Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T23:41:11.753Z Has data issue: false hasContentIssue false

6 - Linking ecological and social scales for natural resource management

Published online by Cambridge University Press:  14 January 2010

Jianguo Liu
Affiliation:
Michigan State University
William W. Taylor
Affiliation:
Michigan State University
Get access

Summary

Introduction

Natural resource management has moved from a single disciplinary and one resource management approach to an interdisciplinary and ecosystem-based approach. Many conceptual models are being developed to understand and implement ecosystem management and forest certification initiatives that require an integration of data from both the social and natural systems (Vogt et al., 1997, 1999a,b). These changed approaches to natural resource management arose from a perception that variables critical in controlling the health and functioning of an ecosystem could only be determined by integrating information from both the social and the natural sciences (Vogt et al., 1997). However, it has been difficult to take many of the theoretical discussions and the frameworks or conceptual models that they have produced and to operationalize or put them into practice on the ground.

Despite these discussions and the recognition of their importance, social and natural science data have been ineffectively incorporated into the management and trade-off assessments of natural resources (Berry and Vogt, 1999).We hypothesize that some of this has occurred because of the distinct spatial scales being used by different disciplines which have not allowed for integration of information to occur at a causal level. The complexity and uncertainty of data needed to understand ecosystems by both social and natural scientists have also made it difficult for managers to recognize when the wrong indicators are being monitored or whether a system could degrade due to management (Larson et al., 1999; Vogt et al., 1999c). The need to link data causally from both disciplines as part of ecosystem management has given greater impetus to develop practical tools that would allow this integration to be accomplished.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×