The scattering behavior of the Moon at wavelengths of 3.6, 68, and 784 centimeters. J. Geophys. Res., 68, 423447.Google Scholar
Fairbairn, M. 2004. On reflectance laws and the theory of planetary photometry. J. Roy. Astron. Soc. Can., 98, 149153.Google Scholar
Fairbairn, M. 2005. Planetary photometry: The Lommel–Seeliger law. J. Roy. Astron. Soc. Can., 99, 9293.Google Scholar
Falco, C.M. and Weintz Allen, A.L. 2008. Ibn al-Haytham’s contributions to optics, art, and visual literacy. Painted Optics Symposium: Florence, Italy.Google Scholar
Farnham, T.L., Schleicher, D.G., and A’Hearn, M.F. 2000. The HB narrowband comet filters: Standard stars and calibrations. Icarus, 147, 180204.Google Scholar
Ferrin, I. 2010. Atlas of secular light curves of comets. Planet. Space Sci., 58, 365391.Google Scholar
Fowles, G.R. 1975. Introduction to Modern Optics. 2nd Ed. Dover Publications, Inc.: New York, NY.Google Scholar
French, A.P. 1990. A role of history in teaching physics. In Roche, J., ed., Physicists Look Back: Studies in the History of Physics. IOP Publishing: Bristol, England. 111125Google Scholar
Fresnel, A. 1819. Memoir on the diffraction of light. In Crew, H., ed., The Wave Theory of Light – Memoirs by Huygens, Young and Fresnel. American Book Company: New York, NY. 79144.Google Scholar
Gold, T. 1955. The lunar surface. Mon. Not. R. Astr. Soc., 115, 585604.Google Scholar
Gaffey, M.J. 1997. Surface lithologic heterogeneity of Asteroid 4 Vesta. Icarus, 127, 130157.CrossRefGoogle Scholar
Geake, J.E., Geake, M., and Zellner, B.H. 1984. Experiments to test theoretical models of the polarization of light by rough surfaces. Mon. Not. R. Astr. Soc., 210, 89112.CrossRefGoogle Scholar
Geake, J.E. and Dollfus, A. 1986. Planetary surface texture and albedo from parameters plots of optical polarization data. Mon. Not. R. Astr. Soc., 218, 7591.Google Scholar
Gehrels, T. 1956. Photometric studies of asteroids. V. The light-curve and phase function of 20 Massalia. Astrophys. J., 123, 331338.Google Scholar
Goguen, J. 1981. A Theoretical and Experimental Investigation of the Photometric Functions of Particulate Surfaces. Cornell University, Ph.D. Thesis.Google Scholar
Gray, D.F. 1992. The inferred color index of the Sun. Publ. Astron. Soc. Pac., 104, 10351038.Google Scholar
Guinness, E. 1981. Spectral properties (0.40 to 0.75 microns) of soils exposed at the Viking 1 landing site. J. Geophys. Res. (Solid Earth), 86, 79837992.CrossRefGoogle Scholar
Gunderson, K., Thomas, N., and Whitby, J.A. 2006. First measurements with the Physikalisches Institut Radiometric Experiment (PHIRE). Planet. Space Sci., 54, 10461056.CrossRefGoogle Scholar
Gunn, J.E., Carr, M., Rockosi, C., et al. 1998. The Sloan Digital Sky Survey photometric camera. Astron. J., 116, 30403081.CrossRefGoogle Scholar
Hall, J.C. (ed.) 1997. Solar Analogs: Characteristics and Optimum Candidates. Ed. Second Annual Lowell Observatory Fall Workshop, October 1997. Lowell Observatory.Google Scholar
Hapke, B. 1962. Second Preliminary Report on Experiments Relating to the Lunar Surface. Center Radiophys. Space Res. Rept. 127. Cornell University, Ithaca, NY.Google Scholar
Hapke, B. 1965. Effects of simulated solar wind on the photometric properties of rocks and powders. Ann. N. Y. Acad. Sci., 123, 711721.Google Scholar
Hapke, B. 1981. Bidirectional reflectance spectroscopy, 1: Theory. J. Geophys. Res., 86, 30393054.Google Scholar
Hapke, B. 1984. Bidirectional reflectance spectroscopy, 3: Correction for macroscopic roughness. Icarus, 59, 4159.Google Scholar
Hapke, B. 1986. Bidirectional reflectance spectroscopy, 4: The extinction coefficient and opposition effect. Icarus, 67, 264280.CrossRefGoogle Scholar
Hapke, B. 1990. Coherent backscatter and the radar characteristics of outer planet satellites. Icarus, 88, 407417.Google Scholar
Hapke, B. 1993. Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press: Cambridge, UK.Google Scholar
Hapke, B. 1999. Scattering and diffraction of light by particles in planetary regoliths. J. Quant. Spectrosc. Radiat. Transf., 61, 565581.Google Scholar
Hapke, B. 2001. Space weathering from Mercury to the asteroid belt. J. Geophys. Res., 106, 1003910073.Google Scholar
Hapke, B. 2002. Bidirectional reflectance spectroscopy, 5: The coherent backscatter opposition effect and anisotropic scattering. Icarus, 157, 523534.Google Scholar
Hapke, B. 2008. Bidirectional reflectance spectroscopy, VI: Effects of porosity. Icarus 195, 918926.Google Scholar
Hapke, B. 2012. Theory of Reflectance and Emittance Spectroscopy. 2nd Ed. Cambridge University Press: Cambridge, UK.Google Scholar
Hapke, B. and Van Horn, H. 1963. Photometric studies of complex surfaces, with applications to the Moon. J. Geophys. Res., 68, 45454570.CrossRefGoogle Scholar
Hapke, B. and Wells, E. 1981. Bidirectional reflectance spectroscopy, 2: Experiments and observations. J. Geophys. Res., 86, 30553060.Google Scholar
Hapke, B. and Blewett, D. 1991. Coherent backscatter model for the unusual radar reflectivity of icy satellites. Nature, 352, 4647.Google Scholar
Hapke, B., Nelson, R., and Smythe, W. 1993. The opposition effect of the Moon: The contribution of coherent backscatter. Science, 260, 509511.CrossRefGoogle ScholarPubMed
Hapke, B., Nelson, R., and Smythe, W. 1998. The opposition effect of the Moon: Coherent backscatter and shadow hiding. Icarus, 133, 8997.Google Scholar
Hardorp, J. 1978. The Sun among the stars. Astron. Astrophys., 63, 383390.Google Scholar
Hardorp, J. 1980. The Sun among the stars, III: Energy distributions of 16 northern G-type stars and the solar flux calibration. Astron. Astrophys., 91, 221232.Google Scholar
Harris, D.L. 1961. Photometry and colorimetry of planets and satellites. In Kuiper, G.P. and Middlehurst, B.M., eds., Planets and Satellites. University of Chicago Press: Chicago, IL. 272342.Google Scholar
Harris, A.W., Yound, J.W., Contreiras, L., et al. 1989. Phase relations of high albedo asteroids: The unusual opposition brightening of 44 Nysa and 64 Angelina. Icarus, 81, 365374.Google Scholar
Hawkins, S.E., Boldt, J.D., Darlington, E.H., et al. 2007. The Mercury dual imaging system on the MESSENGER spacecraft. Space Sci. Rev., 131, 247338.Google Scholar
Hawkins, S.E., Murchie, S.L., Becker, K.J., et al. 2009. In-Flight performance of MESSENGER’s Mercury dual imaging system. Proc. of SPIE Vol. 7441, 112.Google Scholar
Hearnshaw, J.B. 1996. The Measurement of Starlight: Two Centuries of Astronomical Photometry. Cambridge University Press: Cambridge, UK.Google Scholar
Heiken, G.H., Vaniman, D.T., and French, B.M. 1991. The Lunar Sourcebook. Cambridge University Press: Cambridge, UK.Google Scholar
Helfenstein, P. 1988. The geological interpretation of photometric surface roughness. Icarus, 73, 462481.Google Scholar
Helfenstein, P. and Veverka, J. 1989. Physical characterization of asteroid surfaces from photometric analysis., In Binzel, R.P., Gehrels, T., and Matthews, M.S., eds., Asteroids II. University of Arizona Press: Tucson, AZ. 557593.Google Scholar
Henden, A.A. and Kaitchuck, R.H. 1990. Astronomical Photometry. 2nd Ed. Willman-Bell: Richmond, VA.Google Scholar
Hillier, J.K., Buratti, B.J., and Hill, K. 1999. Multispectral photometry of the Moon and absolute calibration of the Clementine UV/Vis Camera. Icarus, 141, 205225.Google Scholar
Hilton, J. 2005. Improving the visual magnitudes of the planets in the Astronomical Almanac, I: Mercury and Venus. Astron. J., 129, 29012906.Google Scholar
Howell, S.B. 2006. Handbook of CCD Astronomy. 2nd Ed. Cambridge University Press: Cambridge, UK.Google Scholar
van de Hulst, H.C. 1981. Light Scattering by Small Particles. Dover Publications, Inc.: New York, NY.Google Scholar
Huygens, C. 1900 [1690]. Treatise on light. In Crew, H., ed., The Wave Theory of Light – Memoirs by Huygens, Young and Fresnel. American Book Company: New York, NY. 141.Google Scholar
Ilardi, V. 2007. Renaissance Vision from Spectacles to Telescopes. American Philosophical Society: Philadelphia, PA.Google Scholar
International Astronomical Union (IAU). 1928. Third General Assembly. www.iau.org/static/resolutions/IAU1928_French.pdf.Google Scholar
International Astronomical Union (IAU). 1992. Proceedings of the Twenty-First General Assembly, Buenos Aires 1991, ed. Bergeron, J., Transactions of the IAU, Vol. XXI-B. Kluwer: Dordrecht, The Netherlands. 3078.Google Scholar
International Astronomical Union (IAU). 2001. Proceedings of the Twenty-Fourth General Assembly, Manchester 2000, ed. Rickman, H., Transactions of the IAU, Vol. XXIV-B. ASP: San Francisco, CA. 3459.Google Scholar
International Astronomical Union (IAU). 2008. Proceedings of the Twenty-Sixth General Assembly, Prague 2006, ed. van der Hucht, K.A., Transactions of the IAU, Vol. XXVI-B. Cambridge University Press: Cambridge, UK. 3447.Google Scholar
International Astronomical Union (IAU). 2012. Resolution B2 on the re-definition of the astronomical unit of length. 28th General Assembly of the IAU. Cambridge: Cambridge University Press.Google Scholar
International Astronomical Union (IAU). 2015. Resolution B2 on recommended zero points for the absolute and apparent bolometric magnitude scales. 29th General Assembly of the IAU. Cambridge: Cambridge University Press.Google Scholar
Ivezic, Z., Tabachnik, S., Rafikov, R., et al. 2001. Solar system objects observed in the SDSS commissioning data. Astron. J., 122, 27492784.Google Scholar
Jackson, R.D., Clarke, T.R., and Moran, M.S. 1992. Bidirectional calibration results for 11 spectralon and 16 BaSO4 reference reflectance panels. Remote Sens. Environ., 40, 231239.CrossRefGoogle Scholar
Johnson, H.L. 1965. The absolute calibration of the Arizona photometry. Comm. Lunar and Planetary Lab. 53, 73–77.Google Scholar
Jones, J.H., Christian, C.A., and Waddell, P. 1988. Resolved CCD photometry of Pluto and Charon. Publi. Astron. Soc. Pac., 100, 489495.CrossRefGoogle Scholar
Johnson, H.L. and Morgan, W.W. 1953. Fundamental stellar photometry for standards of spectral type on the revised system of the Yerkes spectral atlas. Astrophys. J., 117, 313.Google Scholar
Kaasalainen, S. 2003. Laboratory photometry of planetary regolith analogs, I: Effects of grain and packing properties on the opposition effect. Astron. Astrophys., 409, 765769.Google Scholar
Kaasalainen, M. and Torppa, J. 2001. Optimization methods for asteroid lightcurve inversion. Icarus, 153, 2436.Google Scholar
Kaasalainen, M., Lamberg, L., Lumme, K., and Bowell, E. 1992a. Interpretation of lightcurves of atmosphereless bodies, I: General theory and new inversion schemes. Astron. Astrophys., 259, 318332.Google Scholar
Kaasalainen, M., Lamberg, L., Lumme, K., and Bowell, E. 1992b. Interpretation of lightcurves of atmosphereless bodies, II: Practical aspects of inversion. Astron. Astrophys., 259, 333340.Google Scholar
Kaasalainen, M., Torppa, J., and Piironen, J. 2002. Models of twenty asteroids from photometric data. Icarus, 159, 369395.Google Scholar
Kaler, J.B. 1997. Stars and Their Spectra: An Introduction to the Spectral Sequence. Cambridge University Press: Cambridge, UK.Google Scholar
Kaplan, G.H. 2005. The IAU Resolutions on Astronomical Reference Systems, Time Scales, and Earth Rotation Models. US Naval Observatory Circular No. 179. USNO: Washington, D.C.CrossRefGoogle Scholar
Karttunen, H. 1989. Modelling asteroid brightness variations, I: Numerical methods. Astron. Astrophys., 208, 314319.Google Scholar
Kaydash, V.G., Gerasimenko, S., Shkuratov, Yu.G., et al. 2010. The phase ratios of the color index: Mapping of two regions of the near side of the Moon. Sol. Syst. Res., 44, 267280 [Translated from Astronomicheskii Vestnik, 2010, 44, 291–304].CrossRefGoogle Scholar
Keck Telescope and Facility Instrument Guide. 2002. www2.keck.hawaii.edu/observing/kecktelgde/ktelinstupdate.pdf.Google Scholar
Keller, L.P. and McKay, D.S. 1993. Discovery of vapor deposits in the lunar regolith. Science, 261, 13051307.Google Scholar
Keller, M.R., Ernst, C.M., Denevi, B.W., et al. 2013. Time-dependent calibration of MESSENGER’s wide-angle camera following a contamination event. Lunar Planet. Sci., 44, Abstract 2489.Google Scholar
King, H.C. 1955. The History of the Telescope. Charles Griffin & Co. Ltd: London.Google Scholar
Kitchin, C.R. 2003. Astrophysical Techniques. 4th Ed. Taylor & Francis: Boca Raton, FL.Google Scholar
Kolokolova, L., Hanner, M.S., Levasseur-Regourd, A., and Gustafson, B. 2004. Physical properties of cometary dust from light scattering and thermal emission. In Festou, M.C., Keller, H.U., and Weaver, H.A., eds., Comets II. University Arizona Press: Tucson, AZ. 577604.Google Scholar
Kortum, G. 1969. Reflectance Spectroscopy: Principles, Methods, Applications. (Lohr, J.E. translation from German). Springer-Verlag: Berlin, Germany.Google Scholar
Kreslavsky, M.A. and Shkuratov, Y.G. 2003. Photometric anomalies of the lunar surface: Results from Clementine data. J. Geophys. Res., 108, 5015.Google Scholar
Kreslavsky, M.A., Shkuratov, Y.G., Velikodsky, Yu.I., et al. 2000. Photometric properties of the lunar surface derived from Clementine observations. J. Geophys. Res., 105 (E8), 20,281–20,296.Google Scholar
Kreslavsky, M.A., Shkuratov, Y.G., Kaydash, V.G., et al. 2001. Lunar opposition spike observed by Clementine NIR Camera: Preliminary results. Lunar Planet. Sci., 32-rd. LPI: Houston. Abstract #1140. 37.Google Scholar
Kreyszig, E. 1983. Advanced Engineering Mathematics. 5th Ed. John Wiley & Sons: New York, NY.Google Scholar
Lambert, J.H. 1760. Photometria, sive de Mensura et Gradibus Luminis, Colorum et Umbrae. Augsburg. Germany: Klett.Google Scholar
Landolt, A.U. 1983. UBVRI photometric standard stars around the celestial equator. Astron. J., 88, 439460.Google Scholar
Landolt, A.U. 1992. UBVRI photometric standard stars in the magnitude range 11.5 < V < 16.0 around the celestial equator. Astron. J., 104, 340491.Google Scholar
Landolt, A.U. and Uomoto, A.K. 2007a. Optical multicolor photometry of spectrophotometric standard stars. Astron. J., 133, 768790.Google Scholar
Landolt, A.U. and Uomoto, A.K. 2007b. Erratum: “Optical multicolor photometry of spectrophotometric standard stars.” Astron. J., 133, 2429.Google Scholar
Lane, A.P. and Irvine, W.M. 1973. Monochromatic phase curves and albedos for the lunar disk. Astron. J., 78, 267277.Google Scholar
Lester, T.P., McCall, M.L., and Tatum, J.B. 1979. Theory of planetary photometry. J. Roy. Astron. Soc. Can., 73, 233257.Google Scholar
Li, J.-Y., Reddy, V., Nathues, A., et al. 2016. Surface albedo and spectral variability of Ceres. Astrophys. J. Lett., 817, 2, L22.Google Scholar
Lindberg, D.C. 1981. Theories of Vision from Al-kindi to Kepler. University of Chicago Press: Chicago, IL.Google Scholar
Lumme, K. and Bowell, E. 1981. Radiative transfer in the surfaces of atmosphereless bodies, I: Theory, Astron. J., 86, 16941704.Google Scholar
Mach, E. 1926. The Principles of Physical Optics. An Historical and Philosophical Treatment. Translated by Anderson, J.S. and Young, A.F.A.. Dover: New York, NY.Google Scholar
Malet, A. 2010. Kepler’s legacy: Telescopes and geometrical optics, 1611–1669. In Van Helden, A., Dupre, S., van Gent, R., and Zuidervaart, H., eds., Origins of the Telescope. Royal Netherlands Academy of Arts and Sciences: Amsterdam. 281300.Google Scholar
Mallama, A. 2007. The magnitude and albedo of Mars. Icarus, 192, 404416.Google Scholar
Mallama, A., Wang, D., and Howard, R.A. 2002. Photometry of Mercury from SOHO/LASCO and Earth. Icarus, 155, 253264.Google Scholar
Mallama, A., Wang, D., and Howard, R.A. 2006. Venus phase function and forward scattering from H2SO4. Icarus, 182, 1022.Google Scholar
Markov, A.V. 1924. Les particularites dans la refiexion de la lumiere par la surface de la lune. Astron. J. Nachr., 221, 6578.Google Scholar
Markowitz, W., Hall, R.G., Essen, L., and Parry, J.V.L. 1958. Frequency of cesium in terms of Ephemeris Time. Phys. Rev. Lett., 1, 105107.CrossRefGoogle Scholar
Marov, M.Y. 2005. Mikhail Lomonosov and the discovery of the atmosphere of Venus during the 1761 transit. Transits of Venus: New Views of the Solar System and Galaxy, Proceedings of IAU Colloquium #196, held June 7–11, 2004 in Preston, U.K. Edited by Kurtz, D.W.. Cambridge University Press: Cambridge, UK. 209219.Google Scholar
Marsden, B. 1985. Notes from the IAU General Assembly. Minor Planet Circular 10193. International Astronomical Union Minor Planet Center.Google Scholar
Marsden, B. and Roemer, E. 1983. Basic information and references. In Wilkening, L.L., ed., Comets. University of Arizona Press: Tucson, AZ. 707736.Google Scholar
Masiero, J.R., Mainzer, A.K., Grav, T., et al. 2012. A revised asteroid polarization-albedo relationship using WISE/NEOWISE data. Astrophys. J., 749, 6. doi:101088/0004-637X/749/2/104.Google Scholar
Masin, S.C., Zudini, V., and Antonelli, M. 2009. Early alternative derivations of Fechner’s Law. J. Hist. Behav. Sci., 45, 5665.Google Scholar
McCord, T.B. 1969. Color differences on the lunar surface. J. Geophys. Res., 74, 31313142.Google Scholar
McEwen, A.S. 1996. A precise lunar photometric function. LPSC, 27, 841 (abstract).Google Scholar
McEwen, A.S., Eliason, E.M., Bergstrom, J.W., et al. 2007. Mars reconnaissance orbiter’s high resolution imaging science experiment (HiRISE). J. Geophys. Res., 112, E05S02. doi:10.1029/2005JE002605.Google Scholar
McGuire, A. and Hapke, B. 1995. An experimental study of light scattering by large, irregular particles. Icarus, 113, 134155.Google Scholar
Meeus, J. 2000. Astronomical Algorithms. Wilman-Bell: Richmond, VA.Google Scholar
Meisel, D.D. and Morris, C.S. 1983. Comet head photometry: Past, present, and future. In Wilkening, L. L., ed., Comets. University of Arizona Press: Tucson, AZ. 413432.Google Scholar
Mersenne, M. 1651. L’optique et la catoptrique. Paris: Langlois.Google Scholar
Minnaert, M. 1941. The reciprocity principle in lunar photometry. Astrophys. J., 93, 403410.Google Scholar
Minnaert, M. 1961. Photometry of the moon in planets and satellites. ed. G.P. Kuiper and B.M. Middlehurst. University of Chicago Press: Chicago, IL. 213–248.Google Scholar
Mishchenko, M.I. 1992. The angular width of the coherent back-scatter opposition effect – an application to icy outer planet satellites. Astrophys. Space Sci., 194, 327333.Google Scholar
Mishchenko, M.I. 2013. 125 years of radiative transfer: Enduring triumphs and persisting misconceptions. AIP Conf. Proc., 1531, 1118.Google Scholar
Mishchenko, M.I. and Dlugach, J.M. 1993. Coherent backscatter and the opposition effect for E-type asteroids. Planet. Space Sci., 41, 173181.Google Scholar
Moore, P. 1983. The Guinness Book of Astronomy Facts and Feats. Guinness Superlatives Ltd.: Enfield, Middlesex.Google Scholar
Mueller, B., Samarasinha, N.H., and Belton, M.J. 2002. The diagnosis of complex rotation in the lightcurve of 4179 Toutatis and potential applications to other asteroids and bare cometary nuclei. Icarus, 158, 305311.Google Scholar
Muinonen, K. 1990. Scattering of light by solar system dust: The coherent backscatter phenomenon. Proceedings of the Finnish Astronomical Society, pp. 12–15Google Scholar
Muinonen, K., Penttil, A., Cellino, A., et al. 2009. Asteroid photometric and polarimetric phase curves: Joint linear-exponential modeling. Meteor. Planet. Sci., 44, 19371946.Google Scholar
Muinonen, K., Belskaya, I.N., Cellino, A., et al. 2010. A three-parameter magnitude phase function for asteroids. Icarus, 209, 542555.Google Scholar
Muller, G. 1893. Ueber die Lichtstarke des Planeten Merkur. Astron. Nachr., 133, 47.Google Scholar
Mustard, J.F. and Pieters, C.M. 1987. Quantitative abundance estimates from bidirectional reflectance measurements. J. Geophys. Res., 92, E617E626.Google Scholar
Mustard, J.F. and Pieters, C.M. 1989. Photometric phase functions of common geologic materials and applications to quantitative analysis of mineral mixtures. J. Geophys. Res., 94, 13,619–13,634.Google Scholar
Naranen, J., Kaasalainen, S., Peltoniemi, J., et al. 2004. Laboratory photometry of planetary regolith analogs, II: Surface roughness and extremes of packing density. Astron. Astrophys., 426, 11031109.Google Scholar
Nella, J., Atcheson, P.D., Atkinson, B., et al. 2004. James Webb Space Telescope (JWST) Observatory architecture and performance in, Optical, Infrared, and Millimeter Space Telescopes. Edited by Mather, J.C.. Proc. SPIE, 5487, 576587.Google Scholar
Nelson, R., Hapke, B., Smythe, W., and Horn, L. 1998. Phase curves of selected particulate materials: The contribution of coherent backscattering to the opposition surge. Icarus, 131, 223230.Google Scholar
Nelson, R., Hapke, B., Smythe, W., and Spilker, L. 2000. The opposition effect in simulated planetary regolith. Reflectance and circular polarization ratio change at small phase angle. Icarus, 147, 545558.Google Scholar
Newton, I. 1704. Opticks. Dover Publications: New York, NY.Google Scholar
Illuminating Engineering Society (IES) [Committee on Nomenclature]. 2010. Nomenclature and Definitions for Illuminating Engineering. RP-16-10. IES: New York, NY.Google Scholar
Oke, J.B., and Gunn, J.E. 1983. Secondary standard stars for absolute spectrophotometry. Astrophys. J., 266, 713717.Google Scholar
Olivier, S.S., Seppala, L., Gilmore, K., and the LSST camera team. 2008. Optical Design of the LSST Camera, LLNL-CONF-405460, Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation. Edited by E. Atad-Ettedgui and D. Lemke. Proc. SPIE, 7018, Article id. 70182G, 9 pp.Google Scholar
Onehag, et al. 2011. M67-1194, an unusually Sun-like solar twin in M67. Astronomy Astrophys., 528, id.A85, 11pp.Google Scholar
Opik, E. 1924. Photometric measures on the moon and the earth-shine. Publ. Astron. Obs. Tartu, 26, 168.Google Scholar
Osborn, W.H., A’Hearn, M.E., Carsenty, U., et al. 1990. Standard stars for photometry of comets. Icarus, 88, 228245.Google Scholar
Ostro, S.J., Connelly, R., and Dorogi, M. 1988. Convex-profile inversion of asteroid lightcurves: Theory and applications. Icarus, 75, 3063.Google Scholar
Oszkiewicz, D.A., Bowell, E., Wasserman, L.H., et al. 2012. Asteroid taxonomic signatures from photometric phase curves. Icarus, 219, 283296.Google Scholar
Pieters, C.M. 1999. The Moon as a spectral calibration standard enabled by lunar samples: The Clementine example. Workshop on New Views of the Moon II, Flagstaff, AZ, abstract 8025.Google Scholar
Pinet, P.C., Cord, A., Daydou, F., et al. 2001. Influence of linear versus non-linear mixture on bidirectional reflectance spectra using a laboratory wide field spectral imaging facility. Lunar Planet. Sci., XXXII, abstract 1552.Google Scholar
Pommerol, A., Thomas, N., Portyankina, G., and Jost, B. 2011. Photometry of icy planetary analogs: First results of the PHIRE-2 experiment. EPSC-DPS Joint Meeting 2011, held October 2–7, 2011 in Nantes, France. 463.Google Scholar
Potsdam photometric observations. 1894. The Observatory, 17, 240266.Google Scholar
Rashed, R. 1990. A pioneer in anaclastics: Ibn Sahl on burning mirrors and lenses. Isis, 81 , 464491.Google Scholar
Rayner, J.T., Toomey, D.W., Onaka, P.M., et al. 1998. SpeX: A medium-resolution IR spectrograph for IRTF. Proc. SPIE, 3354, 468479.Google Scholar
Reddy, V., Li, J.-Y., Le Corre, L., et al. 2013. Comparing Dawn, Hubble Space Telescope, and ground-based interpretations of (4) Vesta. Icarus, 226, 11031114.Google Scholar
Robinson, M.S., Brylow, S.M., Tschimmel, M., et al. 2010. Lunar reconnaissance orbiter camera (LROC) instrument overview. Space Sci. Rev., 150, 81124.Google Scholar
Robinson, M.S., Thomas, P.C., Veverka, J., Murchie, S., and Carchich, B. 2001. The nature of ponded deposits on Eros. Nature, 413, 396400.Google Scholar
Roemer, O. 1677. On the motion of light. Phil. Trans. Roy. Soc., 12, 397398.Google Scholar
Rosenbush, V., Kiselev, N., Avramchuk, V., and Mishenko, M. 2002. Photometric and polarimetric opposition phenomenon exhibited by solar system bodies. In Videen, G. and Kocifaj, M., eds., Optics of Cosmic Dust. Kluwer Academic Publishers: Dordrecht, The Netherlands. 191224.Google Scholar
Rosenbush, V., Shevchenko, V.G., Kiselev, N.N., et al. 2009. Polarization and brightness opposition effects for the E-type asteroid 44 Nysa. Icarus, 201, 655665.Google Scholar
Rossotti, H. 1983. Colour: Why the World Isn’t Grey. Princeton University Press: Princeton, NJ.Google Scholar
Russell, H.N. 1906. On the light-variations of asteroids and satellites. Astrophys. J., 24, 118.Google Scholar
Russell, H.N. 1916a. The stellar magnitudes of the Sun, Moon, and Planets. Astrophys. J., 43, 103129.Google Scholar
Russell, H.N. 1916b. On the albedo of the planets and their satellites. Astrophy. J., 43, 173196.Google Scholar
Sasaki, S., Kurahashi, E., Yamanaka, C., and Nakamura, K. 2003. Laboratory simulation of space weathering: Changes of optical properties and TEM/ESR confirmation of nanophase metallic iron. Adv. Space Res., 31, 25372542.Google Scholar
Sato, H., Robinson, M.S., Hapke, B., Denevi, B.W., and Boyd, A.K. 2014. Resolve Hapke parameter maps of the Moon. J. Geophys. Res. Planets, 119, 17751805.Google Scholar
Schleicher, D.G. and Farnham, T.L. 2004. Photometry and imaging of the coma with narrowband filters. In Festou, M.C., Keller, H.U., and Weaver, H.A., eds., Comets II. University of Arizona Press: Tucson, AZ. 449470.Google Scholar
Schleicher, D.G., Bair, A.N., Sackey, S., et al. 2015. The evolving photometric lightcurve of comet 1P/Halley’s coma during the 1985/86 apparitions. Astron. J., 150.Google Scholar
Schroder, S.E., Grynko, Ye., Pommerol, A., et al. 2014. Laboratory observations and simulations of phase reddening. Icarus, 239, 201216.Google Scholar
von Seeliger, H. 1887. Zur Theorie der Beleuchtung der grossen Planeten insbesondere des Saturn. Abh. Bayer. Akad. Wiss. Math. Naturwiss. Kl., 16, 405516.Google Scholar
von Seeliger, H. 1895. Theorie der Beleuchtung staubformiger kosmischen Masses insbesondere des Saturinges. Abhandl. Bayer. Akad. Wiss. Math. Naturw. Kl. II, 18, 172.Google Scholar
Shaw, A., Daly, M.D., Cloutis, E., et al. 2016. Reflectance properties of grey-scale Spectralon® as a function of viewing angle, wavelength, and polarization. Int. J. Rem. Sens., 37, 25102523.Google Scholar
Shepard, M.K. 2001. The Bloomsburg University Goniometer (B.U.G.) Laboratory: An Integrated Laboratory for Measuring Bidirectional Reflectance Functions. 32nd Annual Lunar and Planetary Science Conference, March 12–16, 2001, Houston, TX, abstract 1015.Google Scholar
Shepard, M.K. 2015. Asteroids: Relics of Ancient Time. Cambridge University Press: Cambridge, UK.Google Scholar
Shepard, M.K. and Campbell, B.A. 1998. Shadows on a planetary surface and implications for photometric roughness. Icarus, 134, 279291.Google Scholar
Shepard, M.K. and Helfenstein, P. 2007. A test of the Hapke photometric model. J. Geophys. Res., 112, E03001. 17pp.Google Scholar
Shepard, M.K., Campbell, B.A., Bulmer, M.H., et al. 2001. The roughness of natural terrain: A planetary and remote sensing perspective. J. Geophys. Res., 106, 32,777–32,795.Google Scholar
Shevchenko, V.G. 1997. Analysis of asteroid brightness phase relations. Sol. Syst. Res., 31, 219224.Google Scholar
Shevchenko, V.G., Chiorny, V.G., Gaftonyuk, N.M., et al. 2008. Asteroid observations at low phase angles, III: Brightness behavior of dark asteroids. Icarus, 196, 601611.Google Scholar
Shkuratov, Y. 1989. A new mechanism for the negative polarization of light scattered by the solid surfaces of cosmic bodies. Astron. Vestnik, 23, 176180 (in Russian).Google Scholar
Shkuratov, Y., Kreslavsky, M.A., Ovcharenko, A.A., et al. 1999. Opposition effect from Clementine data and mechanisms of backscatter. Icarus, 141, 132155.Google Scholar
Shkuratov, Y.G., Ovcharenko, A., Zubko, E., et al. 2002. The opposition effect and negative polarization of structural analogs for planetary regoliths. Icarus, 159, 396416.Google Scholar
Shkuratov, Y., Kaydash, V., Gerasimenko, S., et al. 2010. Probable swirls detected as photometric anomalies in Oceanus Procellarum. Icarus, 208, 2030.Google Scholar
Shkuratov, Y., Kaydash, V., Korokhin, V., et al. 2011. Optical measurements of the Moon as a tool to study its surface. Planet. Space Sci., 59, 13261371.Google Scholar
Shorthill, R.W. and Saari, J.M. 1965. Non-uniform cooling of the eclipsed moon: A listing of thirty prominent anomalies. Science, 150, 210212.Google Scholar
Shorthill, R.W., Saari, J.M., Baird, F.E., and LeCompte, J.R. 1969. Photometric Properties of Selected Lunar Features. NASA Contractor Report CR-1429. 405 pp.Google Scholar
Sidgwick, J.B. 1971. The Amateur Astronomer’s Handbook. Dover Publications: New York, NY.Google Scholar
Sierks, H., Keller, H.U., Jaumann, H., et al. 2012. The Dawn framing camera. In Russell, C. and Raymond, C., eds., The Dawn Mission to Minor Planets 4 Vesta and 1 Ceres. Springer: New York, NY.Google Scholar
Simons, H. 1964. Is the Moon being skinned? New Scientist, 413, 163.Google Scholar
Skrutskie, M.F., Cutri, R.M., Stiening, R., et al. 2006. The two micron all sky survey (2MASS). Astron. J., 131, 11631183.Google Scholar
Smith, J.A., Tucker, D.L., Stephen, K., et al. 2002. The u’g’r’i’z’ standard star system. Astron. J., 123, 21212144.Google Scholar
Soderblom, D.R. and King, J.R. 1998. Solar-type stars: Basic information on their classification and characterization. In Hall, J.C., ed., Solar Analogs: Characteristics and Optimum Candidates. Second Annual Lowell Observatory Fall Workshop, October 1997. Lowell Observatory: Flagstaff, AZ. 4160.Google Scholar
Springsteen, A.W. 1989. A novel class of Lambertian reflectance materials for remote sensing application. Opt. Radiat. Meas. II, 1109: 133141.Google Scholar
Springsteen, A.W. 1999. Standards for the measurement of diffuse reflectance - an overview of available materials and measurement laboratories. Anal. Chim. Acta, 380, 379390.Google Scholar
Standish, E.M. 1998. Time scales in the JPL and CfA ephemerides. Astron. Astrophys., 336, 381384.Google Scholar
Staubermann, K. 2000. The trouble with the instrument: Zöllner’s photometer. J. Hist. Astron., 31, 323338.Google Scholar
Sykes, M.V., Cutri, R.M., Fowler, J.W., et al. 2000. The 2MASS asteroid and comet survey. Icarus, 146, 161175.Google Scholar
Sykes, M.V., Cutri, R.M., Fowler, J.W., et al. 2010. 2MASS asteroid and comet survey V2.0. NASA Planetary Data System, EAR-A-I0054/I0055-5-2MASS-V2.0.Google Scholar
Taylor, R.C., Gehrels, T., and Silvester, A.B. 1971. Minor planets and related objects. VI. Asteroid (110) Lydia. Astron. J., 76, 141146.Google Scholar
Thompson, B. 1794. A method of measuring the comparative intensities of the light emitted by luminous bodies. Philos. Trans., 84, 67. Rumfords Collected Works (Boston, 1875, vol. 4, p. 1).Google Scholar
Thompson, T.W. and Dyce, R.B. 1966. Mapping of Lunar reflectivity at 70 centimeters. J. Geophys. Res., 71, 48434853.Google Scholar
Thorpe, T.E. 1976. The Viking Orbiter cameras’ potential for photometric measurement. Icarus, 27, 229239.Google Scholar
Thuan, T.X. and Gunn, J.E. 1976. The new four-color intermediate band photometric system. Publ. Astron. Soc. Pac., 88, 543547.Google Scholar
United States Naval Observatory (USNO). http://aa.usno.navy.mil/faq/docs/ICRS_doc.php.Google Scholar
van Diggelen, J. 1959. Photometric properties of lunar crater floors. Rech. Obs. Utrecht, 14, 2.Google Scholar
Veverka, J. 1971a. The meaning of Russell’s Law. Icarus, 14, 284285.Google Scholar
Veverka, J. 1971b. The Physical Meaning of Phase Coefficients. In Gehrels, T., ed., Physical Studies of Minor Planets. Proceedings of IAU Colloq. 12, held in Tucson, AZ, National Aeronautics and Space Administration, SP 267, Washington, DC. 7990.Google Scholar
Vsekhsvyatskii, S.K. 1964. Physical characteristics of comets. Soviet Astron.-AJ, 8, 429431; also NASA TT F-80, OTS 62-11031.Google Scholar
Walsh, J.W.T. 1926. Photometry. Constable and Company: London, UK.Google Scholar
Wade, R.A., Hoessel, J.G., Elias, J.H., et al. 1979. A two-color photometric system for the near-infrared. Publ. Astron. Soc. Pac., 91, 3540.Google Scholar
Warner, B.D. 2006. A Practical Guide to Lightcurve Photometry and Analysis. Springer: New York, NY.Google Scholar
Warell, J. 2004. Properties of the Hermean regolith, IV: Photometric parameters of Mercury and the Moon contrasted with Hapke modelling. Icarus, 167, 271286.Google Scholar
Warell, J. and Bergfors, C. 2008. Mercury’s integral phase curve: Phase reddening and wavelength dependence of photometric quantities. Planet. Space Sci., 56, 19391948.Google Scholar
Weber, E.H. 1834. De pulsu, resorption, auditu et tactu. Annotationes anatomicae et physiologicae. Leipzig: Koehler.Google Scholar
Wehner, G.K., Rosenberg, D., and Kenknight, C.E. 1963. Modification of the lunar surface by the solar-wind bombardment. Planet. Space Sci., 11, 12571261.Google Scholar
Wilson, R.C. and Hudson, H.S. 1991. The Sun’s luminosity over a complete solar cycle. Nature, 351, 4244.Google Scholar
Wood, C.A. 1987. Rotation Period of Halley’s and Other Comets. Abstract 1560. LPSC XVIII, Houston, TX.Google Scholar
Wyckoff, S. 1983. Overview of comet observations. In Wilkening, L.L., ed., Comets. Arizona Press: Tucson, AZ. 355.Google Scholar
Young, T. 1804. Bakerian Lecture: Experiments and calculations relative to physical optics. Philos. Trans. Roy. Soc., 94, 116.Google Scholar
Zöllner, J.C.F. 1865. Photometrische untersuchungen mit Besonderer Rücksicht auf die Physische Beschaffenheitt der Himmelskörper. (Photometric investigations with special reference to the physical nature of celestial bodies) (German). Leipzig: Verlag von Wilhelm Engelmann.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Michael K. Shepard
  • Book: Introduction to Planetary Photometry
  • Online publication: 28 April 2017
  • Chapter DOI: https://doi.org/10.1017/9781316443545.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Michael K. Shepard
  • Book: Introduction to Planetary Photometry
  • Online publication: 28 April 2017
  • Chapter DOI: https://doi.org/10.1017/9781316443545.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Michael K. Shepard
  • Book: Introduction to Planetary Photometry
  • Online publication: 28 April 2017
  • Chapter DOI: https://doi.org/10.1017/9781316443545.010
Available formats
×