Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-13T10:34:45.057Z Has data issue: false hasContentIssue false

6 - Discussion and perspectives

Published online by Cambridge University Press:  06 August 2009

Douglas E. Crews
Affiliation:
Ohio State University
Get access

Summary

Human senescence

Humankind's existence depends on evolutionary balances in the pace of conception, gestation, growth, development, maturation, and reproductive effort. The confluence of biology, environment, culture, and contingency that sculpted human life history did not fashion senescence. Instead, these interactions set minimum limits on the life span required to progress from conception to the fledging of human offspring (the minimum necessary life span (MNLS)). Somatic systems, from cells to organs, are set to the pace at which the necessary processes of life unfold (Weismann 1889; Finch and Rose 1995; Austad 1997). Successful alleles and genomes have had to predispose for phenotypes (somas) capable of outlasting their MNLS. The existence of a MNLS sets the stage for the cumulative, progressive, irreversible, and degenerative changes that we label senescence in somas designed to complete reproductive effort within a limited span.

Species' survival and reproductive strategies are mixed together in a complex web of evolutionary tradeoffs. Multiple synergistic, counterbalancing, and random alterations in molecular organization and physiological function have occurred over evolutionary time. Natural selection has molded these such that the average individual achieves about average relative fitness in competition with its conspecifics. Natural selection did not, however, directly produce senescence. Senescence results because natural selection lacks the ability to affect changes in allele frequencies once the period of reproductive effort is complete, declining in strength as the maximum reproductive potential (MRP) of organisms falls. Natural selection is based on differential survival and fitness.

Type
Chapter
Information
Human Senescence
Evolutionary and Biocultural Perspectives
, pp. 226 - 250
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×