Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T11:51:38.712Z Has data issue: false hasContentIssue false

10 - The cognitive and neural correlates of individual differences in inferential processes

Published online by Cambridge University Press:  05 May 2015

Edward J. O'Brien
Affiliation:
University of New Hampshire
Anne E. Cook
Affiliation:
University of Utah
Robert F. Lorch, Jr
Affiliation:
University of Kentucky
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barry, S., & Lazarte, A. A. (1998). Evidence for mental models: how do prior knowledge, syntactic complexity, and reading topic affect inference generation in a recall task for nonnative readers of Spanish? The Modern Language Journal, 82(2), 176–93.CrossRefGoogle Scholar
Bransford, J. D., & Johnson, M. K. (1972). Contextual prerequisites for understanding: some investigations of comprehension and recall. Journal of Verbal Learning and Verbal Behavior, 11(6), 717–26.CrossRefGoogle Scholar
Brown, J. I. (1960). The Nelson-Denny Reading Test.Google Scholar
Buchweitz, A., Mason, R. A., Tomitch, L., & Just, M. A. (2009). Brain activation for reading and listening comprehension: an fMRI study of modality effects and individual differences in language comprehension. Psychology & Neuroscience, 2(2), 111–23.CrossRefGoogle ScholarPubMed
Buchweitz, A., & Prat, C. (2013). The bilingual brain: flexibility and control in the human cortex. Physics of Life Reviews, 10, 428–43.Google ScholarPubMed
Calvo, M. G. (2005). Relative contribution of vocabulary knowledge and working memory span to elaborative inferences in reading. Learning and Individual Differences, 15(1), 5365.CrossRefGoogle Scholar
Calvo, M. G., Estevez, A., & Dowens, M. G. (2003). Time course of elaborative inferences in reading as a function of prior vocabulary knowledge. Learning and Instruction, 13(6), 611–31.CrossRefGoogle Scholar
Estevez, A., & Calvo, M. G. (2000). Working memory capacity and time course of predictive inferences. Memory, 8(1), 5161.CrossRefGoogle ScholarPubMed
Friederici, A. D. (2006). What's in control of language? Nature Neuroscience, 9(8), 991–2.CrossRefGoogle ScholarPubMed
Garlick, D. (2002). Understanding the nature of the general factor of intelligence: the role of individual differences in neural plasticity as an explanatory mechanism. Psychological Review, 109(1), 116–36.CrossRefGoogle ScholarPubMed
Gernsbacher, M. A., Varner, K. R., & Faust, M. E. (1990). Investigating differences in general comprehension skill. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(3), 430-45.Google ScholarPubMed
Gerrig, R. J., & O'Brien, E. J. (2005). The scope of memory-based processing. Discourse Processes, 39(2&3), 225–42.CrossRefGoogle Scholar
Graesser, A. C., Singer, M., & Trabasso, T. (1994). Constructing inferences during narrative text comprehension. Psychological Review, 101(3), 371–95.CrossRefGoogle ScholarPubMed
Haier, R. J., Siegel, B. V. Jr, Nuechterlein, K. H., Hazlett, E., Wu, J. C., Paek, J., Browning, H. L., & Buchsbaum, M. S. (1988). Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence, 12(2), 199217.CrossRefGoogle Scholar
Hannon, B., & Daneman, M. (1998). Facilitating knowledge-based inferences in less-skilled readers. Contemporary Educational Psychology, 23(2), 149–72.CrossRefGoogle ScholarPubMed
Haviland, S. E., & Clark, H. H. (1974). What's new? Acquiring new information as a process in comprehension. Journal of Verbal Learning and Verbal Behavior, 13(5), 512–21.CrossRefGoogle Scholar
Hitch, G., & Baddeley, H. (1974). Working memory. Recent Advances in Learning and Motivation, 4789.Google Scholar
Jacoby, L. L., & Dallas, M. (1981). On the relationship between autobiographical memory and perceptual learning. Journal of Experimental Psychology: General, 110(3), 306–40.Google ScholarPubMed
Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105(19), 6829–33.CrossRefGoogle ScholarPubMed
Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Shah, P. (2011). Short- and long-term benefits of cognitive training. Proceedings of the National Academy of Sciences, 108(25), 10081–6.CrossRefGoogle Scholar
Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: individual differences in working memory. Psychological Review, 99, 122–49.CrossRefGoogle ScholarPubMed
Just, M. A., Carpenter, P. A., & Varma, S. (1999). Computational modeling of high-level cognition and brain function. Human Brain Mapping, 8, 128–36.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Kahneman, D. (1973). Attention and Effort. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Karasinski, C., & Weismer, S. E. (2010). Comprehension of inferences in discourse processing by adolescents with and without language impairment. Journal of Speech, Language and Hearing Research, 53(5), 1268–79.CrossRefGoogle ScholarPubMed
Kintsch, W. (1988). The role of knowledge in discourse comprehension: a construction-integration model. Psychological Review, 95(2), 163–82.CrossRefGoogle ScholarPubMed
Linderholm, T. (2002). Predictive inference generation as a function of working memory capacity and causal text constraints. Discourse Processes, 34(3), 259–80.CrossRefGoogle Scholar
Long, D. L., Oppy, B. J., & Seely, M. R. (1994). Individual differences in the time course of inferential processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(6), 1456–70.Google Scholar
Long, D. L., Oppy, B. J., & Seely, M. R. (1997). Individual differences in readers’ sentence- and text-level representations. Journal of Memory and Language, 36(1), 129–45.CrossRefGoogle Scholar
Long, D. L., & Prat, C. S. (2002). Memory for Star Trek: the role of prior knowledge in recognition revisited. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(6), 1073–82.Google ScholarPubMed
Long, D. L., Prat, C., Johns, C., Morris, P., & Jonathan, E. (2008). The importance of knowledge in vivid text memory: an individual-differences investigation of recollection and familiarity. Psychonomic Bulletin & Review, 15(3), 604–9.CrossRefGoogle ScholarPubMed
Long, D. L., Seely, M. R., & Oppy, B. J. (1996). The availability of causal information during reading. Discourse Processes, 22(2), 145–70.CrossRefGoogle Scholar
Long, D. L., Wilson, J., Hurley, R., & Prat, C. S. (2006). Assessing text representations with recognition: the interaction of domain knowledge and text coherence. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(4), 816–27.Google ScholarPubMed
Mandler, G. (1980). Recognizing: the judgment of previous occurrence. Psychological Review, 87(3), 252–71.CrossRefGoogle Scholar
Maxwell, A. E., Fenwick, P. B. C., Fenton, G. W., & Dollimore, J. (1974). Reading ability and brain function: a simple statistical model. Psychological Medicine, 4(3), 274–80.CrossRefGoogle ScholarPubMed
McGettigan, C., Warren, J. E., Eisner, F., Marshall, C. R., Shanmugalingam, P., & Scott, S. K. (2011). Neural correlates of sublexical processing in phonological working memory. Journal of Cognitive Neuroscience, 23(4), 961–77.CrossRefGoogle ScholarPubMed
McKoon, G., & Ratcliff, R. (1992). Inference during reading. Psychological Review, 99(3), 440–66.CrossRefGoogle ScholarPubMed
Neubauer, A. C., & Fink, A. (2009). Intelligence and neural efficiency. Neuroscience & Biobehavioral Reviews, 33(7), 1004–23.CrossRefGoogle ScholarPubMed
Newman, S. D., Just, M. A., & Carpenter, P. A. (2002). Synchronization of the human cortical working memory network. Neuroimage, 15, 810–22.CrossRefGoogle ScholarPubMed
Oakhill, J. (1983). Instantiation in skilled and less skilled comprehenders. Quarterly Journal of Experimental Psychology, 35(3), 441–50.Google Scholar
Oakhill, J. (1984). Inferential and memory skills in children's comprehension of stories. British Journal of Educational Psychology, 54(1), 31–9.CrossRefGoogle Scholar
Osaka, M., Osaka, N., Kondo, H., Morishita, M., Fukuyama, H., Aso, T., & Shibasaki, H. (2003). The neural basis of individual differences in working memory capacity: an fMRI study. NeuroImage, 18(3), 789–97.CrossRefGoogle ScholarPubMed
Posthuma, D., Baaré, W. F., Pol, H., Hilleke, E., Kahn, R. S., Boomsma, D. I., & De Geus, E. J. (2003). Genetic correlations between brain volumes and the WAIS-III dimensions of verbal comprehension, working memory, perceptual organization, and processing speed. Twin Research, 6(2), 131–39.CrossRefGoogle ScholarPubMed
Prat, C. S. (2011). The brain basis of individual differences in language comprehension abilities. Language and Linguistics Compass, 5(9), 635–49.CrossRefGoogle Scholar
Prat, C. S. (2012). The neural basis of language faculties. In Weiner, I. B., Nelson, R. J., and Mizumori, S. (eds.), Handbook of Psychology, Volume III: Biological Psychology and Neuroscience (pp. 595619) Hoboken, NJ: Wiley.Google Scholar
Prat, C. S., & Just, M. A. (2011). Exploring the neural dynamics underpinning individual differences in sentence comprehension. Cerebral Cortex, 21(8), 1747–60.CrossRefGoogle ScholarPubMed
Prat, C. S., Keller, T. A., & Just, M. A. (2007). Individual differences in sentence comprehension: a functional magnetic resonance imaging investigation of syntactic and lexical processing demands. Journal of Cognitive Neuroscience, 19(12), 1950–63.CrossRefGoogle ScholarPubMed
Prat, C. S., Mason, R. A., & Just, M. A. (2011). Individual differences in the neural basis of causal inferencing. Brain and Language, 116(1), 113.CrossRefGoogle ScholarPubMed
Prat, C. S., Mason, R. A., & Just, M. A. (2012). An fMRI investigation of analogical mapping in metaphor comprehension: the influence of context and individual cognitive capacities on processing demands. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 282–94.Google ScholarPubMed
Reichle, E. D., Carpenter, P. A., & Just, M. A. (2000). The neural basis of strategy and skill in sentence-picture verification. Cognitive Psychology, 40, 261–95.CrossRefGoogle ScholarPubMed
Rypma, B., Prabhakaran, V., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1999). Load-dependent roles of frontal brain regions in the maintenance of working memory. Neuroimage, 9(2), 216–26.CrossRefGoogle ScholarPubMed
Schafer, E. W. (1982). Neural adaptability: a biological determinant of behavioral intelligence. International Journal of Neuroscience, 17(3), 183–91.CrossRefGoogle ScholarPubMed
Singer, M., Andruslak, P., Reisdorf, P., & Black, N. L. (1992). Individual differences in bridging inference processes. Memory & Cognition, 20(5), 539–48.CrossRefGoogle ScholarPubMed
Singer, M., & Ritchot, K. F. (1996). The role of working memory capacity and knowledge access in text inference processing. Memory & Cognition, 24(6), 733–43.CrossRefGoogle ScholarPubMed
St. George, M. S., Mannes, S., & Hoffman, J. E. (1997). Individual differences in inference generation: an ERP analysis. Journal of Cognitive Neuroscience, 9(6), 776–87.CrossRefGoogle ScholarPubMed
Stocco, A., Lebiere, C., & Anderson, J. R. (2010). Conditional routing of information to the cortex: a model of the basal ganglia's role in cognitive coordination. Psychological Review, 117(2), 541.CrossRefGoogle Scholar
Stocco, A., Lebiere, C., O'Reilly, R. C., & Anderson, J. R. (2012). Distinct contributions of the caudate nucleus, rostral prefrontal cortex, and parietal cortex to the execution of instructed tasks. Cognitive, Affective, & Behavioral Neuroscience, 12, 611–28.CrossRefGoogle Scholar
Stocco, A., Yamasaki, B., Natalenko, R., & Prat, C. S. (2014). Bilingual brain training: a neurobiological framework of how bilingual experience improves executive function. International Journal of Bilingualism, 18, 6792.CrossRefGoogle Scholar
Takeuchi, H., Sekiguchi, A., Taki, Y., Yokoyama, S., Yomogida, Y., Komuro, N., & Kawashima, R. (2010). Training of working memory impacts structural connectivity. The Journal of Neuroscience, 30(9), 3297–303.CrossRefGoogle ScholarPubMed
Tulving, E. (1985). Memory and consciousness. Canadian Psychology/Psychologie Canadienne, 26(1), 112.CrossRefGoogle Scholar
Virtue, S., Haberman, J., Clancy, Z., Parrish, T., & Jung-Beeman, M. J. (2006). Neural activity of inferences during story comprehension. Brain Research, 1084(1), 104–14.CrossRefGoogle ScholarPubMed
Virtue, S., Parrish, T., & Jung-Beeman, M. (2008). Inferences during story comprehension: cortical recruitment affected by predictability of events and working memory capacity. Journal of Cognitive Neuroscience, 20(12), 2274–84.CrossRefGoogle ScholarPubMed
Waters, G. S., & Caplan, D. (1996). The capacity theory of sentence comprehension: critique of Just and Carpenter (1992). Psychological Review, 103(4), 761–72.CrossRefGoogle ScholarPubMed
Yeatman, J. D., Ben-Shachar, M., Glover, G. H., & Feldman, H. M. (2010). Individual differences in auditory sentence comprehension in children: an exploratory event-related functional magnetic resonance imaging investigation. Brain and Language, 114(2), 72–9.CrossRefGoogle ScholarPubMed
Yonelinas, A. P. (2002). The nature of recollection and familiarity: a review of 30 years of research. Journal of Memory and Language, 46(3), 441517.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×