Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-14T01:23:57.860Z Has data issue: false hasContentIssue false

5 - Surface Gravity Waves

Published online by Cambridge University Press:  06 July 2010

M. S. Howe
Affiliation:
Boston University
Get access

Summary

Introduction

Steady free-streamline flows of water when gravitational forces can be neglected have been discussed in §3.7. Most unsteady free-streamline problems are intractable except by numerical means and generally become more so when gravitational forces are important. However, flows involving gravity where the unsteady motion is a ‘small’ perturbation of a relatively simple mean state occur frequently in the form of surface waves. In the absence of motion the free surface of a liquid in equilibrium under gravity is often ‘horizontal’. A disturbance applied locally that distorts the surface brings into play gravitational restoring forces that cause the disturbance to spread out over the surface in the form of ‘waves’. The waves carry energy away from the source region, propagating parallel to the mean free surface. The agitation produced by a passing wave and the energy flux is generally in the form of a transient disturbance of the fluid particles (around approximately closed particle paths), which are not in themselves transported to any great extent by the wave, and the influence of the wave on fluid at depths exceeding a characteristic wavelength tends to be negligible. In this section these general properties of surface gravity waves are discussed and illustrated by simple examples.

Conditions at the free surface

Consider the simplest case of water whose free surface in equilibrium can be regarded as horizontal and in the plane z = 0 of the coordinate axes (x, y, z), where z increases vertically upwards (Figure 5.1.1).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Surface Gravity Waves
  • M. S. Howe, Boston University
  • Book: Hydrodynamics and Sound
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511754616.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Surface Gravity Waves
  • M. S. Howe, Boston University
  • Book: Hydrodynamics and Sound
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511754616.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Surface Gravity Waves
  • M. S. Howe, Boston University
  • Book: Hydrodynamics and Sound
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511754616.006
Available formats
×