Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2009
  • Online publication date: January 2010

13 - Key role of fuel cells

Summary

Some of the most important benefits of hydrogen can only be realised if hydrogen is used in fuel cells; for instance, the high overall conversion efficiency compared with the internal combustion engine, as well as the reduction of local pollution and noise. Therefore, the market success of fuel cells plays a key role in a hydrogen economy. The following chapter gives a brief introduction to the fuel cell as a technology and describes the various types of fuel cells and their potential uses in mobile, stationary and portable applications. However, preparing for the structural changes in industry is just as important as the technical optimisation of fuel cells, and the remainder of the chapter is devoted to this aspect.

Historical development of fuel cells

Fuel-cell technology first took off more than 170 years ago. In 1839, the Welsh judge, Sir William Grove, presented the first fuel-cell battery, in which he was able to generate an electrical current from hydrogen and oxygen by reversing the process of electrolysis (Grove,1839). The electrodes were platinum and sulphuric acid was used as the electrolyte. Since the invention of the fuel cell, expectations of their broad market introduction have built up into waves several times, but have then crashed each time. One such wave is demonstrated by the speech of Wilhelm Ostwald, the famous electrochemist, to the Bunsengesellschaft in 1894, in which he stated that fuel cells are superior to steam engines and all other kinds of incineration technique (Ostwald, 1894).

References
,DAT-Veedol-Report (2001). Dossier Kfz-Betrieb. Vogel Verlag und Druck GmbH & Co. KG.
Dauensteiner, A. (2001). Der Weg zum Ein-Liter-Auto – Minimierung aller Fahrwiderstände mit neuen Konzepten. Berlin: Springer Verlag.
Demuss, L. (2000). Technologische Veränderungen beim Übergang vom konventionellen Antriebsstrang zur Brennstoffzelle. In Innovationsprozess vom Verbrennungsmotor zur Brennstoffzelle – Chancen und Risiken für die Baden-Württembergische Industrie, ed. Wengel, J. and Schirrmeister, E.Karlsruhe: Fraunhofer ISI.
,DLR (Deutsches Zentrum für Luft- und Raumfahrt) (1997). Energie- und Schadstoffbilanzen von Elektrofahrzeugen mit Batterien und/oder Brennstoffzellen-Antrieben im Vergleich zu Kraftfahrzeugen mit Verbrennungsmotor, ed. Carpetis, C.STB-Bericht, Nr 16, DLR-97 44417 IB 404. Stuttgart: DLR, Institut für Technische Thermodynamik.
Erdmann, G. and Grahl, M. (2000). Competitiveness and economic impacts of fuel cell electric vehicles on the future German market. Proceedings Hyforum 2000, (September 11–15). Munich.
Feige, A. and Goes, F. (1999). Wandel in der Wertschöpfungskette. Automobilproduktion, 4 (1999).
,Freedom Car: Freedom Car Fuel Partnership (2005). Fuel cells Technologies Roadmap. www1.eere.energy.gov/vehiclesandfuels/about/partnerships/freedomcar/fc_goals.html.
Friedrich, J. and Noreikat, K. E. (1996). State of the art and development trends for fuel cells vehicles. Proceedings of the 11th World Hydrogen Energy Conference. Stuttgart, pp. 1757–1766.
Frost, & Sullivan, (2001). Stationary and Portable Fuel Cells – Developments, Markets and Opportunities. Report D226. New York: Frost & Sullivan.
Grahl, M. K. (2000). Ökonomische Systemanalyse zum Antrieb von Personenwagen mit Polymer-Elektrolyt-Brennstoffzellen unter Verwendung neuer Kraftstoffe. Dissertation. Berlin: Technical University Berlin.
Grove, W. R. (1839). On voltaic series and the combination of gases by platinum. Philosophical Magazine and Journal of Science, 14 (86), 127–130.
Gummert, G. and Suttor, W. (2006). Stationäre Brennstoffzellen – Technik und Markt. Heidelberg: C. F. Müller Verlag.
Hasenauer, U., Ragwitz, M., Eichhammer, W.et al. (2005). Energy Scientific & Technological Indicators and References (ESTIR). Lot 1: Fuel Cells and Hydrogen Technology. Final Report for the Directorate General for Research. Karlsruhe: Ecofys (Utrecht, NL), Fraunhofer ISI.
,HFPE (2005). European Hydrogen & Fuel Cell Technology Platform. Strategic Research Agenda. www.HFPeurope.org.
Höhlein, B. and Stolten, D. (1998). Pkw-Antrieb mit Verbrennungsmotor und Brennstoffzellen im Vergleich. 2. Euroforum-Fachtagung Brennstoffzellen. Stuttgart.
Hoogers, G. (2003). Fuel Cell Technology Handbook. Boca Raton, FA: CRC Press.
,IEA (International Energy Agency) (2005). Prospects for Hydrogen and Fuel Cells. IEA Energy Technology Analysis Series. Paris: OECD/IEA.
,IEA (International Energy Agency) (2007). Fuel Cells. IEA Technology Essentials. Paris: OECD/IEA.
Jochem, E., Bradke, H., Cremer, C.et al. (2007). Developing an Assessment Framework to Improve the Efficiency of R&D and the Market Diffusion of Energy Technologies EduaR&D. Report Contract No. 0327 287. Karlsruhe: Fraunhofer ISI.
Jörissen, L. and Garche, U. (2000). Brennstoffzellen für den Fahrzeugantrieb. In Innovationsprozess vom Verbrennungsmotor zur Brennstoffzelle – Chancen und Risiken für die Baden-Württembergische Industrie, ed. Wengel, J. and Schirrmeister, E.Karlsruhe: Fraunhofer ISI.
Kolke, R. (1999). Technische Optionen zur Verminderung der Verkehrsbelastung – Brennstoffzellenfahrzeuge. Berlin: Umweltbundesamt (Federal Environment Agency).
Koschorke, W., Bünger, U., Marscheider-Weidemann, F.et al. (2005). Anforderungen an das Handwerk durch die Innovation Brennstoffzelle. Fraunhofer IRB Verlag.
Krewitt, W., Pehnt, M., Fischedick, M. and Temming, H. V. (eds.) (2004). Brennstoffzellen in der Kraft-Wärme-Kopplung – Ökobilanzen, Szenarien, Marktpotenziale. Berlin: Erich Schmidt Verlag.
Krewitt, W., Nitsch, J., Fischedick, M., Pehnt, M. and Temming, H. (2006). Market perspectives of stationary fuel cells in a sustainable energy supply system – long-term scenarios for Germany. Energy Policy, 34 (2006), 793–803.
Larminie, J. and Dicks, A. (2003). Fuel Cell Systems Explained. West Sussex, England: John Wiley & Sons Ltd.
Logan, B., Hamelers, B., Rozendal, R.et al. (2006). Microbial fuel cells: methodology and technology. Environmental Science and Technology, 40 (17), 5181–5192.
Maruo, K. (1998). Strategic Alliances for the Development of Fuel Cell Vehicles. University of Gothenburg.
Nitsch, J. and Dienhart, H. (1999). Konkurrenzsituation und Marktchancen von Brennstoffzellen-Systemen. Proceedings, Sechstes OTTI-Fachforum ‘Einsatz von Brennstoffzellen’: Leipzig.
Oertel, D. and Fleischer, T. (2003). Fuel Cells. Impact and Consequences of Fuel Cells Technology on Sustainable Development. Technical Report Series EUR 20681 EN. Seville: European Commission, Joint Research Centre (JRC), Institute for Prospective Technological Studies (IPTS).
Olah, G. A., Goeppert, A. and Prakash, G. K. S. (2006). Beyond Oil and Gas: The Methanol Economy. Weinheim: W-VCH.
Ostwald, W. (1894). Die Wissenschaftliche Elektrochemie der Gegenwart und die Technische der Zukunft. Zeitschrift Elektrochemie, 1 (4) (1894), 81–84 and 122–125.
Pehnt, M. (2001). Ganzheitliche Bilanzierung von Brennstoffzellen in der Energie- und Verkehrstechnik. Dissertation. VDI-Verlag, Fortschritt-Berichte Reihe 6, No. 476.
Schirrmeister, E., Marscheider-Weidemann, F. and Wengel, J. (2002). Auswirkungen des Einsatzes der Brennstoffzelle im Kraftfahrzeug auf die Industrie in Nordrhein-Westfalen. Szenarien für die Einführung und spezielle Chance Nordrhein-Westfalens. In co-operation with Agiplan ProjectManagement, Mülheim and Research Centre Jülich. Karlsruhe: Fraunhofer ISI.
Ullmann, (2003). Hydrogen. In Ullmann's Encyclopedia of Industrial Chemistry. 6th edn. vol. 17. Weinheim: WILEY-VCH, pp. 85–240.
Vaillant (2007). www.initiative-brennstoffzelle.de.
,VDMA (2002). Markteinführung von Brennstoffzellen-Produkten: Auswirkungen auf den Maschinen- und Anlagenbau. Frankfurt: VDMA.
Walz, R., Dreher, C., Marscheider-Weidemann, F.et al. (2001). Arbeitswelt in einer nachhaltigen Wirtschaft – Analyse der Wirkungen von Umweltschutzstrategien auf Wirtschaft und Arbeitsstrukturen. Texte, No. 44/01. Berlin: Umweltbundesamt.
Wengel, J. and Schirrmeister, E. (eds.) (2000). Innovationsprozess vom Verbrennungsmotor zur Brennstoffzelle – Chancen und Risiken für die Baden-Württembergische Industrie. Karlsruhe: Fraunhofer ISI.
Winter, C.-, J. (2007). Energy efficiency, no: it's exergy efficiency!International Journal of Hydrogen Energy, 32 (17), 4109–4111.
Wurster, R. (1999). PEM fuel cells in stationary and mobile applications – Pathways to Commercialization. Sixth International Technical Congress - BIEL'99. Biel: Bienal de la Industria Eléctrica y Luminotécnica. CADIEM Cámara Argentina de Industrias Electromecánicas.
Further reading
Hoogers, G. (2003). Fuel Cell Technology Handbook. Boca Raton, FA: CRC Press.
Larminie, J. and Dicks, A. (2003). Fuel Cell Systems Explained. West Sussex, England: John Wiley & Sons Ltd.
Oertel, D. and Fleischer, T. (2003). Fuel Cells. Impact and Consequences of Fuel Cells Technology on Sustainable Development. Technical Report Series EUR 20681 EN. Seville: European Commission, Joint Research Centre (JRC), Institute for Prospective Technological Studies (IPTS).
Pehnt, M. (2001). Ganzheitliche Bilanzierung von Brennstoffzellen in der Energie- und Verkehrstechnik. Dissertation. VDI-Verlag, Fortschrittsbericht Reihe 6, Nr 476.
Pehnt, M. (2002). Energierevolution Brennstoffzelle?Weinheim: WILEY-VCH.
Sundmacher, K., Kienle, A., Pesch, H. J., Berndt, J. F. and Huppmann, G. (2007). Molten Carbonate Fuel Cells. Weinheim: WILEY-VCH.
Winkler, W. (2002). Brennstoffzellenanlagen. Berlin: Springer Verlag.