Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-21T23:10:22.051Z Has data issue: false hasContentIssue false

2 - Coalgebras of Polynomial Functors

Published online by Cambridge University Press:  22 December 2016

Bart Jacobs
Affiliation:
Radboud Universiteit Nijmegen
Get access

Summary

The previous chapter has introduced several examples of coalgebras and has illustrated basic coalgebraic notions such as behaviour and invariance (for those examples). This chapter will go deeper into the study of the area of coalgebra, introducing some basic notions, definitions and terminology. It will first discuss several fundamental set theoretic constructions, such as products, coproducts, exponents and powersets in a suitably abstract (categorical) language. These constructs are used to define a collection of elementary functors, the so-called polynomial functors. As will be shown in Section 2.2, this class of functors is rich enough to capture many examples of interesting coalgebras, including deterministic and non-deterministic automata. One of the attractive features of polynomial functors is that almost all of them have a final coalgebra – except when the (non-finite) powerset occurs. The unique map into a final coalgebra will appear as behaviour morphism, mapping a state to its behaviour. The two last sections of this chapter, Sections 2.4 and 2.5, provide additional background information, namely on algebras (as duals of coalgebras) and on adjunctions. The latter form a fundamental categorical notion describing backand- forth translations that occur throughout mathematics.

Constructions on Sets

This section describes familiar constructions on sets, such as products, coproducts (disjoint unions), exponents and powersets. It does so in order to fix notation and to show that these operations are functorial, i.e. give rise to functors. This latter aspect is maybe not so familiar. Functoriality is essential for properly developing the theory of coalgebras; see Definition 1.4.5.

These basic constructions on sets are instances of more general constructions in categories. We shall give a perspective on these categorical formulations, but we do not overemphasise this point. Readers without much familiarity with the theory of categories may then still follow the development, and readers who are quite comfortable with categories will recognise this wider perspective anyway.

Products

We recall that for two arbitrary sets X, Y the product X × Y is the set of pairs

There are then obvious projection functions π1 : X×YX and π2 : X×YY by π1(x, y) = x and π2(x, y) = y.

Type
Chapter
Information
Introduction to Coalgebra
Towards Mathematics of States and Observation
, pp. 33 - 113
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×