Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-10T23:19:54.338Z Has data issue: false hasContentIssue false

Part I - Imaging the Development and Early Phase of the Disease

Published online by Cambridge University Press:  07 January 2019

Andrea Bernasconi
Affiliation:
Montreal Neurological Institute, McGill University
Neda Bernasconi
Affiliation:
Montreal Neurological Institute, McGill University
Matthias Koepp
Affiliation:
Institute of Neurology, University College London
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Berg, AT, Berkovic, SF, Brodie, MJ, et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia. 2010;51(4):676–85.Google Scholar
Meldrum, B. Physiological changes during prolonged seizures and epileptic brain damage. Neuropadiatrie. 1978;9(3):203–12.Google Scholar
Fujikawa, DG. The temporal evolution of neuronal damage from pilocarpine-induced status epilepticus. Brain Res. 1996;725(1):1122.CrossRefGoogle ScholarPubMed
Lowenstein, DH, Bleck, T, Macdonald, RL. It’s time to revise the definition of status epilepticus. Epilepsia. 1999;40(1):120–2.CrossRefGoogle ScholarPubMed
Neligan, A, Shorvon, SD. Frequency and prognosis of convulsive status epilepticus of different causes: a systematic review. Arch Neurol. 2010;67(8):931–40.Google Scholar
Sutter, R, Kaplan, PW, Ruegg, S. Outcome predictors for status epilepticus—what really counts. Nat Rev Neurol. 2013;9(9):525–34.Google Scholar
Goyal, MK, Sinha, S, Ravishankar, S, Shivshankar, JJ. Role of MR imaging in the evaluation of etiology of status epilepticus. J Neurol Sci. 2008;272(1–2):143–50.CrossRefGoogle ScholarPubMed
Maytal, J, Shinnar, S, Moshé, SL, Alvarez, LA. Low morbidity and mortality of status epilepticus in children. Pediatrics. 1989;83(3):323.Google Scholar
Waruiru, C, Appleton, R. Febrile seizures: an update. Arch Dis Child. 2004;89(8):751–6.Google Scholar
Nelson, K, Ellenberg, JH. Prognosis in children with febrile seizures. Pediatrics. 1978;61:720–7.CrossRefGoogle ScholarPubMed
Valentı, A, Alarco, G. Mesial temporal lobe epilepsy with hippocampal sclerosis. In: Panayiotopoulos, CP, ed. Atlas of Epilepsies. London: Springer; 2010:1171–5.Google Scholar
Harvey, AS, Grattan-Smith, JD, Desmond, PM, Chow, CW, Berkovic, SF. Febrile seizures and hippocampal sclerosis: frequent and related findings in intractable temporal lobe epilepsy of childhood. Pediatr Neurol. 1995;12(3):201–6.Google Scholar
Janszky, J, Janszky, I, Ebner, A. Age at onset in mesial temporal lobe epilepsy with a history of febrile seizures. Neurology. 2004;63(7):1296–8.Google Scholar
Arbelaez A, , Castillo, M, Mukherji, SK. Diffusion-weighted MR imaging of global cerebral anoxia. AJNR Am J Neuroradiol. 1999;20(6):9991007.Google ScholarPubMed
Yoong, M, Martinos, MMM, Chin, RRF, Clark, CA, Scott RC. Hippocampal volume loss following childhood convulsive status epilepticus is not limited to prolonged febrile seizures. Epilepsia. 2013;54(12):2108–15.Google Scholar
Scott, RC, King, MD, Gadian, DG, Neville, BGR, Connelly, A. Hippocampal abnormalities after prolonged febrile convulsion: a longitudinal MRI study. Brain. 2003;126(pt 11):2551–7.CrossRefGoogle ScholarPubMed
Lewis, DV, Shinnar, S, Hesdorffer, DC, et al. Hippocampal sclerosis after febrile status epilepticus: the FEBSTAT study. Ann Neurol. 2014;75(2):178–85.Google Scholar
Provenzale, JM, Barboriak, DP, VanLandingham, K, MacFall, J, Delong, D, Lewis, DV. Hippocampal MRI signal hyperintensity after febrile status epilepticus is predictive of subsequent mesial temporal sclerosis. AJR Am J Roentgenol. 2008;190(4):976–83.Google Scholar
Pujar, SS, Neville, BGR, Scott, RC, Chin, RFM. Death within 8 years after childhood convulsive status epilepticus: a population-based study. Brain. 2011;134(pt 10):2819–27.Google Scholar
Camfield, PR, Camfield, CS, Gordon, K, Dooley, J. What types of epilepsy are preceded by febrile seizures? A population-based study of children. Dev Med Child Neurol. 1994;36:887–92.Google Scholar
Scott, RC, King, MD, Gadian, DG, Neville, BGR, Connelly, A. Prolonged febrile seizures are associated with hippocampal vasogenic edema and developmental changes. Epilepsia. 2006;47(9):1493–8.Google Scholar
Scott, RC, Gadian, DG, King, MD, et al. Magnetic resonance imaging findings within 5 days of status epilepticus in childhood. Brain. 2002;125(pt 9):1951–9.Google Scholar
Gross, DW, Concha, L, Beaulieu, C. Extratemporal white matter abnormalities in mesial temporal lobe epilepsy demonstrated with diffusion tensor imaging. Epilepsia. 2006;47(8):1360–3.Google Scholar
Kimiwada, T, Juhász, C, Makki, M, et al. Hippocampal and thalamic diffusion abnormalities in children with temporal lobe epilepsy. Epilepsia. 2006;47(1):167–75.Google Scholar
Yoong, M, Seunarine, K, Martinos, M, Chin, RF, Clark, CA, Scott, RC. Prolonged febrile seizures cause reversible reductions in white matter integrity. NeuroImage Clin. 2013;24(3):515–21.Google Scholar
Martinos, M, Yoong, M, Patil, S, et al. Recognition memory is impaired in children following prolonged febrile seizures. Brain. 2012;135(10):3153–64.Google Scholar
Dube, CM, Ravizza, T, Hamamura, M, et al. Epileptogenesis provoked by prolonged experimental febrile seizures: mechanisms and biomarkers. J Neurosci. 2010;30(22):7484–94.Google Scholar
Choy, M, Wells, JA, Thomas, DL, Gadian, DG, Scott, RC, Lythgoe, MF. Cerebral blood flow changes during pilocarpine-induced status epilepticus activity in the rat hippocampus. Exp Neurol. 2010;225(1):196201.CrossRefGoogle ScholarPubMed
Dedeurwaerdere, S, Fang, K, Chow, M, et al. Manganese-enhanced MRI reflects seizure outcome in a model for mesial temporal lobe epilepsy. NeuroImage. 2013;68:30–8.Google Scholar
Duffy, BA, Choy, M, Riegler, J, et al. Imaging seizure-induced inflammation using an antibody targeted iron oxide contrast agent. NeuroImage. 2012;60(2):1149–55.Google Scholar
Dubé, C, Richichi, C, Bender, RA, Chung, G, Litt, B, Baram, TZ. Temporal lobe epilepsy after experimental prolonged febrile seizures: prospective analysis. Brain. 2006;129(pt 4):911–22.Google Scholar
Dubé, C, Yu, H, Nalcioglu, O, Baram, TZ. Serial MRI after experimental febrile seizures: altered T2 signal without neuronal death. Ann Neurol. 2004;56(5):709–14.Google Scholar
Yoong, M. Quantifying the deficit—imaging neurobehavioural impairment in childhood epilepsy. Quant Imaging Med Surg. 2015;5(2):225–37.Google Scholar
Barry, JM, Choy, M, Dube, C, et al. T2 relaxation time post febrile status epilepticus predicts cognitive outcome. Exp Neurol. 2015;269:242–52.Google Scholar
Choy, M, Dubé, CM, Patterson, K, et al. A novel, noninvasive, predictive epilepsy biomarker with clinical potential. J Neurosci. 2014;34(26):8672–84.CrossRefGoogle ScholarPubMed
Gousias, IS, Edwards, AD, Rutherford, MA, et al. Magnetic resonance imaging of the newborn brain: manual segmentation of labelled atlases in term-born and preterm infants. NeuroImage. 2012;62(3):1499–509.CrossRefGoogle ScholarPubMed
Guo, Y, Wu, G, Commander, LA, et al. Segmenting hippocampus from infant brains by sparse patch matching with deep-learned features. Med Image Comput Comput Assist Interv. 2014;17(2):308–15.Google Scholar
Evans, AC. The NIH MRI study of normal brain development. NeuroImage. 2006;30(1):184202.Google Scholar

References

Annegers, JF, Hauser, WA, Coan, SP, Rocca, WA. A population-based study of seizures after traumatic brain injuries. N Engl J Med. 1998;338(1):20–4.Google Scholar
Kharatishvili, I, Nissinen, JP, McIntosh, TK, Pitkanen, A. A model of posttraumatic epilepsy induced by lateral fluid-percussion brain injury in rats. Neuroscience. 2006;140(2):685–97.Google Scholar
Shultz, SR, Cardamone, L, Liu, YR, et al. Can structural or functional changes following traumatic brain injury in the rat predict epileptic outcome? Epilepsia. 2013;54(7):1240–50.Google Scholar
Bar-Klein, G, Klee, R, Brandt, C, et al. Isoflurane prevents acquired epilepsy in rat models of temporal lobe epilepsy. Ann Neurol. 2016;80(6):896908.Google Scholar
Immonen, RJ, Kharatishvili, I, Niskanen, JP, Grohn, H, Pitkanen, A, Grohn, OH. Distinct MRI pattern in lesional and perilesional area after traumatic brain injury in rat—11 months follow-up. Exper Neurol. 2009; 215(1):2940.CrossRefGoogle ScholarPubMed
Immonen, RJ, Kharatishvili, I, Grohn, H, Pitkanen, A, Grohn, OH. Quantitative MRI predicts long-term structural and functional outcome after experimental traumatic brain injury. NeuroImage. 2009;45(1):19.Google Scholar
Long, JA, Watts, LT, Chemello, J, Huang, S, Shen, Q, Duong, TQ. Multiparametric and longitudinal MRI characterization of mild traumatic brain injury in rats. J Neurotrauma. 2015;32(8):598607.Google Scholar
Immonen, R, Kharatishvili, I, Grohn, O, Pitkanen, A. MRI biomarkers for post-traumatic epileptogenesis. J Neurotrauma. 2013;30(14):1305–9.Google Scholar
Lehto, LJ, Sierra, A, Corum, CA, et al. Detection of calcifications in vivo and ex vivo after brain injury in rat using SWIFT. NeuroImage. 2012;61(4):761–72.Google Scholar
Liu, S, Buch, S, Chen, Y, et al. Susceptibility-weighted imaging: Current status and future directions. NMR Biomed. 2017;30(4). doi:10.1002/nbm.3552.Google Scholar
Frey, L, Lepkin, A, Schickedanz, A, Huber, K, Brown, MS, Serkova, N. ADC mapping and T1-weighted signal changes on post-injury MRI predict seizure susceptibility after experimental traumatic brain injury. Neurol Res. 2014;36(1):2637.Google Scholar
Kharatishvili, I, Immonen, R, Grohn, O, Pitkanen, A. Quantitative diffusion MRI of hippocampus as a surrogate marker for post-traumatic epileptogenesis. Brain. 2007;130(pt 12):3155–68.Google Scholar
Song, SK, Sun, SW, Ramsbottom, MJ, Chang, C, Russell, J, Cross, AH. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage. 2002;17(3):1429–36.Google Scholar
Laitinen, T, Sierra, A, Bolkvadze, T, Pitkanen, A, Grohn, O. Diffusion tensor imaging detects chronic microstructural changes in white and gray matter after traumatic brain injury in rat. Front Neurosci. 2015; 9:128.CrossRefGoogle ScholarPubMed
Sierra, A, Laitinen, T, Grohn, O, Pitkanen, A. Diffusion tensor imaging of hippocampal network plasticity. Brain Struct Funct. 2015;220(2):781801.Google Scholar
Salo, RA, Miettinen, T, Laitinen, T, Grohn, O, Sierra, A. Diffusion tensor MRI shows progressive changes in the hippocampus and dentate gyrus after status epilepticus in rat—histological validation with Fourier-based analysis. NeuroImage. 2017;152:221–36.Google Scholar
Hutchinson, EB, Rutecki, PA, Alexander, AL, Sutula, TP. Fisher statistics for analysis of diffusion tensor directional information. J Neurosci Methods. 2012;206(1):40–5.Google Scholar
Wright, R, Raimondo, JV, Akerman, CJ. Spatial and temporal dynamics in the ionic driving force for GABA(A) receptors. Neural Plast. 2011;2011:728395.Google Scholar
Niskanen, JP, Airaksinen, AM, Sierra, A, et al. Monitoring functional impairment and recovery after traumatic brain injury in rats by FMRI. J Neurotrauma. 2013;30(7):546–56.Google Scholar
Mishra, AM, Bai, X, Sanganahalli, BG, et al. Decreased resting functional connectivity after traumatic brain injury in the rat. PLOS ONE. 2014;9(4):e95280.Google Scholar
Harris, NG, Verley, DR, Gutman, BA, Thompson, PM, Yeh, HJ, Brown, JA. Disconnection and hyper-connectivity underlie reorganization after TBI: A rodent functional connectomic analysis. Exper Neurol. 2016;277:124–38.Google Scholar
Immonen, R, Heikkinen, T, Tahtivaara, L, et al. Cerebral blood volume alterations in the perilesional areas in the rat brain after traumatic brain injury—comparison with behavioral outcome. J Cerebral Blood Flow Metab. 2010;30(7):1318–28.Google Scholar
Hayward, NM, Tuunanen, PI, Immonen, R, Ndode-Ekane, XE, Pitkanen, A, Grohn, O. Magnetic resonance imaging of regional hemodynamic and cerebrovascular recovery after lateral fluid-percussion brain injury in rats. J Cerebral Blood Flow Metab. 2011;31(1):166–77.Google Scholar
Hayward, NM, Immonen, R, Tuunanen, PI, Ndode-Ekane, XE, Grohn, O, Pitkanen, A. Association of chronic vascular changes with functional outcome after traumatic brain injury in rats. J Neurotrauma. 2010;27(12):2203–19.CrossRefGoogle ScholarPubMed
Weissberg, I, Reichert, A, Heinemann, U, Friedman, A. Blood-brain barrier dysfunction in epileptogenesis of the temporal lobe. Epilepsy Res Treat. 2011;2011:143908.Google Scholar
van Vliet, EA, Otte, WM, Gorter, JA, Dijkhuizen, RM, Wadman, WJ. Longitudinal assessment of blood-brain barrier leakage during epileptogenesis in rats. A quantitative MRI study. Neurobiol Dis. 2014;63:7484.Google Scholar
Hakkarainen, H, Sierra, A, Mangia, S, et al. MRI relaxation in the presence of fictitious fields correlates with myelin content in normal rat brain. Magn Reson Med. 2016;75(1):161–8.Google Scholar
Robinson, LF, He, X, Barnett, P, et al. The temporal instability of resting state network connectivity in intractable epilepsy. Hum Brain Mapp. 2017;38(1):528–40.Google Scholar
Pitkanen, A, Loscher, W, Vezzani, A, et al. Advances in the development of biomarkers for epilepsy. Lancet Neurol. 2016;15(8):843–56.Google Scholar

References

Forsgren, L. Prospective incidence study and clinical characterization of seizures in newly referred adults. Epilepsia. 1990;31:292301.Google Scholar
Hauser, WA, Annegers, JF, Rocca, WA. Descriptive epidemiology of epilepsy: contributions of population-based studies from Rochester, Minnesota. Mayo Clin Proc. 1996;71:576–86. doi:10.1016/S0025-6196(11)64115–3.Google Scholar
Beghi, E, Carpio, A, Forsgren, L, et al. Recommendation for a definition of acute symptomatic seizure. Epilepsia. 2010;51:671–5. doi:10.1111/j.1528–1167.2009.02285.x.Google Scholar
Hesdorffer, DC, Benn, EKT, Cascino, GD, Hauser, WA. Is a first acute symptomatic seizure epilepsy? Mortality and risk for recurrent seizure. Epilepsia. 2009;50:1102–8. doi:10.1111/j.1528–1167.2008.01945.x.Google Scholar
Haltiner, AM, Temkin, NR, Dikmen, SS. Risk of seizure recurrence after the first late posttraumatic seizure. Arch Phys Med Rehabil. 1997;78:835–40.Google Scholar
So, EL, Annegers, JF, Hauser, WA, O’Brien, PC, Whisnant, JP. Population-based study of seizure disorders after cerebral infarction. Neurology. 1996;46:350–5.Google Scholar
Hart, YM, Sander, JW, Johnson, AL, Shorvon, SD. National General Practice Study of Epilepsy: recurrence after a first seizure. Lancet. 1990;336:1271–4.Google Scholar
Annegers, JF, Shirts, SB, Hauser, WA, Kurland, LT. Risk of recurrence after an initial unprovoked seizure. Epilepsia. 1986;27:4350.Google Scholar
Fisher, RS, Acevedo, C, Arzimanoglou, A, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia. 2014;55:475–82. doi:10.1111/epi.12550.Google Scholar
Temkin, NR. Antiepileptogenesis and seizure prevention trials with antiepileptic drugs: meta-analysis of controlled trials. Epilepsia. 2001;42:515–24.Google Scholar
Lühdorf, K, Jensen, LK, Plesner, AM. Etiology of seizures in the elderly. Epilepsia. 1986;27:458–63.Google Scholar
Camilo, O, Goldstein, LB. Seizures and epilepsy after ischemic stroke. Stroke. 2004;35:1769–75. doi:10.1161/01.STR.0000130989.17100.96.Google Scholar
Hsu, C-J, Weng, W-C, Peng, SS-F, Lee, W-T. Early-onset seizures are correlated with late-onset seizures in children with arterial ischemic stroke. Stroke. 2014;45:1161–3. doi:10.1161/STROKEAHA.113.004015.Google Scholar
Chen, T-C, Chen, Y-Y, Cheng, P-Y, Lai, C-H. The incidence rate of post-stroke epilepsy: a 5-year follow-up study in Taiwan. Epilepsy Res. 2012;102:188–94. doi:10.1016/j.eplepsyres.2012.06.003.CrossRefGoogle ScholarPubMed
Beghi, E, D’Alessandro, R, Beretta, S, et al. Incidence and predictors of acute symptomatic seizures after stroke. Neurology. 2011;77:1785–93. doi:10.1212/WNL.0b013e3182364878.Google Scholar
Benbir, G, Ince, B, Bozluolcay, M. The epidemiology of post-stroke epilepsy according to stroke subtypes. Acta Neurol Scand. 2006;114:812. doi:10.1111/j.1600–0404.2006.00642.x.Google Scholar
Bladin, CF, Alexandrov, AV, Bellavance, A, et al. Seizures after stroke: a prospective multicenter study. Arch Neurol. 2000;57:1617–22. doi:10–1001/pubs.Arch Neurol.-ISSN-0003–9942-57–11-noc90169.CrossRefGoogle ScholarPubMed
Lamy, C, Domigo, V, Semah, F, et al. Early and late seizures after cryptogenic ischemic stroke in young adults. Neurology. 2003;60:400–4. doi:10.1212/WNL.60.3.400.Google Scholar
Zhang, C, Wang, X, Wang, Y, et al. Risk factors for post-stroke seizures: a systematic review and meta-analysis. Epilepsy Res. 2014;108:1806–16. doi:10.1016/j.eplepsyres.2014.09.030.Google Scholar
Leone, MA, Tonini, MC, Bogliun, G, et al. Risk factors for a first epileptic seizure after stroke: a case control study. J Neurol Sci. 2009;277:138–42. doi:10.1016/j.jns.2008.11.004.Google Scholar
Rossi, C, De Herdt, V, Dequatre-Ponchelle, N, Hénon, H, Leys, D, Cordonnier, C. Incidence and predictors of late seizures in intracerebral hemorrhages. Stroke. 2013;44:1723–5. doi:10.1161/STROKEAHA.111.000232.Google Scholar
Giroud, M, Gras, P, Fayolle, H, André, N, Soichot, P, Dumas, R. Early seizures after acute stroke: a study of 1,640 cases. Epilepsia. 1994;35:959–64.Google Scholar
Burn, J, Dennis, M, Bamford, J, Sandercock, P, Wade, D, Warlow, C. Epileptic seizures after a first stroke: the Oxfordshire Community Stroke Project. BMJ. 1997;315:1582–7.Google Scholar
Avrahami, E, Drory, VE, Rabey, MJ, Cohn, DF. Generalized epileptic seizures as the presenting symptom of lacunar infarction in the brain. J Neurol. 1988;235:472–4.Google Scholar
Bentes, C, Pimentel, J, Ferro, JM. Epileptic seizures following subcortical infarcts. Cerebrovasc Dis. 2001;12:331–4.CrossRefGoogle ScholarPubMed
Kilpatrick, CJ, Davis, SM, Tress, BM, Rossiter, SC, Hopper, JL, Vandendriesen, ML. Epileptic seizures in acute stroke. Arch Neurol. 1990;47:157–60.CrossRefGoogle ScholarPubMed
De Reuck, J, Nagy, E, Van Maele, G. Seizures and epilepsy in patients with lacunar strokes. J Neurol Sci. 2007;263:75–8. doi:10.1016/j.jns.2007.06.004.Google Scholar
Lo, YK, Yiu, CH, Hu, HH, Su, MS, Laeuchli, SC. Frequency and characteristics of early seizures in Chinese acute stroke. Acta Neurol Scand. 1994;90:83–5.Google Scholar
Okuda, S, Takano, S, Ueno, M, Hamaguchi, H, Kanda, F. Clinical features of late-onset poststroke seizures. J Stroke Cerebrovasc Dis. 2012;21:583–6. doi:10.1016/j.jstrokecerebrovasdis.2011.01.006.Google Scholar
De Reuck, J, Claeys, I, Martens, S, et al. Computed tomographic changes of the brain and clinical outcome of patients with seizures and epilepsy after an ischaemic hemispheric stroke. Eur J Neurol. 2006;13:402–7. doi:10.1111/j.1468–1331.2006.01253.x.Google Scholar
Arboix, A, Comes, E, Massons, J, García, L, Oliveres, M. Relevance of early seizures for in-hospital mortality in acute cerebrovascular disease. Neurology. 1996;47:1429–35.Google Scholar
Heuts-van Raak, L, Lodder, J, Kessels, F. Late seizures following a first symptomatic brain infarct are related to large infarcts involving the posterior area around the lateral sulcus. Seizure. 1996;5:185–94.Google Scholar
Szaflarski, JP, Rackley, AY, Kleindorfer, DO, et al. Incidence of seizures in the acute phase of stroke: a population-based study. Epilepsia. 2008;49:974–81. doi:10.1111/j.1528–1167.2007.01513.x.Google Scholar
Wagner, F, Erdelyi, B, Siebel, P, Weber, J, Tettenborn, B, Felbecker, A. Post-stroke epilepsy: Does stroke volume matter? Eur J Neurol. 2011;18(suppl 2):2065.Google Scholar
De Reuck, J, Decoo, D, Algoed, L, et al. Epileptic Seizures after Thromboembolic Cerebral Infarcts: A Positron Emission Tomographic Study. Cerebrovasc Dis. 1995;5:328–33. doi:10.1159/000107877.Google Scholar
Reuck J, De, Algoed, L, Decoo, D, et al. Positron emission tomographic study of postinfarction seizures. J Stroke Cerebrovasc Dis. 1994;4:262–6. doi:10.1016/S1052-3057(10)80104–1.Google Scholar
De Reuck, J, Vonck, K, Santens, P, et al. Cobalt-55 positron emission tomography in late-onset epileptic seizures after thrombo-embolic middle cerebral artery infarction. J Neurol Sci. 2000;181:13–8.Google Scholar
Labovitz, DL, Hauser, WA, Sacco, RL. Prevalence and predictors of early seizure and status epilepticus after first stroke. Neurology. 2001;57:200–6. doi:10.1212/WNL.57.2.200.CrossRefGoogle ScholarPubMed
So, EL, Annegers, JF, Hauser, WA, O’Brien, PC, Whisnant, JP. Population-based study of seizure disorders after cerebral infarction. Neurology. 1996;46:350–5. doi:10.1212/WNL.46.2.350.Google Scholar
Misirli, H, Özge, A, Somay, G, Erdogan, N, Erkal, H, Erenoglu, NY. Seizure development after stroke. Int J Clin Pract. 2006;60:1536–41. doi:10.1111/j.1742–1241.2005.00782.x.CrossRefGoogle ScholarPubMed
Winkler, DT, Fluri, F, Fuhr, P, et al. Thrombolysis in stroke mimics: frequency, clinical characteristics, and outcome. Stroke. 2009;40:1522–5. doi:10.1161/STROKEAHA.108.530352.Google Scholar
Masterson, K, Vargas, MI, Delavelle, J. Postictal deficit mimicking stroke: role of perfusion CT. J Neuroradiol. 2009;36:4851. doi:10.1016/j.neurad.2008.08.006.CrossRefGoogle ScholarPubMed
Gelfand, JM, Wintermark, M, Josephson, SA. Cerebral perfusion-CT patterns following seizure. Eur J Neurol. 2010;17:594601. doi:10.1111/j.1468–1331.2009.02869.x.Google Scholar
Salmenpera, TM, Symms, MR, Boulby, PA, Barker, GJ, Duncan, JS. Postictal diffusion weighted imaging. Epilepsy Res. 2006;70:133–43. doi:10.1016/j.eplepsyres.2006.03.010.Google Scholar
Miyaji, Y, Yokoyama, M, Kawabata, Y, et al. Arterial spin-labeling magnetic resonance imaging for diagnosis of late seizure after stroke. J Neurol Sci. 2014;339:8790. doi:10.1016/j.jns.2014.01.026.Google Scholar
Chalela, JA, Alsop, DC, Gonzalez-Atavales, JB, Maldjian, JA, Kasner, SE, Detre, JA. Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke. 2000;31:680–7.Google Scholar
Hauser, WA, Annegers, JF, Kurland, LT. Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935–1984. Epilepsia. 1993;34:453–8. doi:10.1111/j.1528–1157.1993.tb02586.x.Google Scholar
Sander, JW, Hart, YM, Johnson, AL, Shorvon, SD. National General Practice Study of Epilepsy: newly diagnosed epileptic seizures in a general population. Lancet. 1990;336:1267–71.Google Scholar
King, MA, Newton, MR, Jackson, GD, et al. Epileptology of the first-seizure presentation: a clinical, electroencephalographic, and magnetic resonance imaging study of 300 consecutive patients. Lancet. 1998;352:1007–11. doi:10.1016/S0140-6736(98)03543–0.Google Scholar
Chadwick, D. Seizures and epilepsy after traumatic brain injury. Lancet. 2000;355:334–6. doi:10.1016/S0140-6736(99)00452–3.Google Scholar
Annegers, JF, Hauser, WA, Coan, SP, Rocca, WA. A population-based study of seizures after traumatic brain injuries. N Engl J Med. 1998;338:20–4. doi:10.1056/NEJM199801013380104.Google Scholar
Salazar, AM, Jabbari, B, Vance, SC, Grafman, J, Amin, D, Dillon, JD. Epilepsy after penetrating head injury. I. Clinical correlates: a report of the Vietnam Head Injury Study. Neurology. 1985;35:1406–14.Google Scholar
Christensen, J, Pedersen, MG, Pedersen, CB, Sidenius, P, Olsen, J, Vestergaard, M. Long-term risk of epilepsy after traumatic brain injury in children and young adults: a population-based cohort study. Lancet. 2009;373:1105–10. doi:10.1016/S0140-6736(09)60214–2.Google Scholar
Vespa, PM, McArthur, DL, Xu, Y, et al. Nonconvulsive seizures after traumatic brain injury are associated with hippocampal atrophy. Neurology. 2010;75:792–8. doi:10.1212/WNL.0b013e3181f07334.Google Scholar
D’Alessandro, R, Tinuper, P, Ferrara, R, et al. CT scan prediction of late post-traumatic epilepsy. J Neurol Neurosurg Psychiatr. 1982;45:1153–5.Google Scholar
De Santis, A, Sganzerla, E, Spagnoli, D, Bello, L, Tiberio, F. Risk factors for late posttraumatic epilepsy. Acta Neurochir Suppl (Wien). 1992;55:64–7.Google Scholar
Pohlmann-Eden, B, Bruckmeir, J. Predictors and dynamics of posttraumatic epilepsy. Acta Neurol Scand. 1997;95:257–62.Google Scholar
Englander, J, Bushnik, T, Duong, TT, et al. Analyzing risk factors for late posttraumatic seizures: a prospective, multicenter investigation. Arch Phys Med Rehabil. 2003;84:365–73. doi:10.1053/apmr.2003.50022.Google Scholar
Temkin, NR. Risk factors for posttraumatic seizures in adults. Epilepsia. 2003;44(suppl 10):1820.Google Scholar
Mazzini, L, Cossa, FM, Angelino, E, Campini, R, Pastore, I, Monaco, F. Posttraumatic epilepsy: neuroradiologic and neuropsychological assessment of long-term outcome. Epilepsia. 2003;44:569–74.Google Scholar
Kumar, R, Gupta, RK, Husain, M, et al. Magnetization transfer MR imaging in patients with posttraumatic epilepsy. AJNR Am J Neuroradiol. 2003;24:218–24.Google Scholar
Messori, A, Polonara, G, Carle, F, Gesuita, R, Salvolini, U. Predicting posttraumatic epilepsy with MRI: prospective longitudinal morphologic study in adults. Epilepsia. 2005;46:1472–81. doi:10.1111/j.1528–1167.2005.34004.x.Google Scholar
Willmore, LJ, Sypert, GW, Munson, JB. Recurrent seizures induced by cortical iron injection: a model of posttraumatic epilepsy. Ann Neurol. 1978;4:329–36. doi:10.1002/ana.410040408.Google Scholar
Angeleri, F, Majkowski, J, Cacchiò, G, et al. Posttraumatic epilepsy risk factors: one-year prospective study after head injury. Epilepsia. 1999;40:1222–30.Google Scholar
Asikainen, I, Kaste, M, Sarna, S. Early and late posttraumatic seizures in traumatic brain injury rehabilitation patients: brain injury factors causing late seizures and influence of seizures on long-term outcome. Epilepsia. 1999;40:584–9.Google Scholar
Diaz-Arrastia, R, Agostini, MA, Frol, AB, et al. Neurophysiologic and neuroradiologic features of intractable epilepsy after traumatic brain injury in adults. Arch Neurol. 2000;57:1611–6.Google Scholar
Shlosberg, D, Benifla, M, Kaufer, D, Friedman, A. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol. 2010;6:393403. doi:10.1038/nrneurol.2010.74.Google Scholar
Ivens, S, Kaufer, D, Flores, LP, et al. TGF-beta receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain. 2007;130:535–47. doi:10.1093/brain/awl317.Google Scholar
Seiffert, E, Dreier, JP, Ivens, S, et al. Lasting blood-brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J Neurosci. 2004;24:7829–36. doi:10.1523/JNEUROSCI.1751–04.2004.Google Scholar
Prager, O, Chassidim, Y, Klein, C, Levi, H, Shelef, I, Friedman, A. Dynamic in vivo imaging of cerebral blood flow and blood-brain barrier permeability. NeuroImage. 2010;49:337–44. doi:10.1016/j.neuroimage.2009.08.009.Google Scholar
Tomkins, O, Kaufer, D, Korn, A, et al. Frequent blood-brain barrier disruption in the human cerebral cortex. Cell Mol Neurobiol. 2001;21:675–91. doi:10.1023/A:1015147920283.Google Scholar
Tomkins, O, Shelef, I, Kaizerman, I, et al. Blood-brain barrier disruption in post-traumatic epilepsy. J Neurol Neurosurg Psychiatr. 2008;79:774–7. doi:10.1136/jnnp.2007.126425.Google Scholar
Tomkins, O, Feintuch, A, Benifla, M, Cohen, A, Friedman, A, Shelef, I. Blood-brain barrier breakdown following traumatic brain injury: a possible role in posttraumatic epilepsy. Cardiovasc Psychiatry Neurol. 2011;2011:765923. doi:10.1155/2011/765923.Google Scholar
Lynam, LM, Lyons, MK, Drazkowski, JF, et al. Frequency of seizures in patients with newly diagnosed brain tumors: a retrospective review. Clin Neurol Neurosurg. 2007;109:634–8. doi:10.1016/j.clineuro.2007.05.017.Google Scholar
Herman, ST. Epilepsy after brain insult: targeting epileptogenesis. Neurology. 2002;59:S21–6. doi:10.1212/WNL.59.9_suppl_5.S21.Google Scholar
Klein, M, Engelberts, NHJ, van der Ploeg, HM, et al. Epilepsy in low-grade gliomas: the impact on cognitive function and quality of life. Ann Neurol. 2003;54:514–20. doi:10.1002/ana.10712.Google Scholar
Sperling, MR, Ko, J. Seizures and brain tumors. Semin Oncol. 2006;33:333–41. doi:10.1053/j.seminoncol.2006.03.009.Google Scholar
van Breemen, MSM, Wilms, EB, Vecht, CJ. Epilepsy in patients with brain tumours: epidemiology, mechanisms, and management. Lancet Neurol. 2007;6:421–30. doi:10.1016/S1474-4422(07)70103–5.Google Scholar
Lote, K, Stenwig, AE, Skullerud, K, Hirschberg, H. Prevalence and prognostic significance of epilepsy in patients with gliomas. Eur J Cancer. 1998;34:98102.Google Scholar
Liigant, A, Haldre, S, Oun, A, et al. Seizure disorders in patients with brain tumors. Eur Neurol. 2001;45:4651.Google Scholar
Hildebrand, J, Lecaille, C, Perennes, J, Delattre, J-Y. Epileptic seizures during follow-up of patients treated for primary brain tumors. Neurology. 2005;65:212–5. doi:10.1212/01.wnl.0000168903.09277.8 f.Google Scholar
Whittle, IR, Beaumont, A. Seizures in patients with supratentorial oligodendroglial tumours. Clinicopathological features and management considerations. Acta Neurochir (Wien). 1995;135:1924.Google Scholar
Moots, PL, Maciunas, RJ, Eisert, DR, Parker, RA, Laporte, K, Abou-Khalil, B. The course of seizure disorders in patients with malignant gliomas. Arch Neurol. 1995;52:717–24.Google Scholar
Roelcke, U, Boxheimer, L, Fathi, AR, et al. Cortical hemosiderin is associated with seizures in patients with newly diagnosed malignant brain tumors. J Neurooncol. 2013;115:463–8. doi:10.1007/s11060-013–1247-7.Google Scholar
Chugani, DC, Chugani, HT, Muzik, O, et al. Imaging epileptogenic tubers in children with tuberous sclerosis complex using alpha-[11C]methyl-L-tryptophan positron emission tomography. Ann Neurol. 1998;44:858–66. doi:10.1002/ana.410440603.Google Scholar
Asano, E, Chugani, DC, Muzik, O, et al. Multimodality imaging for improved detection of epileptogenic foci in tuberous sclerosis complex. Neurology. 2000;54:1976–84.Google Scholar
Kagawa, K, Chugani, DC, Asano, E, et al. Epilepsy surgery outcome in children with tuberous sclerosis complex evaluated with alpha-[11C]methyl-L-tryptophan positron emission tomography (PET). J Child Neurol. 2005;20:429–38.Google Scholar
Juhász, C, Chugani, DC, Muzik, O, et al. Alpha-methyl-L-tryptophan PET detects epileptogenic cortex in children with intractable epilepsy. Neurology. 2003;60:960–8.Google Scholar
Jacobs, J, Rohr, A, Moeller, F, et al. Evaluation of epileptogenic networks in children with tuberous sclerosis complex using EEG-fMRI. Epilepsia. 2008;49:816–25. doi:10.1111/j.1528–1167.2007.01486.x.Google Scholar
Koch, M, Uyttenboogaart, M, Polman, S, De Keyser, J. Seizures in multiple sclerosis. Epilepsia. 2008;49:948–53. doi:10.1111/j.1528–1167.2008.01565.x.Google Scholar
Marrie, RA, Reider, N, Cohen, J, et al. A systematic review of the incidence and prevalence of sleep disorders and seizure disorders in multiple sclerosis. Mult Scler. 2015;21:342–9. doi:10.1177/1352458514564486.Google Scholar
Durmus, H, Kurtuncu, M, Tuzun, E, et al. Comparative clinical characteristics of early- and adult-onset multiple sclerosis patients with seizures. Acta Neurol Belg. 2013;113:421–6. doi:10.1007/s13760-013–0210-x.Google Scholar
Catenoix, H, Marignier, R, Ritleng, C, et al. Multiple sclerosis and epileptic seizures. Mult Scler. 2011;17:96102. doi:10.1177/1352458510382246.Google Scholar
van Munster, CEP. Gray matter damage in multiple sclerosis: Impact on clinical symptoms. Neuroscience. 2015;303:446–61. doi:10.1016/j.neuroscience.2015.07.006.Google Scholar
Calabrese, M, Filippi, M, Gallo, P. Cortical lesions in multiple sclerosis. Nat Rev Neurol. 2010;6:438–44. doi:10.1038/nrneurol.2010.93.Google Scholar
Gambardella, A, Valentino, P, Labate, A, et al. Temporal lobe epilepsy as a unique manifestation of multiple sclerosis. Can J Neurol Sci. 2003;30:228–32.Google Scholar
Sokic, DV, Stojsavljevic, N, Drulovic, J, et al. Seizures in multiple sclerosis. Epilepsia. 2001;42:72–9.Google Scholar
Moreau, T, Sochurkova, D, Lemesle, M, et al. Epilepsy in patients with multiple sclerosis: radiological-clinical correlations. Epilepsia. 1998;39:893–6.Google Scholar
Thompson, AJ, Kermode, AG, Moseley, IF, MacManus, DG, McDonald, WI. Seizures due to multiple sclerosis: seven patients with MRI correlations. J Neurol Neurosurg Psychiatr. 1993;56:1317–20.Google Scholar
Ghezzi, A, Montanini, R, Basso, PF, Zaffaroni, M, Massimo, E, Cazzullo, CL. Epilepsy in multiple sclerosis. Eur Neurol. 1990;30:218–23.Google Scholar
Büttner, T, Hornig, CR, Dorndorf, W. [Multiple sclerosis and epilepsy. An analysis of 14 case histories]. Der Nervenarzt. 1989;60:262–7.Google Scholar
Calabrese, M, De Stefano, N, Atzori, M, et al. Extensive cortical inflammation is associated with epilepsy in multiple sclerosis. J Neurol. 2008;255:581–6. doi:10.1007/s00415-008–0752-7.Google Scholar
Calabrese, M, Grossi, P, Favaretto, A, et al. Cortical pathology in multiple sclerosis patients with epilepsy: a 3 year longitudinal study. J Neurol Neurosurg Psychiatr. 2012;83:4954. doi:10.1136/jnnp-2011–300414.Google Scholar
Nicholas, R, Magliozzi, R, Campbell, G, Mahad, D, Reynolds, R. Temporal lobe cortical pathology and inhibitory GABA interneuron cell loss are associated with seizures in multiple sclerosis. Mult Scler. 2016;22:2535. doi:10.1177/1352458515579445.Google Scholar
Imfeld, P, Bodmer, M, Schuerch, M, Jick, SS, Meier, CR. Seizures in patients with Alzheimer’s disease or vascular dementia: a population-based nested case-control analysis. Epilepsia. 2013;54:700–7. doi:10.1111/epi.12045.Google Scholar
Annegers, JF, Rocca, WA, Hauser, WA. Causes of epilepsy: contributions of the Rochester epidemiology project. Mayo Clin Proc. 1996;71:570–5. doi:10.1016/S0025-6196(11)64114–1.Google Scholar
Amatniek, JC, Hauser, WA, DelCastillo-Castaneda, C, et al. Incidence and predictors of seizures in patients with Alzheimer’s disease. Epilepsia. 2006;47:867–72. doi:10.1111/j.1528–1167.2006.00554.x.Google Scholar
Scarmeas, N, Honig, LS, Choi, H, et al. Seizures in Alzheimer disease: who, when, and how common? Arch Neurol. 2009;66:992–7. doi:10.1001/archneurol.2009.130.Google Scholar
Vossel, KA, Beagle, AJ, Rabinovici, GD, et al. Seizures and epileptiform activity in the early stages of Alzheimer disease. JAMA Neurol. 2013;70:1158–66. doi:10.1001/jamaneurol.2013.136.Google Scholar
Noebels, J. A perfect storm: Converging paths of epilepsy and Alzheimer’s dementia intersect in the hippocampal formation. Epilepsia. 2011;52(suppl 1):3946. doi:10.1111/j.1528–1167.2010.02909.x.Google Scholar
Irizarry, MC, Jin, S, He, F, et al. Incidence of new-onset seizures in mild to moderate Alzheimer disease. Arch Neurol. 2012;69:368–72. doi:10.1001/archneurol.2011.830.Google Scholar
Dhikav, V, Anand, K. Hippocampal atrophy may be a predictor of seizures in Alzheimer’s disease. Med Hypotheses. 2007;69:234–5. doi:10.1016/j.mehy.2006.11.031.Google Scholar
Chin, J, Scharfman, HE. Shared cognitive and behavioral impairments in epilepsy and Alzheimer’s disease and potential underlying mechanisms. Epilepsy Behav. 2013;26:343–51. doi:10.1016/j.yebeh.2012.11.040.Google Scholar
Palop, JJ, Mucke, L. Epilepsy and cognitive impairments in Alzheimer disease. Arch Neurol. 2009;66:435–40. doi:10.1001/archneurol.2009.15.Google Scholar

References

Lin, JJ, Mula, M, Hermann, BP. Uncovering the neurobehavioural comorbidities of epilepsy over the lifespan. Lancet. 2012;380(9848):1180–92.Google Scholar
Hermann, BP, Lin, JJ, Jones, JE, Seidenberg, M. The emerging architecture of neuropsychological impairment in epilepsy. Neurol Clin. 2009;27(4):881907.Google Scholar
Institute of Medicine. Epilepsy Across the Spectrum: Promoting Health and Understanding. Washington, DC: Institute of Medicine Committee on the Public Health Dimension of Epilepsies; 2012.Google Scholar
Helmstaedter, C, Aldenkamp, AP, Baker, GA, Mazarati, A, Ryvlin, P, Sankar, R. Disentangling the relationship between epilepsy and its behavioral comorbidities—the need for prospective studies in new-onset epilepsies. Epilepsy Behav. 2014;31:43–7.Google Scholar
Pohlmann-Eden, B, Aldenkamp, A, Baker, GA, et al. The relevance of neuropsychiatric symptoms and cognitive problems in new-onset epilepsy—current knowledge and understanding. Epilepsy Behav. 2015;51:199209.Google Scholar
Hinnell, C, Williams, J, Metcalfe, A, et al. Health status and health-related behaviors in epilepsy compared to other chronic conditions—a national population-based study. Epilepsia. 2010;51(5):853–61.Google Scholar
Jalava, M, Sillanpaa, M. Concurrent illnesses in adults with childhood-onset epilepsy: a population-based 35-year follow-up study. Epilepsia. 1996;37(12):1155–63.Google Scholar
Kobau, R, Zahran, H, Thurman, DJ, et al. Epilepsy surveillance among adults—19 states. Behavioral Risk Factor Surveillance System 2005. MMWR Surveill Summ. 2008;57(6):120.Google Scholar
Ottman, R, Lipton, RB, Ettinger, AB, et al. Comorbidities of epilepsy: results from the Epilepsy Comorbidities and Health (EPIC) survey. Epilepsia. 2011;52(2):308–15.Google Scholar
Tellez-Zenteno, JF, Matijevic, S, Wiebe, S. Somatic comorbidity of epilepsy in the general population in Canada. Epilepsia. 2005;46(12):1955–62.Google Scholar
Tellez-Zenteno, JF, Patten, SB, Jette, N, Williams, J, Wiebe, S. Psychiatric comorbidity in epilepsy: a population-based analysis. Epilepsia. 2007;48(12):2336–44.Google Scholar
Begley, CE, Famulari, M, Annegers, JF, et al. The cost of epilepsy in the United States: an estimate from population-based clinical and survey data. Epilepsia. 2000;41(3):342–51.Google Scholar
Jennum, P, Gyllenborg, J, Kjellberg, J. The social and economic consequences of epilepsy: a controlled national study. Epilepsia. 2011;52(5):949–56.CrossRefGoogle ScholarPubMed
Dikmen, S, Matthews, CG, Harley, JP. The effect of early versus late onset of major motor epilepsy upon cognitive-intellectual performance. Epilepsia. 1975;16(1):7381.Google Scholar
Dikmen, S, Matthews, CG, Harley, JP. Effect of early versus late onset of major motor epilepsy on cognitive-intellectual performance: further considerations. Epilepsia. 1977;18(1):31–6.Google Scholar
Dodrill, CB, Matthews, CG. The role of neuropsychology in the assessment and treatment of persons with epilepsy. Am Psychol. 1992;47(9):1139–42.Google Scholar
Hermann, B, Seidenberg, M, Bell, B, et al. The neurodevelopmental impact of childhood-onset temporal lobe epilepsy on brain structure and function. Epilepsia. 2002;43(9):1062–71.Google Scholar
Kaaden, S, Helmstaedter, C. Age at onset of epilepsy as a determinant of intellectual impairment in temporal lobe epilepsy. Epilepsy Behav. 2009;15(2):213–7.Google Scholar
Lennox, WG. Epilepsy and Related Disorders. Vol. 2. Boston: Little, Brown; 1960.Google Scholar
Cormack, F, Cross, JH, Isaacs, E, et al. The development of intellectual abilities in pediatric temporal lobe epilepsy. Epilepsia. 2007;48(1):201–4.Google Scholar
O’Leary, DS, Seidenberg, M, Berent, S, Boll, TJ. Effects of age of onset of tonic-clonic seizures on neuropsychological performance in children. Epilepsia. 1981;22(2):197204.Google Scholar
Schoenfeld, J, Seidenberg, M, Woodard, A, et al. Neuropsychological and behavioral status of children with complex partial seizures. Dev Med Child Neurol. 1999;41(11):724–31.Google Scholar
Theodore, WH, DeCarli, C, Gaillard, WD. Total cerebral volume is reduced in patients with localization-related epilepsy and a history of complex febrile seizures. Arch Neurol. 2003;60(2):250–2.Google Scholar
Hermann, B, Hansen, R, Seidenberg, M, Magnotta, V, O’Leary, D. Neurodevelopmental vulnerability of the corpus callosum to childhood onset localization-related epilepsy. NeuroImage. 2003;18(2):284–92.Google Scholar
Kaaden, S, Quesada, CM, Urbach, H, et al. Neurodevelopmental disruption in early-onset temporal lobe epilepsy: evidence from a voxel-based morphometry study. Epilepsy Behav. 2011;20(4):694–9.Google Scholar
Riley, JD, Franklin, DL, Choi, V, et al. Altered white matter integrity in temporal lobe epilepsy: association with cognitive and clinical profiles. Epilepsia. 2010;51(4):536–45.Google Scholar
Weber, B, Luders, E, Faber, J, et al. Distinct regional atrophy in the corpus callosum of patients with temporal lobe epilepsy. Brain. 2007;130:3149–54.Google Scholar
Camfield, C, Camfield, P, Smith, B, Gordon, K, Dooley, J. Biologic factors as predictors of social outcome of epilepsy in intellectually normal children: a population-based study. J Pediatrics. 1993;122(6):869–73.Google Scholar
Harrison, RM, Taylor, DC. Childhood seizures: a 25-year follow up. Social and medical prognosis. Lancet. 1976;1(7966):948–51.Google Scholar
Lindsay, J, Ounsted, C, Richards, P. Long-term outcome in children with temporal lobe seizures. I: Social outcome and childhood factors. Dev Med Child Neurol. 1979;21(3):285–98.Google Scholar
Lindsay, J, Ounsted, C, Richards, P. Long-term outcome in children with temporal lobe seizures. II: Marriage, parenthood and sexual indifference. Dev Med Child Neurol. 1979;21(4):433–40.Google Scholar
Lindsay, J, Ounsted, C, Richards, P. Long-term outcome in children with temporal lobe seizures. III: Psychiatric aspects in childhood and adult life. Dev Med Child Neurol. 1979;21(5):630–6.Google Scholar
Micallef, S, Spooner, CG, Harvey, AS, Wrennall, JA, Wilson, SJ. Psychological outcome profiles in childhood-onset temporal lobe epilepsy. Epilepsia. 2010;51(10):2066–73.Google Scholar
Wakamoto, H, Nagao, H, Hayashi, M, Morimoto, T. Long-term medical, educational, and social prognoses of childhood-onset epilepsy: a population-based study in a rural district of Japan. Brain Dev. 2000;22(4):246–55.Google Scholar
Geerts, A, Brouwer, O, van Donselaar, C, et al. Health perception and socioeconomic status following childhood-onset epilepsy: the Dutch study of epilepsy in childhood. Epilepsia. 2011;52(12):21922202.Google Scholar
Jalava, M, Sillanpaa, M, Camfield, C, Camfield, P. Social adjustment and competence 35 years after onset of childhood epilepsy: a prospective controlled study. Epilepsia. 1997;38(6):708–15.Google Scholar
Kokkonen, J, Kokkonen, ER, Saukkonen, AL, Pennanen, P. Psychosocial outcome of young adults with epilepsy in childhood. J Neurol Neurosurg Psychiatry. 1997;62(3):265–8.Google Scholar
Koponen, A, Seppala, U, Eriksson, K, et al. Social functioning and psychological well-being of 347 young adults with epilepsy only—population-based, controlled study from Finland. Epilepsia. 2007;48(5):907–12.Google Scholar
Shackleton, DP, Kasteleijn-Nolst Trenite, DG, de Craen, AJ, Vandenbroucke, JP, Westendorp, RG. Living with epilepsy: long-term prognosis and psychosocial outcomes. Neurology. 2003;61(1):6470.Google Scholar
Sillanpaa, M, Jalava, M, Kaleva, O, Shinnar, S. Long-term prognosis of seizures with onset in childhood. N Engl J Med. 1998;338(24):1715–22.Google Scholar
Wirrell, EC, Camfield, CS, Camfield, PR, Dooley, JM, Gordon, KE, Smith, B. Long-term psychosocial outcome in typical absence epilepsy. Sometimes a wolf in sheeps’ clothing. Arch Pediatr Adolesc Med. 1997;151(2):152–8.Google Scholar
Britten, N, Morgan, K, Fenwick, PB, Britten, H. Epilepsy and handicap from birth to age 36. Dev Med Child Neurol. 1986;28(6):719–28.Google Scholar
Chin, RF, Cumberland, PM, Pujar, SS, Peckham, C, Ross, EM, Scott, RC. Outcomes of childhood epilepsy at age 33 years: a population-based birth-cohort study. Epilepsia. 2011;52(8):1513–21.Google Scholar
Cooper, JE. Epilepsy in a longitudinal survey of 5,000 children. Br Med J. 1965;1(5441):1020–2.Google Scholar
Ross, EM, Peckham, CS. School children with epilepsy. In: Parsonage, M, Grant, RHE, Craig, AG, eds. Advances in Epileptology. New York: Rave Press; 1983:215–20.Google Scholar
Ross, EM, Peckham, CS, West, PB, Butler, NR. Epilepsy in childhood: findings from the National Child Development Study. Br Med J. 1980;280(6209):207–10.Google Scholar
Gleissner, U, Sassen, R, Lendt, M, Clusmann, H, Elger, CE, Helmstaedter, C. Pre- and postoperative verbal memory in pediatric patients with temporal lobe epilepsy. Epilepsy Res. 2002;51(3):287–96.Google Scholar
Lassonde, M, Sauerwein, HC, Jambaque, I, Smith, ML, Helmstaedter, C. Neuropsychology of childhood epilepsy: pre- and postsurgical assessment. Epileptic Disord. 2000;2(1):313.Google Scholar
MacAllister, WS, Schaffer, SG. Neuropsychological deficits in childhood epilepsy syndromes. Neuropsychol Rev. 2007;17(4):427–44.Google Scholar
Bourgeois, BF, Prensky, AL, Palkes, HS, Talent, BK, Busch, SG. Intelligence in epilepsy: a prospective study in children. Ann Neurol. 1983;14(4):438–44.Google Scholar
Kolk, A, Beilmann, A, Tomberg, T, Napa, A, Talvik, T. Neurocognitive development of children with congenital unilateral brain lesion and epilepsy. Brain Dev. 2001;23(2):8896.Google Scholar
Stores, G. A clinical approach to poorly controlled seizures in children. Br J Hosp Med. 1992;48(2):93–8.Google Scholar
Williams, J, Bates, S, Griebel, ML, et al. Does short-term antiepileptic drug treatment in children result in cognitive or behavioral changes? Epilepsia. 1998;39(10):1064–9.Google Scholar
Oostrom, KJ, Smeets-Schouten, A, Kruitwagen, CL, et al. Not only a matter of epilepsy: early problems of cognition and behavior in children with “epilepsy only”—a prospective, longitudinal, controlled study starting at diagnosis. Pediatrics. 2003;112(6 p. 1):1338–44.Google Scholar
Fastenau, PS, Johnson, CS, Perkins, SM, et al. Neuropsychological status at seizure onset in children: risk factors for early cognitive deficits. Neurology. 2009;73(7):526–34.Google Scholar
Dunn, DW, Harezlak, J, Ambrosius, WT, Austin, JK, Hale, B. Teacher assessment of behaviour in children with new-onset seizures. Seizure. 2002;11(3):169–75.Google Scholar
McNelis, AM, Dunn, DW, Johnson, CS, Austin, JK, Perkins, SM. Academic performance in children with new-onset seizures and asthma: a prospective study. Epilepsy Behav. 2007;10(2):311–8.Google Scholar
Vintan, M, Palade, S, Cristea, A, Benga, I, Muresanu, D. A neuropsychological assessment, using computerized battery tests (CANTAB) in children with benign rolandic epilepsy before AED therapy. J Med Life. 2012;5(1):114–9.Google Scholar
Lee, JH, Kim, SE, Park, CH, Yoo, JH, Lee, HW. Gray and white matter volumes and cognitive dysfunction in drug-naive newly diagnosed pediatric epilepsy. Biomed Res Int. 2015;2015:923861.Google Scholar
Filippini, M, Ardu, E, Stefanelli, S, Boni, A, Gobbi, G, Benso, F. Neuropsychological profile in new-onset benign epilepsy with centrotemporal spikes (BECTS): focusing on executive functions. Epilepsy Behav. 2016;54:71–9.Google Scholar
Cheng, D, Yan, X, Gao, Z, Xu, K, Zhou, X, Chen, Q. Neurocognitive profiles in childhood absence epilepsy. J Child Neurol. 2017;32(1):4652.Google Scholar
Matricardi, S, Deleo, F, Ragona, F, et al. Neuropsychological profiles and outcomes in children with new onset frontal lobe epilepsy. Epilepsy Behav. 2016;55:7983.Google Scholar
Vannest, J, Tenney, JR, Altaye, M, et al. Impact of frequency and lateralization of interictal discharges on neuropsychological and fine motor status in children with benign epilepsy with centrotemporal spikes. Epilepsia. 2016;57(8):e1617.Google Scholar
Vannest, J, Maloney, TC, Tenney, JR, et al. Changes in functional organization and functional connectivity during story listening in children with benign childhood epilepsy with centro-temporal spikes. Brain Lang. 2017. doi:10.1016/j.bandl.2017.01.009.Google Scholar
Wang, G, Dai, ZY, Song, W, et al. Grey matter anomalies in drug-naive childhood absence epilepsy: A voxel-based morphometry study with MRI at 3.0 T. Epilepsy Res. 2016;124:63–6.Google Scholar
Ekmekci, B, Bulut, HT, Gumustas, F, Yildirim, A, Kustepe, A. The relationship between white matter abnormalities and cognitive functions in new-onset juvenile myoclonic epilepsy. Epilepsy Behav. 2016;62:166–70.Google Scholar
Cheng, D, Yan, X, Gao, Z, Xu, K, Chen, Q. Attention contributes to arithmetic deficits in new-onset childhood absence epilepsy. Front Psychiatry. 2017;8:166.Google Scholar
Hermann, B, Jones, J, Sheth, R, Dow, C, Koehn, M, Seidenberg, M. Children with new-onset epilepsy: neuropsychological status and brain structure. Brain. 2006;129(pt 10):2609–19.Google Scholar
Pulsipher, DT, Seidenberg, M, Guidotti, L, et al. Thalamofrontal circuitry and executive dysfunction in recent-onset juvenile myoclonic epilepsy. Epilepsia. 2009;50(5):1210–9.Google Scholar
Hutchinson, E, Pulsipher, D, Dabbs, K, et al. Children with new-onset epilepsy exhibit diffusion abnormalities in cerebral white matter in the absence of volumetric differences. Epilepsy Res. 2010;88(2–3),208–14.Google Scholar
Jackson, DC, Irwin, W, Dabbs, K, et al. Ventricular enlargement in new-onset pediatric epilepsies. Epilepsia. 2011;52(12):2225–32.Google Scholar
Widjaja, E, Zarei Mahmoodabadi, S, Go, C, et al. Reduced cortical thickness in children with new-onset seizures. AJNR Am J Neuroradiol. 2012;33(4):673–7.Google Scholar
Yang, T, Guo, Z, Luo, C, et al. White matter impairment in the basal ganglia-thalamocortical circuit of drug-naive childhood absence epilepsy. Epilepsy Res. 2012;99(3):267–73.Google Scholar
Widjaja, E, Kis, A, Go, C, Raybaud, C, Snead, OC, Smith, ML. Abnormal white matter on diffusion tensor imaging in children with new-onset seizures. Epilepsy Res. 2013;104(1–2):105–11.Google Scholar
Kim, EH, Yum, MS, Shim, WH, Yoon, HK, Lee, YJ, Ko, TS. Structural abnormalities in benign childhood epilepsy with centrotemporal spikes (BCECTS). Seizure. 2015;27:40–6.Google Scholar
Luo, C, Zhang, Y, Cao, W, et al. Altered structural and functional feature of striato-cortical circuit in benign epilepsy with centrotemporal spikes. Int J Neural Syst. 2015;25(6):1550027.Google Scholar
Perani, S, Tierney, TM, Centeno, M, et al. Thalamic volume reduction in drug-naive patients with new-onset genetic generalized epilepsy. Epilepsia. 2018;59(1):226–34.Google Scholar
Wilkinson, GS. Wide Range Achievement Test: Manual. Wilmington, DE: Wide Range, Inc.; 1993.Google Scholar
Wechsler, D. Wechsler Abbreviated Scale of Intelligence. San Antonio, TX: Psychological Corporation; 1999.Google Scholar
Kaplan, E, Goodglass, H, Weintraub, S. Boston Naming Test. Philadelphia: Lea & Febiger; 1983.Google Scholar
Williams, KT. Expressive Vocabulary Test. Circle Pines, MN: American Guidance Service; 1997.Google Scholar
Dunn, L, Dunn, L, Williams, KT. Peabody Picture Vocabulary Test. Circle Pines, MN: American Guidance Service; 1997.Google Scholar
Delis, DC, Kaplan, E, Kramer, JH. The Delis-Kaplan Executive Function System. San Antonio, TX: Psychological Corporation; 2001.Google Scholar
Cohen, MJ. Children’s Memory Scale. San Antonio, TX: Psychological Corporation; 1997.Google Scholar
Conners, CK. The Connors’ Continuous Performance Test. Toronto: Multi-Heath Systems; 1995.Google Scholar
Lafayette Instrument Company. Grooved Peg Board Test. Lafayette, IN; 2002.Google Scholar
Wechsler, D. Wechsler Intelligence Scale for Children. San Antonio, TX: Psychological Corporation; 1991.Google Scholar
Dabbs, K, Jones, JE, Jackson, DC, Seidenberg, M, Hermann, BP. Patterns of cortical thickness and the Child Behavior Checklist in childhood epilepsy. Epilepsy Behav. 2013;29(1):198204.Google Scholar

References

Manford, M, Hart, YM, Sander, JW, Shorvon, SD National General Practice Study of Epilepsy (NGPSE): partial seizure patterns in a general population. Neurology. 1992;42:1911–7.Google Scholar
Falconer, MA, Serafetinides, EA, Corsellis, JAN Etiology and pathogenesis of temporal lobe epilepsy. Arch Neurol. 1964;10:233–40.Google Scholar
de Tisi, J, Bell, GS, Peacock, JL, et al. The long-term outcome of adult epilepsy surgery, patterns of seizure remission, and relapse: a cohort study. Lancet. 2011;378:1388–95.Google Scholar
Semah, F, Picot, MC, Adam, C, et al. Is the underlying cause of epilepsy a major prognostic factor for recurrence? Neurology. 1998;51:1256–62.Google Scholar
Spooner, CG, Berkovic, SF, Mitchell, LA, Wrennall, JA, Harvey, AS New-onset temporal lobe epilepsy in children: lesion on MRI predicts poor seizure outcome. Neurology. 2006;67:2147–53.Google Scholar
Labate, A, Gambardella, A, Andermann, E, et al. Benign mesial temporal lobe epilepsy. Nat Rev Neurol. 2011;7:237–40.Google Scholar
Aguglia, U, Gambardella, A, Le Piane, E, et al. Mild non-lesional temporal lobe epilepsy. A common unrecognized disorder with onset in adulthood. Can J Neurol Sci. 1998;25:282–6.Google Scholar
Gambardella, A, Manna, I, Labate, A, et al. GABA(B) receptor 1 polymorphism (G1465A) is associated with temporal lobe epilepsy. Neurology. 2003;60:560–3.Google Scholar
Labate, A, Ventura, P, Gambardella, A, et al. MRI evidence of mesial temporal sclerosis in sporadic “benign” temporal lobe epilepsy. Neurology. 2006;66:562–5.Google Scholar
Labate, A, Aguglia, U, Tripepi, G, et al. Long-term outcome of mild mesial temporal lobe epilepsy: a prospective longitudinal cohort study. Neurology. 2016;86:1904–10.Google Scholar
Pitkänen, A, Löscher, W, Vezzani, A, et al. Advances in the development of biomarkers for epilepsy. Lancet Neurol. 2016;15:843–56.Google Scholar
Engel, J Jr, Pitkänen, A, Loeb, JA, et al. Epilepsy biomarkers. Epilepsia. 2013;54(S4):S61–9.Google Scholar
Berkovic, SF, McIntosh, A, Howell, RA, Mitchell, A, Sheffield, LJ, Hopper, JL Familial temporal lobe epilepsy: a common disorder identified in twins. Ann Neurol. 1996;40:227–35.Google Scholar
Crompton, DE, Scheffer, IE, Taylor, I, et al. Familial mesial temporal lobe epilepsy: a benign epilepsy syndrome showing complex inheritance. Brain. 2010;133:3221–31.Google Scholar
Gambardella, A, Messina, D, Le Piane, E, et al. Familial temporal lobe epilepsy. Autosomal dominant inheritance in a large pedigree from southern Italy. Epilepsy Res. 2000;38:127–32.Google Scholar
Kobayashi, E, D’Agostino, MD, Lopes-Cendes, I, et al. Hippocampal atrophy and T2 weighted signal changes in familial mesial temporal lobe epilepsy. Neurology. 2003;60:405–9.Google Scholar
Hedera, P, Blair, MA, Andermann, E, et al. Familial mesial temporal lobe epilepsy maps to chromosome 4q13.2-q21.3. Neurology. 2007;68:2107–12.Google Scholar
Dibbens, LM, de Vries, B, Donatello, S, et al. Mutations in DEPDC5 cause familial focal epilepsy with variable foci. Nat Genet. 2013;45:546–51.Google Scholar
Colosimo, E, Gambardella, A, Mantegazza, M, et al. Electroclinical features of a family with simple febrile seizures and temporal lobe epilepsy associated with SCN1A loss-of-function mutation. Epilepsia. 2007;48:1691–6.Google Scholar
Scheffer, IE, Harkin, LA, Grinton, BE, et al. Temporal lobe epilepsy and GEFS+ phenotypes associated with SCN1B mutations. Brain. 2007;130:100–9.Google Scholar
Al-Asmi, A, Jansen, AC, Badhwar, A, et al. Familial temporal lobe epilepsy as a presenting feature of choreoacanthocytosis. Epilepsia. 2005;46:1256–63.Google Scholar
Gottesman, II, Gould, TD The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry. 2003;160:636–45.Google Scholar
Hasler, G, Drevets, WC, Gould, TD, Gottesman, II, Manji, HK Toward constructing an endophenotype strategy for bipolar disorders. Biol Psychiatry. 2006;60:93105.Google Scholar
Hashimoto, R, Ohi, K, Yamamori, H, et al. Imaging genetics and psychiatric disorders. Curr Mol Med. 2015;15:168–75.Google Scholar
Medland, SE, Jahanshad, N, Neale, BM, Thompson, PM Whole-genome analyses of whole-brain data: working within an expanded search space. Nat Neurosci. 2014;17:791800.Google Scholar
Thompson, PM, Cannon, TD, Narr, KL, et al. Genetic influences on brain structure. Nat Neurosci. 2001;4:1253–8.Google Scholar
Tsai, MH, Pardoe, HR, Perchyonok, Y, et al. Etiology of hippocampal sclerosis: evidence for a predisposing familial morphologic anomaly. Neurology. 2013;81:144–9.Google Scholar
Jackson, GD, McIntosh, AM, Briellmann, RS, Berkovic, SF Hippocampal sclerosis studied in identical twins. Neurology. 1998;51:7884.Google Scholar
Fernández, G, Effenberger, O, Vinz, B, et al. Hippocampal malformation as a cause of familial febrile convulsions and subsequent hippocampal sclerosis. Neurology. 1998;50:909–17.Google Scholar
Kobayashi, E, Li, LM, Lopes-Cendes, I, Cendes, F. Magnetic resonance imaging evidence of hippocampal sclerosis in asymptomatic, first-degree relatives of patients with familial mesial temporal lobe epilepsy. Arch Neurol. 2002;59:1891–4.Google Scholar
Sisodiya, SM, Ragge, NK, Cavalleri, GL, et al. Role of SOX2 mutations in human hippocampal malformations and epilepsy. Epilepsia. 2006;47:534–42.Google Scholar
Bernasconi, N, Kinay, D, Andermann, F, Antel, S, Bernasconi, A. Analysis of shape and positioning of the hippocampal formation: an MRI study in patients with partial epilepsy and healthy controls. Brain. 2005;128:2442–52.Google Scholar
Bernhardt, BC, Worsley, KJ, Kim, H, Evans, AC, Bernasconi, A, Bernasconi, N. Longitudinal and cross-sectional analysis of atrophy in pharmacoresistant temporal lobe epilepsy. Neurology. 2009;72:1747–54.Google Scholar
Bernhardt, BC, Bernasconi, N, Concha, L, Bernasconi, A. Cortical thickness analysis in temporal lobe epilepsy: reproducibility and relation to outcome. Neurology. 2010;74:1776–84.Google Scholar
Labate, A, Cerasa, A, Aguglia, U, Mumoli, L, Quattrone, A, Gambardella, A. Neocortical thinning in “benign” mesial temporal lobe epilepsy. Epilepsia. 2011;52:712–7.Google Scholar
Bast, T, Feldon, J. Hippocampal modulation of sensorimotor processes. Prog Neurobiol. 2003;70:319–45.Google Scholar
Labate, A, Cerasa, A, Gambardella, A, Aguglia, U, Quattrone, A. Hippocampal and thalamic atrophy in mild temporal lobe epilepsy: a VBM study. Neurology. 2008;71:1094–101.Google Scholar
Alhusaini, S, Scanlon, C, Ronan, L, et al. Heritability of subcortical volumetric traits in mesial temporal lobe epilepsy. PLOS ONE. 2013;8:e61880.Google Scholar
Labate, A, Cherubini, A, Tripepi, G, et al. White matter abnormalities differentiate severe from benign temporal lobe epilepsy. Epilepsia. 2015;56:1109–16.Google Scholar
Caligiuri, ME, Labate, A, Cherubini, A, et al. Integrity of the corpus callosum in patients with benign temporal lobe epilepsy. Epilepsia 2016;57:590–6.Google Scholar
International League Against Epilepsy Consortium on Complex Epilepsies. Genetic determinants of common epilepsies: a meta-analysis of genome-wide association studies. Lancet Neurol. 2014;13:893903.Google Scholar
Whelan, CD, Altmann, A, Botía, JA, et al. Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study. Brain. 2018;141:391408.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×