Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-26T23:57:57.702Z Has data issue: false hasContentIssue false

8 - Theta rhythm and bidirectional plasticity in the hippocampus

Published online by Cambridge University Press:  14 August 2009

Christian Holscher
Affiliation:
University of Ulster
Matthias Munk
Affiliation:
Max-Planck-Institut für biologische Kybernetik, Tübingen
Get access

Summary

Introduction

The local field potential from the hippocampus of an awake, stationary animal is filled with seemingly random low-amplitude high-frequency activity and arrhythmic high-amplitude low-frequency activity. To the untrained eye it is nearly impossible to discern any clear patterns or relationships of the signal to behavior, as the local field potential appears to be only noise. Then something striking happens, as the animal starts to move around, an extremely rhythmic high-amplitude 6–10-Hz sinusoidal waveform appears and instantly offers a window into the relationship between the hippocampal field potential and the animal's behavior. When Green and Arduini (1954) first recorded local field potentials activity from the hippocampus of behaving animals they saw this rhythmic activity (theta rhythm; 6–10-Hz high-amplitude sinusoidal activity: Buzsáki et al., 1986) and it was clear to them that theta rhythm played a significant role in hippocampal function. Theta appeared whenever the animal walked, ran, sniffed, oriented, reared, or went into rapid eye movement (REM) sleep, and theta was notably absent during consummatory behaviors (eating and drinking), grooming, and slow wave sleep.

The nature of theta's role in hippocampal processing was somewhat clarified when studies of the effect of hippocampectomy in humans and rodents were performed, and the hippocampus's central role in associative memory was suggested (Scoville and Milner, 1957; Morris et al., 1982). Since those original studies, further work has shown memory impairments in a wide range of behavioral and cognitive tasks that utilize multiple sensory modalities and behavioral responses (Eichenbaum, 2000).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aggleton, J. P., Neave, N., Nagle, S., and Hunt, P. R. (1995). A comparison of the effects of anterior thalamic, mamillary body and fornix lesions on reinforced spatial alternation. Behav Brain Res 68:91–101.CrossRefGoogle ScholarPubMed
Andersen, P., Bland, H. B., Myhrer, T., and Schwartzkroin, P. A. (1979). Septo-hippocampal pathway necessary for dentate theta production. Brain Res 165:13–22.CrossRefGoogle ScholarPubMed
Berry, S. D. and Seager, M. A. (2001). Hippocampal theta oscillations and classical conditioning. Neurobiol Learn Mem 76:298–313.CrossRefGoogle ScholarPubMed
Berry, S. D. and Thompson, R. F. (1978). Prediction of learning rate from the hippocampal electroencephalogram. Science 200:1298–1300.CrossRefGoogle ScholarPubMed
Bi, G. Q. and Poo, M. M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10 464–10 472.CrossRefGoogle ScholarPubMed
Bliss, T. V. and Collingridge, G. L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39.CrossRefGoogle ScholarPubMed
Bliss, T. V. and Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356.CrossRefGoogle ScholarPubMed
Bonansco, C. and Buno, W. (2003). Cellular mechanisms underlying the rhythmic bursts induced by NMDA microiontophoresis at the apical dendrites of CA1 pyramidal neurons. Hippocampus 13:150–163.CrossRefGoogle ScholarPubMed
Buno, W., Garcia-Sanchez, J. L., and Garcia-Austt, E. (1978). Reset of hippocampal rhythmical activities by afferent stimulation. Brain Res Bull 3:21–28.CrossRefGoogle ScholarPubMed
Buzsáki, G., Leung, L. W., and Vanderwolf, C. H. (1983). Cellular bases of hippocampal EEG in the behaving rat. Brain Res 287:139–171.CrossRefGoogle ScholarPubMed
Buzsáki, G., Czopf, J., Kondakor, I., and Kellenyi, L. (1986). Laminar distribution of hippocampal rhythmic slow activity (RSA) in the behaving rat: current-source density analysis, effects of urethane and atropine. Brain Res 365:125–137.CrossRefGoogle ScholarPubMed
Cho, K., Aggleton, J. P., Brown, M. W., and Bashir, Z. I. (2001). An experimental test of the role of postsynaptic calcium levels in determining synaptic strength using perirhinal cortex of rat. J Physiol 532:459–466.CrossRefGoogle ScholarPubMed
Collingridge, G. L., Kehl, S. J., and McLennan, H. (1983). Excitatory amino acids in synaptic transmission in the Schaffer collateral–commissural pathway of the rat hippocampus. J Physiol 3:33–46.CrossRefGoogle Scholar
Cormier, R. J., Greenwood, A. C., and Connor, J. A. (2001). Bidirectional synaptic plasticity correlated with the magnitude of dendritic calcium transients above a threshold. J Neurophysiol 85:399–406.CrossRefGoogle ScholarPubMed
Cummings, D. D., Wilcox, K. S., and Dichter, M. A. (1996). Calcium-dependent paired-pulse facilitation of miniature EPSC frequency accompanies depression of EPSCs at hippocampal synapses in culture. J Neurosci 16:5312–5322.CrossRefGoogle ScholarPubMed
Diamond, D. M. and Rose, G. M. (1994). Stress impairs LTP and hippocampal-dependent memory. Ann N Y Acad Sci 746:411–414.CrossRefGoogle ScholarPubMed
Dudek, S. M. and Bear, M. F. (1993). Bidirectional long-term modification of synaptic effectiveness of adult and immature hippocampus. J Neurosci 13:2190–2198.CrossRefGoogle ScholarPubMed
Dunwiddie, T. V. and Lynch, G. (1979). The relationship between extracellular calcium concentrations and the induction of hippocampal long-term potentiation. Brain Res 169:103–110.CrossRefGoogle ScholarPubMed
Eichenbaum, H. (2000). A cortical–hippocampal system for declarative memory. Nat Rev Neurosci 1:41–50.CrossRefGoogle ScholarPubMed
Eichenbaum, H., Kuperstein, M., Fagan, A., and Nagode, J. (1987). Cue-sampling and goal-approach correlates of hippocampal unit activity in rats performing an odor-discrimination task. J Neurosci 7:716–732.CrossRefGoogle ScholarPubMed
Ennaceur, A., Neave, N., and Aggleton, J. P. (1996). Neurotoxic lesions of the perirhinal cortex do not mimic the behavioural effects of fornix transection in the rat. Behav Brain Res 80:9–25.CrossRefGoogle Scholar
Fox, S. E., Wolfson, S., and Ranck, J. B. (1986). Hippocampal theta rhythm and the firing of neurons in walking and urethane anesthetized rats. Brain Res 62:495–508.Google ScholarPubMed
Givens, B. (1996). Stimulus-evoked resetting of the dentate theta rhythm: relation to working memory. Neuroreport 8:159–163.CrossRefGoogle ScholarPubMed
Givens, B. S. and Olton, D. S. (1990). Cholinergic and GABAergic modulation of the medial septal area: effect on working memory. Behav Neurosci 104:849–855.CrossRefGoogle ScholarPubMed
Givens, B. and Olton, D. S. (1994). Local modulation of basal forebrain: effects on working and reference memory. J Neurosci 14:3578–3587.CrossRefGoogle ScholarPubMed
Golding, N., Staff, N., and Spruston, N. (2002). Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418:326–331.CrossRefGoogle Scholar
Gorchetchnikov, A., Versace, M., and Hasselmo, M. E. (2005). A model of STDP based on spatially and temporally local information: derivation and combination with gated decay. Neur Networks 18:458–466.CrossRefGoogle ScholarPubMed
Green, J. D. and Arduini, A. A. (1954). Hippocampal electrical activity and arousal. J Neurophysiol 17:533–557.CrossRefGoogle ScholarPubMed
Greenstein, Y. J., Pavlides, C., and Winson, J. (1988). Long-term potentiation in the dentate gyrus is preferentially induced at theta rhythm periodicity. Brain Res 438:331–334.CrossRefGoogle ScholarPubMed
Griffin, A. L., Asaka, Y., Darling, R. D., and Berry, S. D. (2004). Theta-contingent trial presentation accelerates learning rate and enhances hippocampal plasticity during trace eyeblink conditioning. Behav Neurosci 118:403–411.CrossRefGoogle ScholarPubMed
Hasselmo, M. E. and Eichenbaum, H. (2005). Hippocampal mechanisms for the context-dependent retrieval of episodes. Neur Networks 15:689–707.CrossRefGoogle Scholar
Hasselmo, M. E., Bodelon, C., and Wyble, B. P. (2002). A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neur Comput 14:793–817.CrossRefGoogle ScholarPubMed
Hebb, D. O. (1949). The Organization of Behavior: A Neuropsychological Theory. New York: John Wiley.Google Scholar
Hölscher, C., Anwyl, R., and Rowan, M. J. (1997). Stimulation on the positive phase of hippocampal theta rhythm induces long-term potentiation that can be depotentiated by stimulation on the negative phase in area CA1 in vivo. J Neurosci 17:6470–6477.CrossRefGoogle ScholarPubMed
Huerta, P. T. and Lisman, J. E. (1995). Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro. Neuron 15:1053–1063.CrossRefGoogle ScholarPubMed
Huxter, J., Burgess, N., and O'Keefe, J. (2003). Independent rate and temporal coding in hippocampal pyramidal cells. Nature 425:828–832.CrossRefGoogle ScholarPubMed
Hyman, J. M., Wyble, B. P., Goyal, V., Rossi, C. A., and Hasselmo, M. E. (2003). Stimulation in hippocampal region CA1 in behaving rats yields long-term potentiation when delivered to the peak of theta and long-term depression when delivered to the trough. J Neurosci 23:11 725–11 731.CrossRefGoogle ScholarPubMed
Jahr, C. E. and Stevens, C. F. (1987). Glutamate activates multiple single channel conductances in hippocampal neurons. Nature 325:522–525.CrossRefGoogle ScholarPubMed
Kamondi, A., Acsady, L., Wang, X. J., and Buzsáki, G. (1998). Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase-precession of action potentials. Hippocampus 8:244–261.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Karmarkar, U. R., Najarian, M. T., and Buonomano, D. V. (2002). Mechanisms and significance of spike-timing dependent plasticity. Biol Cybern 87:373–382.CrossRefGoogle ScholarPubMed
Koester, H. J. and Sakmann, B. (1998). Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. Proc Natl Acad Sci USA 95:9596–9601.CrossRefGoogle ScholarPubMed
Larson, J. and Lynch, G. (1986). Induction of synaptic potentiation in hippocampus by patterned stimulation involves two events. Science 232:985–988.CrossRefGoogle ScholarPubMed
Lisman, J. (1989). A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc Natl Acad Sci USA 86:9574–9578.CrossRefGoogle ScholarPubMed
Lisman, J. E. (2001). Three Ca2+ levels affect plasticity differently: the LTP zone, the LTD zone and no man's land. J Physiol 532:285.CrossRefGoogle ScholarPubMed
Lynch, G., Larson, J., Kelso, S., Barrionuevo, G., and Schottler, F. (1983). Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature 305:719–721.CrossRefGoogle ScholarPubMed
Malenka, R. C. and Bear, M. F. (2004). LTP and LTD: an embarrassment of riches. Neuron 44:5–21.CrossRefGoogle ScholarPubMed
Markowska, A. L., Olton, D. S., Murray, E. A., and Gaffan, D. (1989). A comparative analysis of the role of fornix and cingulate cortex in memory: rats. Exp Brain Res 74:187–201.CrossRefGoogle ScholarPubMed
McCartney, H., Johnson, A. D., Weil, Z. M., and Givens, B. (2004). Theta reset produces optimal conditions for long-term potentiation. Hippocampus 14:684–687.CrossRefGoogle ScholarPubMed
M'Harzi, M., Palacios, A., Monmaur, P., et al. (1987). Effects of selective lesions of fimbria-fornix on learning set in the rat. Physiol Behav 40:181–188.CrossRefGoogle ScholarPubMed
Mishkin, M. (1978). Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus. Nature 273:297–298.CrossRefGoogle Scholar
Morris, R. G., Garrud, P., Rawlins, J. N., and O'Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683.CrossRefGoogle ScholarPubMed
Mulkey, R. M. and Malenka, R. C. (1992). Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 9:967–975.CrossRefGoogle ScholarPubMed
Numan, R. and Quaranta, J. R. (1990). Effects of medial septal lesions on operant delayed alternation in rats. Brain Res 531:232–241.CrossRefGoogle ScholarPubMed
O'Keefe, J. and Conway, D. H. (1978). Hippocampal place units in the freely moving rat: why they fire where they fire. Exp Brain Res 31:573–590.CrossRefGoogle ScholarPubMed
O'Keefe, J. and Dostrovsky, J. (1971). The hippocampus as a spatial map: preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:171–175.CrossRefGoogle ScholarPubMed
O'Keefe, J. and Recce, M. L. (1993). Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3:317–330.CrossRefGoogle ScholarPubMed
Orr, G., Rao, G., Houston, F. P., McNaughton, B. L., and Barnes, C. A. (2001). Hippocampal synaptic plasticity is modulated by theta rhythm in the fascia dentata of adult and aged freely behaving rats. Hippocampus 11:647–654.CrossRefGoogle ScholarPubMed
Pavlides, C., Greenstein, Y. J., Grudman, M., and Winson, J. (1988). Long-term potentiation in the dentate gyrus is induced preferentially on the positive phase of theta-rhythm. Brain Res 439:383–387.CrossRefGoogle ScholarPubMed
Rawlins, J. N., Feldon, J., and Gray, J. A. (1979). Septo-hippocampal connections and the hippocampal theta rhythm. Exp Brain Res 37:49–63.CrossRefGoogle ScholarPubMed
Rizzuto, D. S., Madsen, J. R., Bromfield, E. B., et al. (2003). Reset of human neocortical oscillations during a working memory task. Proc Natl Acad Sci USA 100:7931–7936.CrossRefGoogle ScholarPubMed
Rubin, J. E., Gerkin, R. C., Bi, G. Q., and Chow, C. C. (2005). Calcium time course as a signal for spike-timing-dependent plasticity. J Neurophysiol 93:2600–2613.CrossRefGoogle ScholarPubMed
Scoville, W. B. and Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiat 20:11–21.CrossRefGoogle ScholarPubMed
Seager, M. A., Johnson, L. D., Chabot, E. S., Asaka, Y., and Berry, S. D. (2002). Oscillatory brain states and learning: impact of hippocampal theta-contingent training. Proc Natl Acad Sci USA 99:1616–1620.CrossRefGoogle ScholarPubMed
Skaggs, W. E. and McNaughton, B. L. (1996). Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science 271:1870–1873.CrossRefGoogle ScholarPubMed
Skaggs, W. E., McNaughton, B. L., Wilson, M. A., and Barnes, C. A. (1996). Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6:149–172.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Stanton, P. K. (1996). LTD, LTP, and the sliding threshold for long-term synaptic plasticity. Hippocampus 6:35–42.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Stewart, M., Quirk, G. J., Barry, M., and Fox, S. E. (1992). Firing relations of medial entorhinal neurons to the hippocampal theta rhythm in urethane anesthetized and walking rats. Exp Brain Res 90:21–28.CrossRefGoogle ScholarPubMed
Vanderwolf, C. H. (1968). Recovery from large medial thalamic lesions as a result of electroconvulsive therapy. J Neurol Neurosurg Psychiat 31:67–72.CrossRefGoogle ScholarPubMed
Vanderwolf, C. H. (1971). Limbic–diencephalic mechanisms of voluntary movement. Psychol Rev 78:83–113.CrossRefGoogle ScholarPubMed
Vanderwolf, C. H. (1975). Neocortical and hippocampal activation relation to behavior: effects of atropine, eserine, phenothiazines, and amphetamine. J Comp Physiol Psychol 88:300–323.CrossRefGoogle ScholarPubMed
Vertes, R. P. and Kocsis, B. (1997). Brainstem–diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience 81:893–926.Google ScholarPubMed
Wang, H. X., Gerkin, R. C., Nauen, D. W., and Bi, G. Q. (2005). Coactivation and timing-dependent integration of synaptic potentiation and depression. Nat Neurosci 8:187–193.CrossRefGoogle ScholarPubMed
Whishaw, I. Q. and Tomie, J. A. (1997). Perseveration on place reversals in spatial swimming pool tasks: further evidence for place learning in hippocampal rats. Hippocampus 7:361–370.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Winson, J. (1978). Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. Science 201:160–163.CrossRefGoogle ScholarPubMed
Wittenberg, G. M. and Wang, S. S. (2006). Malleability of spike-timing-dependent plasticity at the CA3–CA1 synapse. J Neurosci 26:6610–6617.CrossRefGoogle ScholarPubMed
Yang, S. N., Tang, Y. G., and Zucker, R. S. (1999). Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. J Neurophysiol 81:781–787.CrossRefGoogle ScholarPubMed
Ylinen, A., Soltesz, I., Bragin, A., et al. (1995). Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells. Hippocampus 5:78–90.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×