Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T06:35:05.959Z Has data issue: false hasContentIssue false

12 - Concatenated Codes

Published online by Cambridge University Press:  05 June 2012

Ron Roth
Affiliation:
Technion - Israel Institute of Technology, Haifa
Get access

Summary

In this chapter, we continue the discussion on concatenated codes, which was initiated in Section 5.4. The main message to be conveyed in this chapter is that by using concatenation, one can obtain codes with favorable asymptotic performance—in a sense to be quantified more precisely—while the complexity of constructing these codes and decoding them grows polynomially with the code length.

We first present a decoding algorithm for concatenated codes, due to Forney. This algorithm, referred to as a generalized minimum distance (in short, GMD) decoder, corrects any error pattern whose Hamming weight is less than half the product of the minimum distances of the inner and outer codes (we recall that this product is a lower bound on the minimum distance of the respective concatenated code). A GMD decoder consists of a nearest-codeword decoder for the inner code, and a combined error–erasure decoder for the outer code. It then enumerates over a threshold value, marking the output of the inner decoder as erasure if that decoder returns an inner codeword whose Hamming distance from the respective received sub-word equals or exceeds that threshold. We show that under our assumption on the overall Hamming weight of the error word, there is at least one threshold for which the outer decoder recovers the correct codeword. If the outer code is taken as a GRS code, then a GMD decoder has an implementation with time complexity that is at most quadratic in the length of the concatenated code.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Concatenated Codes
  • Ron Roth, Technion - Israel Institute of Technology, Haifa
  • Book: Introduction to Coding Theory
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511808968.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Concatenated Codes
  • Ron Roth, Technion - Israel Institute of Technology, Haifa
  • Book: Introduction to Coding Theory
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511808968.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Concatenated Codes
  • Ron Roth, Technion - Israel Institute of Technology, Haifa
  • Book: Introduction to Coding Theory
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511808968.013
Available formats
×