Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-27T22:14:23.052Z Has data issue: false hasContentIssue false

28 - KSHV gene expression and regulation

from Part II - Basic virology and viral gene effects on host cell functions: gammaherpesviruses

Published online by Cambridge University Press:  24 December 2009

Thomas F. Schulz
Affiliation:
Department of Virology, Hannover Medical School, Germany
Yuan Chang
Affiliation:
Molecular Virology Program, University of Pittsburgh, PA, USA
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Introduction

In this chapter, both in vivo and in vitro KSHV viral gene expression patterns are described. Observations in both systems have been critical for the identification of viral proteins contributing to the pathogenic properties of this virus and for our appreciation of how this virus persists and replicates in the course of naturally occurring infections, the vast majority of which are asymptomatic (see Epidemiology). In contrast to other human herpesviruses, cell-free infection with KSHV in vitro is still inefficient and only a few studies have investigated viral gene expression following de novo infection. However, informative studies using in situ hybridization (ISH), immunohistochemistry (IHC), and various methods of transcript analysis have been carried out with stably infected, primary effusion lymphoma (PEL)-derived cell lines and, to a lesser extent, biopsy samples. Gradually, a picture on viral gene expression patterns and their regulation in different cell types is beginning to emerge.

Viral gene expression patterns in culture

PEL derived cell lines

PEL cell lines remain the most tractable system for examining KSHV viral gene expression. The vast majority of cells are infected latently and express a restricted repertoire of genes, while a small percentage (this varies from cell line to cell line, usually in the order of 1%–5%) of cells spontaneously switch into the lytic replication cycle. Lytic reactivation can be enhanced (up to 20% in some cell lines) in this system by chemical treatment with butyrate or phorbol esters.

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 490 - 513
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AuCoin, D. P. and Pari, G. S. (2002). The human herpesvirus-8 (Kaposi's sarcoma-associated herpesvirus) ORF 40/41 region encodes two distinct transcripts. J. Gen. Virol., 83, 189–193.CrossRefGoogle ScholarPubMed
Bechtel, J. T., Liang, Y., Hvidding, J., and Ganem, D. (2003). Host range of Kaposi's sarcoma-associated herpesvirus in cultured cells. J. Virol., 77, 6474–6481.CrossRefGoogle ScholarPubMed
Bello, L. J., Davison, A. J., Glenn, M. A.et al. (1999). The human herpesvirus-8 ORF 57 gene and its properties. . Gen. Virol., 80 (12), 3207–3215.CrossRefGoogle ScholarPubMed
Bieleski, L. and Talbot, S. J. (2001). Kaposi's sarcoma-associated herpesvirus vCYClin open reading frame contains an internal ribosome entry site. J. Virol., 75, 1864–1869.CrossRefGoogle ScholarPubMed
Birkmann, A., Mahr, K., Ensser, A., Yaguboglu, S., Titgemeyer, F., Fleckenstein, B., and Neipel, F. (2001). Cell surface heparan sulfate is a receptor for human herpesvirus 8 and interacts with envelope glycoprotein K8.1. J. Virol., 75, 11583–11593.CrossRefGoogle ScholarPubMed
Bowser, B. S., DeWire, S. M., and Damania, B. (2002). Transcriptional regulation of the K1 gene product of Kaposi's sarcoma-associated herpesvirus. J. Virol., 76, 12574–12583.CrossRefGoogle ScholarPubMed
Brinkmann, M. M., Glenn, M., Rainbow, L., Kieser, A., Henke-Gendo, C., and Schulz, T. F. (2003). Activation of mitogen-activated protein kinase and NF-kappaB pathways by a Kaposi's sarcoma-associated herpesvirus K15 membrane protein. J. Virol., 77, 9346–9358.CrossRefGoogle ScholarPubMed
Cai, S., Lu, S., Zhang, Z., Gonzalez, C. M., Damania, B., Cullen, B. R. (2005). Kaposi's sarcoma-associated herpesvirus expresses an array of viral micrRNAs in latently infected cells. Proc. Natl. Acad. Sci. USA, 102, 5570–5575.CrossRefGoogle ScholarPubMed
Cai, X. and Cullen, B. R. (2006). Transcriptional origin of Kaposi's sarcoma-associated herpesvirus micrRNAs. J. Virol., 80, 2234–2242.CrossRefGoogle Scholar
Cai, X., Lu, S., Zhang, Z., Gonzalez, C. M., Damania, B., and Cullen, B. R. (2005). Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc. Natl Acad. Sci. USA, 102, 5570–5575.CrossRefGoogle ScholarPubMed
Canham, M. and Talbot, S. J. (2004). A naturally occurring c-terminal truncated isoform of the latent nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus (KSHV) does not associate with viral episomal DNA. J. Gen. Virol., 85, in press.CrossRefGoogle Scholar
Cannon, J. S., Nicholas, J., Orenstein, J. M.et al. (1999). Heterogeneity of viral IL-6 expression in HHV-8-associated diseases. J. Infect. Dis., 180, 824–828.CrossRefGoogle ScholarPubMed
Chandran, B., Bloomer, C., Chan, S. R., Zhu, L., Goldstein, E., and Horvat, R. (1998). Human herpesvirus-8 ORF K8.1 gene encodes immunogenic glycoproteins generated by spliced transcripts. Virology, 249, 140–149.CrossRefGoogle ScholarPubMed
Chang, H., Dittmer, D. P., Chul, S-Y., Hong, Y., and Jung, J. U. (2006). Role of notch signal transduction in Kaposi's sarcoma-associated herpesvirus gene expression. J. Virol., 79, 14371-14382.CrossRefGoogle Scholar
Chang, J., Renne, R., Dittmer, D.et al. (2000). Inflammatory cytokenes and the reactivation of Kaposi's sarcoma-associated herpesvirus lytic replication. Virology, 266, 17–25.CrossRefGoogle ScholarPubMed
Chang, P. J., Shedd, D., Gradoville, L.et al. (2002). Open reading frame 50 protein of Kaposi's sarcoma-associated herpesvirus directly activates the viral PAN and K12 genes by binding to related response elements. J. Virol., 76, 3168–3178.CrossRefGoogle ScholarPubMed
Chatterjee, M., Osborne, J., Bestetti, G., Chang, Y., and Moore, P. S. (2002). Viral IL-6-induced cell proliferation and immune evasion of interferon activity. Science, 298, 1432–1435.CrossRefGoogle ScholarPubMed
Chen, L. and Lagunoff, M. (2005). Establishment and maintenance of Kaposi's sarcoma-associated herpesvirus latency in B cells. J. Virol., 79, 14383–14391.CrossRefGoogle ScholarPubMed
Chen, J., Ueda, K., Sakakibara, S., Okuno, T., and Yamanishi, K. (2000). Transcriptional regulation of the Kaposi's sarcoma-associated herpesvirus viral interferon regulatory factor gene. J. Virol., 74, 8623–8634.CrossRefGoogle ScholarPubMed
Chen, J., Ueda, K., Sakakibara, S.et al. (2001). Activation of latent Kaposi's sarcoma-associated herpesvirus by demethylation of the promoter of the lytic transactivator. Proc. Natl Acad. Sci. USA, 98(7), 4119–4124.CrossRefGoogle ScholarPubMed
Chiou, C. J., Poole, L. J., Kim, P. S.et al. (2002). Patterns of gene expression and a transactivation function exhibited by the vGCR (ORF 74) chemokine receptor protein of Kaposi's sarcoma-associated herpesvirus. J. Virol., 76, 3421–3439.CrossRefGoogle Scholar
Choi, J. K., Lee, B. S., Shim, S. N.et al. (2000). Identifications of the novel K15 gene at the rightmost end of the Kaposi's sarcoma-associated herpesvirus genome. J. Virol., 74, 436–446.CrossRefGoogle Scholar
Ciufo, D. M., Cannon, J. S., Poole, L. J.et al. (2001). Spindle cell conversion by Kaposi's sarcoma-associated herpesvirus: formation of colonies and plaques with mixed lytic and latent gene expression in infected primary dermal microvascular endothelial cell cultures. J. Virol., 75, 5614–5626.CrossRefGoogle ScholarPubMed
Cook, P. M., Whitby, D., Calabro, M. L.et al. (1999). Variability and evolution of Kaposi's sarcoma-associated herpesvirus in Europe and Africa. International Collaborative Group. AIDS, 13, 1165–1176.CrossRefGoogle ScholarPubMed
Coscoy, L. and Ganem, D. (2000). Kaposi's sarcoma-associated herpesvirus encodes two proteins that block cell surface display of MHC class I chains by enhancing their endocytosis. Proc. Natl Acad. Sci. USA, 97, 8051–8056.CrossRefGoogle ScholarPubMed
Cunningham, C., Barnard, S., Blackbourn, D. J., and Davison, A. J. (2003). Transcription mapping of human herpesvirus 8 genes encoding viral interferon regulatory factors. J. Gen. Virol., 84, 1471–1483.CrossRefGoogle ScholarPubMed
Davis, D. A., Rinderknecht, A. S., Zoeteweij, J. P.et al. (2001). Hypoxia induces lytic replication of Kaposi sarcoma-associated herpesvirus. Blood, 97, 3244–3250.CrossRefGoogle ScholarPubMed
Deng, H., Young, A., and Sun, R. (2000). Auto-activation of the rta gene of human herpesvirus-8/Kaposi's sarcoma-associated herpesvirus. J. Gen. Virol., 81, 3043–3048.CrossRefGoogle ScholarPubMed
Deng, H., Chu, J. T., Rettig, M. B., Martinez-Maza, O., and Sun, R. (2002). Rta of the human herpesvirus 8/Kaposi sarcoma-associated herpesvirus up-regulates human interleukin-6 gene expression. Blood, 100, 1919–1921.CrossRefGoogle ScholarPubMed
Dezube, B. J., Zambela, M., Sage, D. R., Wang, J. F., and Fingeroth, J. D. (2002). Characterization of Kaposi sarcoma-associated herpesvirus/human herpesvirus-8 infection of human vascular endothelial cells: early events. Blood, 100, 888–896.CrossRefGoogle ScholarPubMed
Dittmer, D. P. (2003). Transcription profile of Kaposi's sarcoma-associated herpesvirus in primary Kaposi's sarcoma lesions as determined by real-time PCR arrays. Cancer Res., 63, 2010–2015.Google ScholarPubMed
Dittmer, D., Lagunoff, M., Renne, R.et al. (1998). A cluster of latently expressed genes in Kaposi's sarcoma-associated herpesvirus. J. Virol., 72, 8309–8315.Google ScholarPubMed
Dupin, N., Fisher, C., Kellam, P.et al. (1999). Distribution of human herpesvirus-8 latently infected cells in Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma. Proc. Natl Acad. Sci. USA, 96, 4546–4551.CrossRefGoogle ScholarPubMed
Ensoli, B., Sturzl, M., and Monini, P. (2001). Reactivation and role of HHV-8 in Kaposi's sarcoma initiation. Adv. Cancer Res., 81, 161–200.CrossRefGoogle ScholarPubMed
Fakhari, F. D. and Dittmer, D. P. (2002). Charting latency transcripts in Kaposi's sarcoma-associated herpesvirus by whole-genome real-time quantitative PCR. J. Virol., 76, 6213–6223.CrossRefGoogle ScholarPubMed
Gao, S. J., Boshoff, C., Jayachandra, S., Weiss, R. A., Chang, Y., and Moore, P. S. (1997). KSHV ORF K9 (vIRF) is an oncogene which inhibits the interferon signaling pathway. Oncogene, 15, 1979–1985.CrossRefGoogle ScholarPubMed
Gao, S. J., Deng, J. H., and Zhou, F. C. (2003). Productive lytic replication of a recombinant Kaposi's sarcoma-associated herpesvirus in efficient primary infection of primary human endothelial cells. J. Virol., 77, 9738–9749.CrossRefGoogle ScholarPubMed
Glenn, M., Rainbow, L., Aurade, F., Davison, A., and Schulz, T. F. (1999). Identification of a spliced gene from Kaposi's sarcoma-associated herpesvirus encoding a protein with similarities to latent membrane proteins 1 and 2A of Epstein–Barr virus. J. Virol., 73, 6953–6963.Google ScholarPubMed
Gradoville, L., Geralach, J., Grogan, E.et al. (2000). Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) encodes a homologue of the Epstein–Barr virus bZip protein EB1. J. Gen. Virol., 80(3), 557–561.Google Scholar
Gruffat, H., Portes-Sentis, S., Sergeant, A., and Manet, E. (1999). Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) encodes a homologue of the Epstein–Barr virus bZip protein EB1. J. Gen. Virol., 80(3), 557–561.CrossRefGoogle ScholarPubMed
Grundhoff, A. and Ganem, D. (2001). Mechanisms governing expression of the v-FLIP gene of Kaposi's sarcoma-associated herpesvirus. J. Virol., 75, 1857–1863.CrossRefGoogle ScholarPubMed
Grundhoff, A., Sullivan, C. S., and Ganem, D. (2006). A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA, 12, 733–750.CrossRefGoogle ScholarPubMed
Haque, M., Chen, J., Ueda, K.et al. (2000). Identification and analysis of the K5 gene of Kaposi's sarcomaassociated herpesvirus. J. Virol., 74, 2867–2875.CrossRefGoogle Scholar
Haque, M., Ueda, K., Nakano, K.et al. (2001). Major histocompatability complex class I molecules are down-regulated at the cell surface by the K5 protein encoded by the Kaposi's sarcoma-associated herpesvirus human herpesvirus-8. J. Gen. Virol., 82, 1175–1180.CrossRefGoogle Scholar
Haque, M., Davis, D. A., Wang, V., Widmer, I., and Yarchoan, R. (2003). Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) contains hypoxia response elements: relevance to lytic induction by hypoxia. J. Virol., 77, 6761–6768.CrossRefGoogle ScholarPubMed
Harrington, W. Jr., Sieczkowski, L., Sosa, C.et al. (1997). Activation of HHV-8 by HIV-1 tat. Lancet, 349, 774–775.Google ScholarPubMed
Huang, L. M., Chao, M. F., Chen, M. Y.et al. (2001). Reciprocal regulatory interaction between human herpesvirus 8 and human immunodeficiency virus type 1. J. Biol. Chem., 276, 13427–13432.CrossRefGoogle ScholarPubMed
Inagi, R., Okuno, T., Ito, M.et al. (1999). Identification and characterization of human herpesvirus 8 open reading frame K9 viral interferon regulatory factor by a monoclonal antibody. J. Hum. Virol., 2, 63–71.Google ScholarPubMed
Ishido, S., Choi, J. K., Lee, B. S.et al. (2000). Inhibition of natural killer cell-mediated cytotoxicity by Kaposi's sarcoma-associated herpesvirus K5 protein. Immunity, 13, 365–374.CrossRefGoogle ScholarPubMed
Izumiya, Y., Lin, S. F., Ellison, T. J.et al. (2003a). Cell cycle regulation by Kaposi's sarcoma-associated herpesvirus K-bZIP: direct interaction with cyclin-CDK2 and induction of G1 growth arrest. J. Virol., 77, 9652–9661.CrossRefGoogle Scholar
Izumiya, Y., Lin, S. F., Ellison, T.et al. (2003b). Kaposi's sarcoma-associated herpesvirus K-bZIP is a coregulator of K-Rta: physical association and promoterdependent transcriptional repression. J. Virol., 77, 1441–1451.CrossRefGoogle Scholar
Jenner, R. G., Alba, M. M., Boshoff, C., and Kellam, P. (2001). Kaposi's sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays. J. Virol., 75, 891–902.CrossRefGoogle ScholarPubMed
Jeong, J., Papin, J., and Dittmer, D. (2001). Differential regulation of the overlapping Kaposi's sarcomaassociated herpesvirus vGPCR (ORF74) and LANA (ORF73) promoters. J. Virol., 75, 1798–1807.CrossRefGoogle Scholar
Jeong, J. H., Orvis, J., Kim, J. W.et al. (2004). Regulation and autoregulation of the promoter for the latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus. J. Biol. Chem., 279, 16822–16831.CrossRefGoogle ScholarPubMed
Johnson, A. S., Maronian, N., and Vieira, J. (2005). Activation of Kaposi's sarcoma-associated herpesvirus lytic gene expression during epithelial differentiation. J. Virol., 79, 13769–13777.CrossRefGoogle ScholarPubMed
Katano, H., Sato, Y., Kurata, T., Mori, S., and Sata, T. (1999a). High expression of HHV-8-encoded ORF73 protein in spindle-shaped cells of Kaposi's sarcoma. Am. J. Pathol., 155, 47–52.CrossRefGoogle Scholar
Katano, H., Sata, T., Suda, T.et al. (1999b). Expression and antigenicity of human herpesvirus 8 encoded ORF59 protein in AIDS-associated Kaposi's sarcoma. J. Med. Virol., 59, 346–355.3.0.CO;2-4>CrossRefGoogle Scholar
Katano, H., Sato, Y., Kurata, T., Mori, S., and Sata, T. (2000). Expression and localization of human herpesvirus 8-encoded proteins in primary effusion lymphoma, Kaposi's sarcoma, and multicentric Castleman's disease. Virology, 269, 335–344.CrossRefGoogle ScholarPubMed
Katano, H., Sato, Y., Itoh, H., and Sata, T. (2001). Expression of human herpesvirus 8 (HHV-8)-encoded immediate early protein, open reading frame 50, in HHV-8-associated diseases. J. Hum. Virol., 4, 96–102.Google ScholarPubMed
Kirshner, J. R., Staskus, K., Haase, A., Lagunoff, M., and Ganem, D. (1999). Expression of the open reading frame 74 (G-protein-coupled receptor) gene of Kaposi's sarcoma (KS)-associated herpesvirus: implications for KS pathogenesis. J. Virol., 73, 6006–6014.Google ScholarPubMed
Kirshner, J. R., Lukac, D. M., Chang, J., and Ganem, D. (2000). Kaposi's sarcoma-associated herpesvirus open reading frame 57 encodes a posttranscriptional regulator with multiple distinct activities. J. Virol., 74, 3586–3597.CrossRefGoogle ScholarPubMed
Kliche, S., Nagel, W., Kremmer, E.et al. (2001). Signaling by human herpesvirus 8 kaposin A through direct membrane recruitment of cytohesin-1. Mol. Cell, 7, 833–843.CrossRefGoogle ScholarPubMed
Krishnan, H. H., Naranatt, P. P., Smith, M. S.et al. (2004). Concurrent expression of latent and a limited number of lytic genes with immune modulation and antiapoptotic function by Kaposi's sarcoma-associated herpesvirus early during infection of primary endothelial and fibroblast cells and subsequent decline of lytic gene expression. J. Virol., 78, 2601–2620.CrossRefGoogle Scholar
Lagunoff, M. and Ganem, D. (1997). The structure and coding organization of the genomic termini of Kaposi's sarcoma-associated herpesvirus. Virology, 236, 147–154.CrossRefGoogle ScholarPubMed
Lagunoff, M., Majeti, R., Weiss, A.et al. (1999). Deregulated signal transduction by the K1 gene product of Kaposi's sarcoma-associated herpesvirus. Proc. Natl Acad. Sci. USA, 96, 5704–5709.CrossRefGoogle ScholarPubMed
Lagunoff, M., Lukac, D. M., and Ganem, D. (2001). Immunoreceptor tyrosine-based activation motifdependent signaling by Kaposi's sarcoma-associated herpesvirus K1 protein: effects on lytic viral replication. J. Virol., 75, 5891–5898.CrossRefGoogle ScholarPubMed
Lagunoff, M., Bechtel, J., Venetsanakos, E.et al. (2002). De novo infection and serial transmission of Kaposi's sarcoma-associated herpesvirus in cultured endothelial cells. J. Virol., 76, 2440–2448.CrossRefGoogle ScholarPubMed
Lee, B. S., Alvarez, X., Ishido, S., Lackner, A. A., and Jung, J. U. (2000). Inhibition of intracellular transport of B cell antigen receptor complexes by Kaposi's sarcoma-associated herpesvirus K1. J. Exp. Med., 192, 11–21.CrossRefGoogle ScholarPubMed
Lee, B. S., Paulose-Murphy, M., Chung, Y. H., Connlole, M., Zeichner, S., and Jung, J. U. (2002). Suppression of tetradecanoyl phorbol acetate-induced lytic reactivation of Kaposi's sarcoma-associated herpesvirus by K1 signal transduction. J. Virol., 76, 12185–12199.CrossRefGoogle ScholarPubMed
Lee, B. S., Connole, M., Tang, Z., Harris, N. L., and Jung, J. U. (2003). Structural analysis of the Kaposi's sarcoma-associated herpesvirus K1 protein. J. Virol., 77, 8072–8086.CrossRefGoogle ScholarPubMed
Lee, H., Guo, J., Li, M.et al. (1998a). Identification of an immunoreceptor tyrosine-based activation motif of K1 transforming protein of Kaposi's sarcomaassociated herpesvirus. Mol. Cell Biol., 18, 5219–5228.CrossRefGoogle Scholar
Lee, H., Veazey, R., Williams, K.et al. (1998b). Deregulation of cell growth by the K1 gene of Kaposi's sarcomaassociated herpesvirus. Nat. Med., 4, 435–440.CrossRefGoogle Scholar
Li, H., Komatsu, T., Dezube, B. J., and Kaye, K. M. (2002). The Kaposi's sarcoma-associated herpesvirus K12 transcript from a primary effusion lymphoma contains complex repeat elements, is spliced, and initiates from a novel promoter. J. Virol., 76, 11880–11888.CrossRefGoogle ScholarPubMed
Liang, Y. and Ganem, D. (2003). Lytic but not latent infection by Kaposi's sarcoma-associated herpesvirus requires host CSL protein, the mediator of Notch signaling. Proc. Natl Acad. Sci. USA, 100, 8490–8495.CrossRefGoogle Scholar
Liang, Y. and Ganem, D. (2004). RBP-J (CSL) is essential for activation of the K14/vGPCR promoter of Kaposi's sarcoma-associated herpesvirus by the lytic switch protein RTA. J. Virol., 78, 6818–6826.CrossRefGoogle ScholarPubMed
Liang, Y., Chang, J., Lynch, S. J., Lukac, D. M., and Ganem, D. (2002). The lytic switch protein of KSHV activates gene expression via functional interaction with RBP-Jkappa (CSL), the target of the Notch signaling pathway. Genes Dev., 16, 1977–1989.CrossRefGoogle Scholar
Lin, S. F., Robinson, D. R., Miller, G., and Kung, H. J. (1999). Kaposi's sarcoma-associated herpesvirus encodes a bZIP protein with homology to BZLF1 of Epstein–Barr virus. J. Virol., 73, 1909–1917.Google ScholarPubMed
Low, W., Harries, M., Ye, H., Du, M. Q., Boshoff, C., and Collins, M. (2001). Internal ribosome entry site regulates translation of Kaposi's sarcoma-associated herpesvirus FLICE inhibitory protein. J. Virol., 75, 2938–2945.CrossRefGoogle ScholarPubMed
Lubyova, B. and Pitha, P. M. (2000). Characterization of a novel human herpesvirus 8-encoded protein, vIRF-3, that shows homology to viral and cellular interferon regulatory factors. J. Virol., 74, 8194–8201.CrossRefGoogle ScholarPubMed
Lukac, D. M., Kirshner, J. R., and Ganem, D. (1999). Transcriptional activation by the product of open reading frame 50 of Kaposi's sarcoma-associated herpesvirus is required for lytic viral reactivation in B cells. J. Virol., 73, 9348–9361.Google ScholarPubMed
Matsumara, S., Fujita, Y., Gomez, E., Tanese, N., and Wilson, A. C. (2005). Activation of the Kaposi's sarcoma-associated herpesvirus major latency locus by the lytic switch protein RTA (ORF50). J. Virol., 79, 8493–8505.CrossRefGoogle Scholar
Mercader, M., Taddeo, B., Panella, J. R., Chandran, B., Nickoloff, B. J., and Foreman, K. E. (2000). Induction of HHV-8 lytic cycle replication by inflammatory cytokines produced by HIV-1-infected T cells. Am. J. Pathol., 156, 1961–1971.CrossRefGoogle ScholarPubMed
Monini, P., Colombini, S., Sturzl, M.et al. (1999). Reactivation and persistence of human herpesvirus-8 infection in B cells and monocytes by Th-1 cytokines increased in Kaposi's sarcoma. Blood, 93, 4044–4058.Google Scholar
Moses, A. V., Fish, K. N., Ruhl, R.et al. (1999). Long-term infection and transformation of dermal microvascular endothelial cells by human herpesvirus 8. J. Virol., 73, 6892–6902.Google ScholarPubMed
Mullick, J., Bernet, J., Singh, A. K., Lambris, J. D., and Sahu, A. (2003). Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) open reading frame 4 protein (kaposica) is a functional homolog of complement control proteins. J. Virol., 77, 3878–3881.CrossRefGoogle ScholarPubMed
Nador, R. G., Milligan, L. L., Flore, O.et al. (2001). Expression of Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor monocistronic and bicistronic transcripts in primary effusion lymphomas. Virology, 287, 62–70.CrossRefGoogle ScholarPubMed
Nakamura, H., Muller, J. T., Chandrasekhar, S.et al. (2001). Multimodality therapy with a replication-conditional herpes simplex vius mutant that expresses yeast cytosine deaminase for intranumoral conversion of 5-fluorocytosine to 5-fluorouracil. Cancer Res., 61, 5447–5452.Google Scholar
Nakamura, H., Lu, M., Gwack, Y., Souvlis, J., Zeichner, S. L., and Jung, J. U. (2003). Global changes in Kaposi's sarcoma-associated virus gene expression patterns following expression of a tetracycline-inducible Rta transactivator. J. Virol., 77, 4205–4220.CrossRefGoogle ScholarPubMed
Naranatt, P. P., Krishnan, H. H., Svojanovsky, S. R., Bloomer, C., Mathur, S., and Chandran, B. (2004). Host gene induction and transcriptional reprogramming in Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8)-infected endothelial, fibroblast, and B cells: insights into modulation events early during infection. Cancer Res., 64, 72–84.CrossRefGoogle Scholar
Neipel, F., Albrecht, J. C., and Fleckenstein, B. (1997). Cell-homologous genes in the Kaposi's sarcomaassociated rhadinovirus human herpesvirus 8: determinants of its pathogenicity?J. Virol., 71, 4187–4192.Google Scholar
O'Hare, P. (1993). The virion transactivator of herpes simplex virus. Semin. Virol., 4, 145–155.CrossRefGoogle Scholar
Parravicini, C., Chandran, B., Corbellino, M.et al. (2000). Differential viral protein expression in Kaposi's sarcoma-associated herpesvirus-infected diseases: Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. Am. J. Pathol., 156, 743–749.CrossRefGoogle ScholarPubMed
Paulose-Murphy, M., Ha, N. K., Xiang, C.et al. (2001). Transcription program of human herpesvirus 8 (kaposi's sarcoma-associated herpesvirus). J. Virol., 75, 4843–4853.CrossRefGoogle Scholar
Pearce, M., Matsumara, S., and Wilson, A. C. (2005). Transcripts encoding K12, v-FLIP, v-cyclin, and the microRNA cluster of Kaposi's sarcoma-associated herpesvirus originate from a common promoter. J. Virol., 79, 14457–14464.CrossRefGoogle ScholarPubMed
Pfeffer, S., Sewer, A., Lagos-Quintana, M.et al. (2005). Identification of microRNAs of the herpesvirus family. Nature Methods, 2, 269–276.CrossRefGoogle ScholarPubMed
Polson, A. G., Huang, L., Lukac, D. M.et al. (2001). Kaposi's sarcoma-associated herpesvirus K-bZIP protein is phosphorylated by cyclin dependent kinases. J. Virol., 75, 3175–3184.CrossRefGoogle ScholarPubMed
Poole, L. J., Zong, J. C., Ciufo, D. M.et al. (1999). Comparison of genetic variability at multiple loci across the genomes of the major subtypes of Kaposi's sarcoma-associated herpesvirus reveals evidence for recombination and for two distinct types of open reading frame K15 alleles at the right-hand end. J. Virol., 73, 6646–6660.Google ScholarPubMed
Raab, M. S., Albrecht, J. C., Birkmann, A.et al. (1998). The immunogenic glycoprotein gp35–37 of human herpesvirus 8 is encoded by open reading frame K8.1. J. Virol., 72, 6725–6731.Google ScholarPubMed
Rainbow, L., Platt, G. M., and Simpson, G. R. (1997). The 222- to 234-kilodalton latent nuclear protein (LNA) of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) is encoded by ORF73 and is a component of the latency-associated nuclear antigen. J. Virol., 71, 5915–5921.Google ScholarPubMed
Reed, J. A., Nador, R. G., Spaulding, D., Tani, Y., Cesarman, E., and Knowles, D. M. (1998). Demonstration of Kaposi's sarcoma-associated herpes virus cyclin D homolog in cutaneous Kaposi's sarcoma by colorimetric in situ hybridization using a catalyzed signal amplification system. Blood, 91, 3825–3832.Google ScholarPubMed
Renne, R., Blackbourn, D., Whitby, D., Levy, J., and Ganem, D. (1998). Limited transmission of Kaposi's sarcoma-associated herpesvirus in cultured cells. J. Virol., 72, 5182–5188.Google ScholarPubMed
Rimessi, P., Bonaccorsi, A., Sturzl, M.et al. (2001). Transcription pattern of human herpesvirus8 open reading frame K3 in primary effusion lymphoma and Kaposi's sarcoma. J. Virol., 75, 7161–7174.CrossRefGoogle Scholar
Rivas, C., Thlick, A. E., Parravicini, C., Moore, P. S., and Chang, Y. (2001). Kaposi's sarcoma-associated herpesvirus LANA2 is a B-cell-specific latent viral protein that inhibits p53. J. Virol., 75, 429–438.CrossRefGoogle ScholarPubMed
Roizman, B. and Knipe, D. M. (2001). Herpes Simplex viruses and their replication, p. 2399–2459. In Knipe, D. M. and Howley, P., Fields Virology, ed. Lippincott Williams & Wilkins, Philadelphia.
Russo, J. J., Bohenzky, R. A., Chien, M. C.et al. (1996). Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc. Natl Acad. Sci. USA, 93, 14862–14867.CrossRefGoogle Scholar
Sachsenberg-Struder, E. M., Dobrynski, N., Sheldon, J.et al. (1999). Human herpesvirus S seropositive patient with skin and graft Kaposi's sarcoma after lung transplantation. J. Am. Acad. Dermatol., 40, 308–311.Google Scholar
Sadler, R., Wu, L., Forghani, B.et al. (1999). A complex translational program generates multiple novel proteins from the latently expressed kaposin (K12) locus of Kaposi's sarcoma-associated herpesvirus. J. Virol., 73, 5722–5730.Google ScholarPubMed
Sakakibara, S., Ueda, K., Chen, J., Okuno, T., and Yamanishi, K. (2001). Octamer-binding sequence is a key element for the autoregulation of Kaposi's sarcoma-associated herpesvirus ORF50/Lyta gene expression. J. Virol., 75, 6894–6900.CrossRefGoogle ScholarPubMed
Samols, M. A., Hu, J., Skalsky, R. L., and Renne, R. (2005). Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi's sarcoma-associated herpesvirus. J. Virol., 79, 9301–9305.CrossRefGoogle ScholarPubMed
Sarid, R., Flore, O., Bohenzky, R. A., Chang, Y., and Moore, P. S. (1998). Transcription mapping of the Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) genome in a body cavity-based lymphoma cell line (BC-1). J. Virol., 72, 1005–1012.Google Scholar
Sarid, R., Wiezorek, J. S., Moore, P. S., and Chang, Y. (1999). Characterization and cell cycle regulation of the major Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) latent genes and their promoter. J. Virol., 73, 1438–1446.Google ScholarPubMed
Saveliev, A., Zhu, F., and Yuan, Y. (2002). Transcription mapping and expression patterns of genes in the major immediate-early region of Kaposi's sarcoma-associated herpesvirus. Virology, 299, 301–314.CrossRefGoogle ScholarPubMed
Seaman, W. T., Ye, D., Wang, R. X., Hale, E. E., Weisse, M., and Quinlivan, E. B. (1999). Gene expression from the ORF50/K8 region of Kaposi's sarcoma-associated herpesvirus. Virology, 263, 436–449.CrossRefGoogle ScholarPubMed
Sharp, T. V., Wang, H. W., Koumi, A.et al. (2002). K15 protein of Kaposi's sarcoma-associated herpesvirus. Virology, 263, 436–449.Google Scholar
Sinclair, A. J. (2003). bZIP proteins of human gammaherpesviruses. J. Gen. Virol., 84, 1941–1949.CrossRefGoogle ScholarPubMed
Song, M. J., Li, X., Brown, H. J., and Sun, R. (2002). Characterization of interactions between RTA and the promoter of polyadenylated nuclear RNA in Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8. J. Virol., 76, 5000–5013.CrossRefGoogle ScholarPubMed
Spiller, O. B., Blackbourn, D. J., Mark, L., Proctor, D. G., and Blom, A. M. (2003). Functional activity of the complement regulator encoded by Kaposi's sarcoma-associated herpesvirus. J. Biol. Chem., 278, 9283–9289.CrossRefGoogle ScholarPubMed
Staskus, K. A., Zhong, W., Gebhard, K.et al. (1997). Kaposi's sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells. J. Virol., 71, 715–719.Google ScholarPubMed
Stürzl, M., Blasig, C., Schreier, A.et al. (1997). Expression of HHV-8 latency-associated T0.7 RNA in spindle cells and endothelial cells of AIDS-associated, classical and African Kaposi's sarcoma. Int. J. Cancer, 72, 68–71.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Stürzl, M., Hohenadl, C., Zietz, C.et al. (1999). Expression of K13/v-FLIP gene of human herpesvirus 8 and apoptosis in Kaposi's sarcoma spindle cells. J. Natl Cancer Inst., 91, 1725–1733.CrossRefGoogle ScholarPubMed
Smuda, C., Bogner, E., and Radsak, K., (1997). The human cytomegalovirus glycoprotein B gene (ORF UL55) is expressed early in the infectious cycle. J. Gen. Virol., 78 (8), 1981–1992.CrossRefGoogle ScholarPubMed
Sun, R., Lin, S. F., Gradoville, L., Yuan, Y., Zhu, F., and Miller, G. (1998). A viral gene that activates lytic cycle expression of Kaposi's sarcoma-associated herpesvirus. Proc. Natl Acad. Sci. USA, 95, 10866–10871.CrossRefGoogle ScholarPubMed
Sun, R., Lin, S. F., Staskus, K.et al. (1999). Kinetics of Kaposi's sarcoma-associated herpesvirus gene expression. J. Virol., 73, 2232–2242.Google ScholarPubMed
Talbot, S. J., Weiss, R. A., Kellam, P., and Boshoff, C. (1999). Transcriptional analysis of human herpesvirus-8 open reading frames 71, 72, 73, K14, and 74 in a primary effusion lymphoma cell line. Virology, 257, 84–94.CrossRefGoogle Scholar
Taylor, J. L. R., Bennett, H. N., Snyder, B. A., Moore, P. S., and Chang, Y. (2005). Identification of novel transcripts in Kaposi's sarcoma-associated herpesvirus (KSHV) genome. J. Virol., 79, 15099–15106.CrossRefGoogle Scholar
Varthakavi, V., Smith, R. M., Deng, H., Sun, R., and Spearman, P. (2002). Human immunodeficiency virus type-1 activates lytic cycle replication of Kaposi's sarcoma-associated herpesvirus through induction of KSHV Rta. Virology, 297, 270–280.CrossRefGoogle ScholarPubMed
Vieira, J., Huang, M. L., Koelle, D. M., and Corey, L. (1997). Transmissible Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) in saliva of men with a history of Kaposi's sarcoma. J. Virol., 71, 7083–7087.Google ScholarPubMed
Vieira, J., O'Hearn, P., Kimball, L., Chandran, B., and Corey, L. (2001). Activation of Kaposi's sarcomaassociated herpesvirus (human herpesvirus 8) lytic replication by human cytomegalovirus. J. Virol., 75, 1378–1386.CrossRefGoogle Scholar
Viejo-Borbolla, A., Kati, E., Shelodon, J. A.et al. (2003). A domain in the C-terminal region of latency-associated nuclear antigen 1 of Kaposi's sarcoma-associated herpesvirus affects transcriptional activation and binding to nuclear heterochromatin. J. Virol., 77, 7093–7100.CrossRefGoogle ScholarPubMed
Wang, F. Z., Akula, S. M., Pramod, N. P., Zeng, L., and Chandran, B. (2001a). Human herpesvirus 8 envelope glycoprotein K8.1A interaction with the target cells involves heparan sulfate. J. Virol., 75, 7517–7527.CrossRefGoogle Scholar
Wang, S. E., Wu, F. Y., Fujimuro, M., Zong, J., Hayward, S. D., and Hayward, G. S. (2003a). Role of CCAAT/enhancer-binding protein alpha (C/EBPalpha) in activation of the Kaposi's sarcoma-associated herpesvirus (KSHV) lytic-cycle replication-associated protein (RAP) promoter in cooperation with the KSHV replication and transcription activator (RTA) and RAP. J. Virol., 77, 600–623.CrossRefGoogle Scholar
Wang, S. E., Wu, F. Y., Yu, Y., and Hayward, G. S. (2003b). CCAAT/enhancer-binding protein-alpha is induced during the early stages of Kaposi's sarcoma-associated herpesvirus (KSHV) lytic cycle reactivationand together with the KSHV replication and transcription activator (RTA) cooperatively stimulates the viral RTA, MTA, and PAN promoters. J. Virol., 77, 9590–9612.CrossRefGoogle Scholar
Wang, X. P., Zhang, Y. J., Deng, J. H.et al. (2001b). Characterization of the promoter region of the viral interferon regulatory factor encoded by Kaposi's sarcoma-associated herpesvirus. Oncogene, 20, 523–530.Google Scholar
Wang, Y.Li, H., Chan, M. Y.et al. (2003c). Kaposi's sarcoma-associated herpesvirus Ori-Lyt-dependent DNA replication: cis-acting requirements for replication and Ori-Lyt-associated RNA transcription. J. Virol., 78, 8615–8629.CrossRefGoogle Scholar
Wirth, U. V., Gunkel, K., Engels, M., and Schwyzer, M. (1989). Spatial and temporal distribution of bovine herpesvirus 1 transcripts. J. Virol., 63, 4882–4889.Google ScholarPubMed
Wong, E. L. and Damania, B. (2006). Transcriptional regulation of the Kaposi sarcoma-associated herpesvirus K15 geneJ. Virol., 80, 1385–1392.CrossRefGoogle ScholarPubMed
Wu, F. Y., Ahn, J. H., Alcendor, D. J.et al. (2001). Origin-independent assembly of Kaposi's sarcoma-associated herpesvirus DNA replication compartments in transient cotransfection assays and association with the ORF-K8 protein and cellular PML. J. Virol., 75, 1487–1506.CrossRefGoogle ScholarPubMed
Zhong, W., Wang, H., Herndier, B., and Ganem, D. (1996). Restricted expression of Kaposi sarcomaassociated herpesvirus (human herpesvirus 8) genes in Kaposi sarcoma. Proc. Natl Acad. Sci. USA, 93, 6641–6646.CrossRefGoogle Scholar
Zhu, F. X., Cusano, T., and Yuan, Y. (1999). Identification of the immediate-early transcripts of Kaposi's sarcoma-associated herpesvirus. J. Virol., 73, 5556–5567.Google ScholarPubMed
Ziegler, J. L. (1993). Endemic Kaposi's sarcoma in Africa and local volcanic soils. Lancet, 342, 1348–1351.CrossRefGoogle ScholarPubMed
Zoeteweij, J. P., Moses, A. V., and Rinderknecht, A. S. (2001). Targeted inhibition of calcineurin signaling blocks calcium-dependent reactivation of Kaposi sarcoma-associated herpesvirus. Blood, 97, 2374–2380.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×