Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T22:10:10.866Z Has data issue: false hasContentIssue false

14 - The Impact of Human Genetic Diversity on the Transmission and Severity of Infectious Diseases

Published online by Cambridge University Press:  10 August 2009

Michel Tibayrenc
Affiliation:
Unité de Recherche “génétique des maladies infectieuses”, Unité Mixte de Recherche no. 9926 Centre National de la Recherche Scientifique/ Institut de Recherche pour le Développement, 911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
Krishna R. Dronamraju
Affiliation:
Foundation for Genetic Research, Houston, Texas
Get access

Summary

THE INFECTIOUS THREAT

This opening century will appear as both “the golden age of genetics and the dark age of infectious diseases” (Tibayrenc, 2001a). On the battlefront of infectious diseases, the situation is more than just a concern, due to the threat of emerging and reemerging infectious diseases (ERID). In developing countries, infectious diseases still are the main demographic regulating factor. In particular, Africa is more than ever afflicted with sleeping sickness, malaria, bilharziosis, and other major parasitoses. The three “diseases of poverty,” namely malaria, tuberculosis, and AIDS, have become the top priority of the World Health Organization. The industrial world has not been spared. In France, 12,000 people die every year of nosocomial infections. In New York City, 25% of the Mycobacterium tuberculosis strains are resistant to antibiotics.

ENVIRONMENTAL AND BIOLOGICAL FACTORS

Transmission and severity of infectious diseases are the result of a complex interplay between environmental and biological (built-in) parameters. There is no doubt that environmental factors play a major role in the present resurgence of infectious diseases, through climatic changes, massive migrations, economic inequalities, and political instability. However, even in acting on these environmental factors, control is more efficient when sophisticated knowledge of the biology of the disease under survey is available. For example, in Latin America, Chagas disease is a parasitic disease caused by the flagellate Trypanosoma cruzi and transmitted by triatomine bugs (hematophagous tree bugs).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, L., and Dessein, A. J. 1997. The impact of host genetics on susceptibility to human infectious diseases. Curr. Opin. Immunol. 9: 509–16CrossRefGoogle ScholarPubMed
Ayala, F. J., and Escalante, A. 1996. The evolution of human populations: a molecular perspective. Mol. Phylogenet. Evol. 5: 188–201CrossRefGoogle ScholarPubMed
Cavalli-Sforza, L. L., Menozzi, P., and Piazza, A. 1994. The History and Geography of Human Genes. Princeton University Press, Princeton, NJ
Cavalli-Sforza, L. L., Wilson, A. C., Cantor, C. R., Cook-Deegan, R. M., and King, M. C. 1991. Call for a world-wide survey of human genetic diversity: a vanishing opportunity for the human genome project. Genomics 11: 490–1CrossRefGoogle Scholar
Chu, J. Y., Huang, W., Kuang, S. Q., Wang, J. M., Xu, J. J., Chu, Z. T., Yanga, Z. Q., Lina, K. Q., Li, P., Wu, M., Geng, Z. C., Tang, C. C., Du, R. F., and Jing, L. 1998. Genetic relationship of populations in China. Proc. Natl. Acad. Sci. USA 20: 11763–8CrossRefGoogle Scholar
Dean, M., Carrington, M. Winckler, C., Huttley, G. A., Smith, M. W., Allikmets, R., Goedert, J. J., Buchbinder, S. P., Vittinghoff, E., Gomperts, E., Donfield, S., Vlahov, D., Kaslow, R., Saah, A., Rinaldo, C., Detels, R., Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study, Stephen O'Brien. 1996. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 273: 1856–62
Gentillini, M. 1993. Médecine Tropicale. Flammarion Editions, Paris
Haldane, J. B. S. 1949. Disease and evolution. La ricerca scientifica Suppl. 19: 68–76Google Scholar
Hill, A. V. S. 2001. The genomics and genetics of human infectious disease susceptibility. Annu. Rev. Hum. Genet. 2: 373–400CrossRefGoogle ScholarPubMed
Jaccard, P. 1908. Nouvelles recherches sur la distribution florale. Bull. Soc. Vaudoise Sci. Nat. 44: 223–70Google Scholar
Jarolim, P., Palek, J., Amato, D., Hassan, K., Sapak, P., Nurse, G. T., Rubin, H. L., Zhai, S., Sahr, K. E., and Liu, S. C. 1991. Deletion in erythrocyte band 3 gene in malaria-resistant Southeast Asian ovalocytosis. Proc. Natl. Acad. Sci. USA 88: 11022–6CrossRefGoogle ScholarPubMed
Kahn, P. 1994. Genetic diversity project tries again. Science 266: 720–2CrossRefGoogle Scholar
Labie, D. 1994. Polymorphismes génétiques et développement du paludisme: au delà du cas de la drépanocytose. Médecine/Science 10: 905–6CrossRefGoogle Scholar
Miller, L. H. 1994. Impact of malaria on genetic polymorphism and genetic diseases in Africans and African Americans. Proc. Natl. Acad. Sci. USA 91: 2415–19CrossRefGoogle ScholarPubMed
Modiano, D., Petrarca, V., Sirima, B. S., Nebie, I., Diallo, D., Esposito, F., and Coluzzi, M. 1996. Different response to Plasmodium falciparum malaria in west African sympatric ethnic groups. Proc. Natl. Acad. Sci. USA 93: 13206–11CrossRefGoogle ScholarPubMed
Modiano, D., Chiucchiuini, A., Petrarca, V., Sirima, B. S., Luoni, G., Roggero, M. A., Corradin, G., Coluzzi, M., and Esposito, F. 1999. Interethnic differences in the humoral response to non-repetitive regions of the Plasmodium falciparum circumsporozoite protein. Am. J. Trop. Med. Hyg. 61: 663–7CrossRefGoogle ScholarPubMed
Morton, N. E. 1955. Sequential tests for the detection of linkage. Am. J. Hum. Genet. 7: 277–318Google ScholarPubMed
Nei, M. 1972. Genetic distance between populations. Am. Nat. 106: 283–92CrossRefGoogle Scholar
Nei, M. 1978. The theory of genetic distance and evolution of human races. Jap. J. Hum. Genet. 23: 341–69CrossRefGoogle ScholarPubMed
Nei, M., and Roychoudhury, A. K. 1974. Genetic variation within and between the three major races of man, Caucasoids, Negroids and Mongoloids. Am. J. Hum. Genet. 26: 421–43Google ScholarPubMed
Nei, M., and Roychoudhury, A. K. 1993. Evolutionary relationships of human populations on a global scale. Mol. Biol. Evol. 10: 927–43Google ScholarPubMed
Poulet, S. 1994. Organisation Génomique de Mycobacterium tuberculosis et Épidémiologie Moléculaire de la Tuberculose. Ph.D. dissertation, University of Paris 6, Paris
Samson, M., Libert, F., Doranz, B. J., Rucker, J., Liesnard, C., Farber, C. M., Saragosti, S., Lapoumeroulie, C., Cognaux, J., Forceille, C., Muyldermans, G., Verhofstede, C., Burtonboy, G., Georges, M., Imai, T., Rana, S., Yi, Y., Smyth, R. J., Collman, R. G., Doms, R. W., Vassart, G., and Parmentier, M. 1996. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382: 722–5CrossRefGoogle ScholarPubMed
Solignac, M. 1998. Génétique, population et evolution. In Principes de Génétique Humaine (Feingold, J., Fellous, M., and Solignac, M., Eds.), pp. 511–58. Hermann Editions, Paris
Thio, C. L., Thomas, D. L., Goedert, J. J., Vlahov, D., Nelson, K. E., Hilgartner, M. W., O'Brien, S. J., Karacki, P., Marti, D., Astemborski, J., and Carrington, M. 2001. Racial differences in HLA class II associations with hepatitis C virus outcomes. J. Infect. Dis. 184: 16–21CrossRefGoogle ScholarPubMed
Thornhill, R., and Moller, A. P. 1997. Developmental stability, disease and medicine. Biol. Rev. Camb. Phil. Soc. 72: 497–548CrossRefGoogle Scholar
Tibayrenc, M. 1998. Beyond strain typing and molecular epidemiology: integrated genetic epidemiology of infectious diseases. Parasitol. Today 14: 323–9CrossRefGoogle ScholarPubMed
Tibayrenc, M. 2001a. The golden age of genetics and the dark age of infectious diseases. Infect., Genet., Evol. 1(1): 1–2CrossRefGoogle Scholar
Tibayrenc, M. 2001b. The golden age of genetics? Infect., Genet., Evol. 1(2): 83–4CrossRefGoogle Scholar
Wilson, D. S. 1997. Human groups as units of selection. Science 276: 1816–17CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×