Skip to main content Accessibility help
×
Home
  • Print publication year: 2011
  • Online publication date: May 2011

16 - Challenges, solutions, and applications of accurate multiangle image registration: Lessons learned from MISR

from PART IV - Applications and Operational Systems

Summary

Abstract

A novel approach implemented to meet coregistration/georectification requirements and continuous data-intensive processing demands of the Multi-angle Imaging SpectroRadiometer (MISR) science data system has been in operation since the beginning of on-orbit data acquisition in February 2000. Remote sensing image data are typically only radiometrically and spectrally corrected as a part of standard processing, prior to being distributed to investigators. In the case of MISR, with its unique configuration of nine fixed pushbroom cameras, continuous and autonomous coregistration and geolocation of the data are essential prior to application of any subsequent scientific retrieval algorithm. A fully automated system for continuous orthorectification, including removal of errors related to camera internal geometry, spacecraft attitude data, and surface topography, has been implemented.

The challenges involved in employing such a system range from purely algorithmic issues to those related to limitations on computational resources and data volumes. Processing algorithms had to be designed so that ~35 GB of image data per day are orthorectified without interruption and with high fidelity, as verified by an automated quality assessment process. We adopted a processing strategy that distributes the effort between the MISR Science Computing Facility at the Jet Propulsion Laboratory in Pasadena, CA and the Distributed Active Archive Center (DAAC) at the NASA Langley Research Center, Hampton, VA.

Accurate geolocation and coregistration of multiangle, multispectral MISR data is critical for the higher-level science retrieval algorithms.

References
Ackermann, F. (1984). Digital image correlation: Performance and potential application in photogrammetry. The Photogrammetry Record, 11(64), pp. 429–439.
Bailey, G. B., Carneggie, D., Kieffer, H., Storey, J. C., Jovanovic, V. M., and Wolfe, R. E. (1997). Ground Control Points for Calibration and Correction of EOS ASTER, MODIS, MISR and Landsat 7 ETM+ Data. SWAMP GCP Working Group Final Report, USGS, EROS Data Center, Sioux Falls, SD.
Bintanja, R. and Reijmer, C. H. (2001). Meteorological conditions over Antarctic blue-ice areas and their influence on the local surface mass balance. Journal of Glaciology, 47(156), 37–50.
Bothwell, G., Hansen, E. G., Vargo, R. E., and Miller, K. C. (2002). The MISR science data system: Its products, tools, and performance. IEEE Transactions on Geoscience and Remote Sensing, 40(7), 1467–1476.
Braswell, B. H., Hagen, S. C., Salas, W. A., and Frolking, S. E. (2003). A multivariable approach for mapping sub-pixel land cover distributions using MISR and MODIS: Application in the Brazilian Amazon. Remote Sensing of Environment, 87, 243–256.
Castleman, K. R. (1979). Digital Image Processing. Englewood Cliffs, NJ: Prentice-Hall.
Chopping, M. J., Su, L. H., Laliberte, A., Rango, A., Peters, D. P. C., and Martonchik, J. V. (2006). Mapping woody plant cover in desert grasslands using canopy reflectance modeling and MISR data. Geophysical Research Letters, 33, L17402, doi: 10.129/2006 GL027148.
Davies, R., Horváth, A., Moroney, C., Zhang, B., and Zhu, Y. (2007). Cloud motion vectors from MISR using sub-pixel enhancements. Remote Sensing of Environment, MISR Special Issue, 107, 194–199.
Dennis, J. E. and Schnabel, R. B. (1983). Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Englewood Cliffs, NJ: Prentice-Hall.
Diner, D. J., Beckert, J. C., Reilly, T. H., Bruegge, C. J., Conel, J. E., Kahn, R. A., Martonchick, J. V., Ackerman, T. P., Davies, R., Gerstl, S. A. W., Gordon, H. R., Muller, J. P., Myneni, R., Sellers, P. J., Pinty, B., and Verstraete, M. M. (1998). Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview. IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1072–1087.
Diner, D. J., Braswell, B. H., Davies, R., Gobron, N., Hu, J., Jin, Y., Kahn, R. A., Knyazikhin, Y., Loeb, N., Muller, J.-P., Nolin, A. W., Pinty, B., Schaaf, C. B., Seiz, G., and Stroeve, J. (2005). The value of multiangle measurements for retrieving structurally and radiatively consistent properties of clouds, aerosols, and surfaces. Remote Sensing of Environment, 97(4), 495–518.
Diner, D. J., Clothiaux, E., and Di Girolamo, L. (1999a). Level 1 Cloud Detection Algorithm Theoretical Basis Document. JPL Tech. Doc. D-11397, Rev. B. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA.
Diner, D. J., Davies, R., DiGirolamo, L., Moroney, C., Muller, J.-P., Paradise, S., Wenkert, S., and Zong, J. (1999b). Level 2 Cloud Detection and Classification Algorithm Theoretical Basis Document. JPL Tech. Doc. D-11399, Rev. D. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA.
Förstner, W. (1982). On the geometric precision of digital correlation. In Proceedings of the Commission III International Society for Photogrammetry and Remote Sensing, Helsinki, Finland, Vol. XXIV, pp. 176–189.
Förstner, W. and Gülch, E. (1987). A fast operator for detection and precise location of distinct points, corners and centers of circular features. In Proceedings of the International Society for Photogrammetry and Remote Sensing Intercommission Workshop on Fast Processing of Photogrammetric Data, Interlaken, Switzerland, pp. 281–305.
Haralick, R. M. and Shapiro, L. G. (1993). Computer and Robot Vision. Reading, MA: Addison-Welsey.
Horváth, Á. and Davies, R. (2001). Feasibility and error analysis of cloud motion wind extraction from near-simultaneous multiangle MISR measurements. Journal of Atmospheric Oceanic Technology, 18, 591–608.
Hu, J., Tan, B., Shabanov, N., Crean, K. A., Martonchik, J. V., Diner, D. J., Knyazikhin, Y., and Myneni, R. B. (2003). Performance of the MISR LAI and FPAR algorithm: A case study in Africa. Remote Sensing of Environment, 88, 324–340.
Jovanovic, V. M., Bull, M., Smyth, M. M., and Zong, J. (2002). MISR in-flight camera geometric model calibration and achieved georectification performances. IEEE Transactions on Geoscience and Remote Sensing, 40(7), 1512–1519.
Jovanovic, V. M., Moroney, C., and Nelson, D. (2007). Multi-angle geometric processing for globally geo-located and co-registered MISR image data. Remote Sensing of Environment, 107(1–2), 22–32.
Jovanovic, V. M., Smyth, M. M., Zong, J., Ando, R., and Bothwell, G. W. (1998). MISR photogrammetric data reduction for geophysical retrievals. IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1290–1301.
Kahn, R. A., Gaitley, B. J., Crean, K. A., Diner, D. J., Martonchik, J. V., and Holben, B. N. (2005). MISR global aerosol optical depth validation based on two years of coincident AERONET observations. Journal of Geophysical Research, 110, D10S04, doi: 10.129/2004JD004706.
Korechoff, R. P., Jovanovic, V. M., Hochberg, E. B., Kirby, D. M., and Sepulveda, C. A. (1996). Distortion calibration of the MISR linear detector arrays. In Proceedings of the SPIE Conference on Earth Observing Systems, Denver, CO, Vol. 2820, pp. 174–183.
Logan, T. L. (1999). EOS/AM-1 Digital Elevation Model (DEM) Data Sets: DEM and DEM Auxiliary Datasets in Support of the EOS/Terra Platform. JPL Tech. Doc. D-013508. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA.
Martonchik, J. V., Diner, D. J., Kahn, R., Gaitley, B., and Holben, B. N. (2004). Comparison of MISR and AERONET aerosol optical depths over desert sites. Geophysical Research Letters, 31, L16102, doi:10.1029/2004GL019807.
Mikhail, E. M. (1976). Observations and Least Squares. New York: Harper & Row.
Moroney, C., Davies, R., and Muller, J. P. (2002a). Operational retrieval of cloud-top heights using MISR. IEEE Transactions on Geoscience and Remote Sensing, 40(7), 1532–1540.
Moroney, C., Horváth, A., and Davies, R. (2002b). Use of stereo-matching to coregister multiangle data from MISR. IEEE Transactions on Geoscience and Remote Sensing, 40(7), 1541–1546.
Muller, J. P., Mandanayake, A., Moroney, C., Davies, R., Diner, D. J., and Paradise, S. (2002). MISR stereoscopic image matchers: Techniques and results. IEEE Transactions on Geoscience and Remote Sensing, 40(7), 1547–1559.
Nolin, A. W., Fetterer, F. M., and Scambos, T. A. (2002). Surface roughness characterizations of sea ice and ice sheets: Case studies with MISR data. IEEE Transactions on Geoscience and Remote Sensing, 40(7), 1605–1615.
Paderes, F. C., Mikhail, E. M., and Fagerman, J. A. (1989). Batch and on-line evaluation of stereo SPOT imagery. In Proceedings of the Annual American Society of Photogrammetry and Remote Sensing and the American Congress on Surveying and Mapping Convention, Baltimore, MD, Vol. 3, pp. 31–40.
Pinty, B., Widlowski, J.-L., Gobron, N., Verstraete, M. M., and Diner, D. J. (2002). Uniqueness of multiangular measurements–part I: An indicator of subpixel surface heterogeneity from MISR. IEEE Transactions on Geoscience and Remote Sensing, 40(7), 1560–1573.
Seiz, G., Davies, R., and Grün, A. (2006). Stereo cloud-top height retrieval with ASTER and MISR. International Journal of Remote Sensing, 27(9), 1839–1853.
Snyder, J. P. (1987). Map Projections – A Working Manual. United States Geological Survey Professional Paper 1395, U.S. Government Printing Office, Washington, DC.
Widlowski, J.-L., Pinty, B., Gobron, N., Verstraete, M. M., Diner, D. J., and Davis, A. B. (2004). Canopy structure parameters derived from multi-angular remote sensing data for terrestrial carbon studies. Climatic Change, 67(2–3), 403–415.
Yang, Y., Di Girolamo, L., and Mazzoni, D. (2007). Selection of the automated thresholding algorithm for the Multi-angle Imaging SpectroRadiometer camera-by-camera cloud mask over land. Remote Sensing of Environment, MISR Special Issue, 107(1–2), 159–171.
Zong, J. (2002). Multi-image tie-point detection applied to multi-angle imagery from MISR. In Proceedings of the Commission III International Society of Photogrammetry and Remote Sensing Symposium on Photogrammetric Computer Vision, Graz, Austria, p. A-424.
Zong, J., Davies, R., Muller, J. P., and Diner, D. J. (2002). Photogrammetric retrieval of cloud advection and top height from the Multi-angle Imaging Spectro-Radiometer (MISR). Photogrammetric Engineering & Remote Sensing, 68(8), 821–829.