Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-18T19:26:39.442Z Has data issue: false hasContentIssue false

73 - DNA vaccines for humanherpesviruses

from Part VII - Vaccines and immunothgerapy

Published online by Cambridge University Press:  24 December 2009

Thomas G. Evans
Affiliation:
Vical Incorporated, San Diego, CA, USA
Mary Wloch
Affiliation:
Vical Incorporated, San Diego, CA, USA
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

General design of DNA vaccines

DNA vaccines are circular, double-stranded plasmid DNA (pDNA) molecules, which are capable of initiating the expression of protein antigens of interest when introduced into cells. For this purpose, the pDNA contains an eukaryotic expression cassette consisting of a transcriptional promoter, a protein coding sequence derived from the target antigen gene, and a transcriptional terminator (Fig. 73.1). Although many different promoters have been investigated, none have been shown to be clearly superior to the constitutive CMV IE promoter. DNA vaccines can consist of single genes on one plasmid, multiple genes on one plasmid, multiple plasmids, or a combination of the above. In biscistronic or tricistronic constructs, internal ribosomal entry sites (IRES) or equivalent sequences, dual or triple promoters, or cleavable linkage regions in fusion proteins can be used for expression of multiple genes. Upon transfer into cells, the pDNA enters the nucleus and transcribes a messenger RNA (mRNA) encoding the antigen of interest. The antigen can be identical to the wild-type protein of the pathogen, or can be genetically modified to improve immunogenicity and/or reduce toxicity to the host. The pDNA may also contain an antibiotic resistance gene and a bacterial origin of replication for growth and propagation in E. coli. Constructs using selection elements for bacterial replication other than antibiotic elements have also been utilized.

For vaccination, the purified pDNA is reconstituted in aqueous vehicles, or formulated and injected.

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 1306 - 1317
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abendroth, A., Slobedman, B., Springer, M. L., Blau, H. M., and Arvin, A. M. (1999). Analysis, of immune responses to varicella zoster viral proteins induced by DNA vaccination. Antiviral Res., 44, 179–192.CrossRefGoogle ScholarPubMed
Andre, S., Seed, B., Eberle, J., Schraut, W., Bultmann, A., and Haas, J. (1998). Increased immune response elicited by DNA vaccination with a synthetic gp120 sequence with optimized codon usage. J. Virol., 72, 1497–1503.Google ScholarPubMed
Amara, R. R., Villinger, F., Altman, J. D.et al. (2002). Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Vaccine., 20, 1949–1955.CrossRefGoogle ScholarPubMed
Arvin, A. M., Sharp, M., Moir, M.et al. (2002). Memory cytotoxic T cell responses to viral tegument and regulatory proteins encoded by open reading frames 4, 10, 29, and 62 of varicella-zoster virus. Viral Immunol., 15, 507–516.CrossRefGoogle ScholarPubMed
Belshe, R. B., Stevens, C., Gorse, G. J.et al. (2001). Safety and immunogenicity of a canarypox-vectored human immunodeficiency virus Type 1 vaccine with or without gp120: a phase 2 study in higher- and lower-risk volunteers. J. Infect. Dis., 183, 1343–1352.CrossRefGoogle ScholarPubMed
Berencsi, K., Gyulai, Z., Gonczol, E.et al. (2001). A canarypox vector-expressing cytomegalovirus (CMV) phosphoprotein 65 induces long-lasting cytotoxic T cell responses in human CMV- seronegative subjects. J. Infect. Dis., 183, 1171–1179.CrossRefGoogle ScholarPubMed
Bernstein, D. I., Tepe, E. R., Mester, J. C., Arnold, R. L., Stanberry, L. R., and Higgins, T. (1999). Effects of DNA immunization formulated with bupivacaine in murine and guinea pig models of genital herpes simplex virus infection. Vaccine, 17, 1964–1969.CrossRefGoogle ScholarPubMed
Bourne, N., Milligan, G. N., Schleiss, M. R., Bernstein, D. I., and Stanberry, L. R. (1996a). DNA immunization confers protective immunity on mice challenged intravaginally with herpes simplex virus type 2. Vaccine, 14, 1230–1234.CrossRefGoogle Scholar
Bourne, N., Stanberry, L. R., Bernstein, D. I., and Lew, D. (1996b). DNA immunization against experimental genital herpes simplex virus infection. J. Infect. Dis., 173, 800–807.CrossRefGoogle Scholar
Casimiro, D. R., Chen, L., Fu, T. M.et al. (2003). Comparative immunogenicity in rhesus monkeys of DNA plasmid, recombinant vaccinia virus, and replication-defective adenovirus vectors expressing a human immunodeficiency virus type 1 gag gene. J. Virol., 77, 6305–6313.CrossRefGoogle ScholarPubMed
Cha, S. C., Kim, Y. S., Cho, J. K.et al. (2002). Enhanced protection against HSV lethal challenges in mice by immunization with a combined HSV-1 glycoprotein B:H:L gene DNAs. Virus Res., 86, 21–31.CrossRefGoogle Scholar
Corr, M., Lee, D. J., Carson, D. A., and Tighe, H. (1996). Gene vaccination with naked plasmid DNA: mechanism of CTL priming. J. Exp. Med., 184, 1555–1560.CrossRefGoogle ScholarPubMed
Corr, M., von Damm, A., Lee, D. J., and Tighe, H. (1999). In vivo priming by DNA injection occurs predominantly by antigen transfer. J. Immunol., 163, 4721–4727.Google ScholarPubMed
Davis, B. S., Chang, G. J., Cropp, B.et al. (2001). West Nile virus recombinant DNA vaccine protects mouse and horse from virus challenge and expresses in vitro a noninfectious recombinant antigen that can be used in enzyme-linked immunosorbent assays. J. Virol., 75, 4040–4047.CrossRefGoogle ScholarPubMed
Debrus, S., Sadzot-Delvaux, C., Nikkels, A. F., Piette, J., and Rentier, B. (1995). Varicella-zoster virus gene 63 encodes an immediate-early protein that is abundantly expressed during latency. J. Virol., 69, 3240–3245.Google ScholarPubMed
Doe, B., Selby, M., Barnett, S., Baenziger, J., and Walker, C. M. (1996). Induction of cytotoxic T lymphocytes by intramuscular immunization with plasmid DNA is facilitated by bone marrow-derived cells. Proc. Natl Acad. Sci. USA, 93, 8578–8583.CrossRefGoogle ScholarPubMed
Endresz, V., Kari, L., Berencsi, K.et al. (1999). Induction of human cytomegalovirus (HCMV)-glycoprotein B (gB)-specific neutralizing antibody and phosphoprotein 65 (pp65)-specific cytotoxic T lymphocyte responses by naked DNA immunization. Vaccine, 17, 50–58.CrossRefGoogle ScholarPubMed
Endresz, V., Burian, K., Berencsi, K.et al. (2001). Optimization of DNA immunization against human cytomegalovirus. Vaccine, 19, 3972–3980.CrossRefGoogle ScholarPubMed
Eo, S. K., Gierynska, M., Kamar, A. A., and Rouse, B. T. (2001). Prime-boost immunization with DNA vaccine: mucosal route of administration changes the rules. J. Immunol., 166, 5473–5479.CrossRefGoogle ScholarPubMed
Feltquate, D. M., Heaney, S., Webster, R. G., and Robinson, H. L. (1997). Different T helper cell types and antibody isotypes generated by saline and gene gun DNA immunization. J. Immunol., 158, 2278–2284.Google ScholarPubMed
Flo, J., Beatriz Perez, A., Tisminetzky, S., and Baralle, F. (2000). Superiority of intramuscular route and full length glycoprotein D for DNA vaccination against herpes simplex 2. Enhancement of protection by the co-delivery of the GM-CSF gene. Vaccine, 18, 3242–3253.CrossRefGoogle ScholarPubMed
Gallez-Hawkins, G., Lomeli, N. A., X, L. L.et al. (2002). Kinase-deficient CMVpp65 triggers a CMVpp65 specific T-cell immune response in HLA-A∗0201.Kb transgenic mice after DNA immunization. Scand. J. Immunol., 55, 592–598.CrossRefGoogle ScholarPubMed
Ghiasi, H., Cai, S., Slanina, S., Nesburn, A. B., and Wechsler, S. L. (1995). Vaccination of mice with herpes simplex virus type 1 glycoprotein D DNA produces low levels of protection against lethal HSV-1 challenge. Antiviral Res. 28, 147–157.CrossRefGoogle ScholarPubMed
Gyulai, Z., Endresz, V., Burian, K.et al. (2000). Cytotoxic T lymphocyte (CTL) responses to human cytomegalovirus pp65, IE1-Exon4, gB, pp150, and pp28 in healthy individuals: reevaluation of prevalence of IE1-specific CTLs. J. Infect. Dis., 181, 1537–1546.CrossRefGoogle ScholarPubMed
Hahn, G., Jarosch, M., Wang, J. B., Berbes, C., and McVoy, M. A. (2003). Tn7-mediated introduction of DNA sequences into bacmid-cloned cytomegalovirus genomes for rapid recombinant virus construction. J. Virol. Methods, 107, 185–194.CrossRefGoogle ScholarPubMed
Hariharan, M. J., Driver, D. A., Townsend, K.et al. (1998). DNA immunization against herpes simplex virus: enhanced efficacy using a Sindbis virus-based vector. J. Virol., 72, 950–958.Google ScholarPubMed
Harle, P., Noisakran, S., and Carr, D. J. (2001). The application of a plasmid DNA encoding IFN-alpha 1 postinfection enhances cumulative survival of herpes simplex virus type 2 vaginally infected mice. J. Immunol. 166, 1803–1812.CrossRefGoogle ScholarPubMed
Hartikka, J., Bozoukova, V., Ferrari, M.et al. (2001). Vaxfectin enhances the humoral immune response to plasmid DNA-encoded antigens. Vaccine, 19, 1911–1923.CrossRefGoogle ScholarPubMed
Hasan, U. A., Harper, D. R., Wren, B. W., and Morrow, W. J. (2002). Immunization with a DNA vaccine expressing a truncated form of varicella zoster virus glycoprotein E. Vaccine, 20, 1308–1315.CrossRefGoogle ScholarPubMed
Higgins, T. J., Herold, K. M., Arnold, R. L., McElhiney, S. P., Shroff, K. E., and Pachuk, C. J. (2000). Plasmid DNA-expressed secreted and nonsecreted forms of herpes simplex virus glycoprotein D2 induce different types of immune responses. J. Infect. Dis., 182, 1311–1320.CrossRefGoogle ScholarPubMed
Hwang, E. S., Kwon, K. B., Park, J. W., Kim, D. J., Park, C. G., and Cha, C. Y. (1999). Induction of neutralizing antibody against human cytomegalovirus (HCMV) with DNA-mediated immunization of HCMV glycoprotein B in mice. Microbiol. Immunol., 43, 307–310.CrossRefGoogle ScholarPubMed
Jung, S., Chung, Y. K., Chang, S. H.et al. (2001). DNA-mediated immunization of glycoprotein 350 of Epstein–Barr virus induces the effective humoral and cellular immune responses against the antigen. Mol. Cells, 12, 41–49.Google ScholarPubMed
Kern, F., Bunde, T., Faulhaber, N.et al. (2002). Cytomegalovirus (CMV) phosphoprotein 65 makes a large contribution to shaping the T cell repertoire in CMV-exposed individuals. J. Infect. Dis., 185, 1709–1716.CrossRefGoogle Scholar
Koelle, D. M., and Corey, L. (2003). Recent progress in herpes simplex virus immunobiology and vaccine research. Clin. Microbiol., 16, 96–113.CrossRefGoogle ScholarPubMed
Kriesel, J. D., Spruance, S. L., Daynes, R. A., and Araneo, B. A. (1996). Nucleic acid vaccine encoding gD2 protects mice from herpes simplex virus type 2 disease. J. Infect. Dis., 173, 536–541.CrossRefGoogle ScholarPubMed
Ledwith, B. J., Manam, S., Troilo, P. J.et al. (2000). Plasmid DNA vaccines: investigation of integration into host cellular DNA following intramuscular injection in mice. Intervirology, 43, 258–272.CrossRefGoogle ScholarPubMed
Lee, H. H., Cha, S. C., Jang, D. J.et al. (2002). Immunization with combined HSV-2 glycoproteins B2 : D2 gene DNAs: protection against lethal intravaginal challenges in mice. Virus Genes, 25, 179–188.Google ScholarPubMed
Letvin, N. L., Mascola, J. R., Sun, V.et al. (2006). Preserved CD4+ central memory T cells and survival in vaccinated SIV-challenged monkeys. Science, 312.CrossRefGoogle ScholarPubMed
Livingston, B. D., Newman, M., Crimi, C., McKinney, D., Chesnut, R., and Sette, A. (2001). Optimization of epitope processing enhances immunogenicity of multiepitope DNA vaccines. Vaccine, 19, 4652–4660.CrossRefGoogle ScholarPubMed
Manickan, E., Rouse, R. J., Yu, Z., Wire, W. S., and Rouse, B. T. (1995a). Genetic immunization against herpes simplex virus. Protection is mediated by CD4+ T lymphocytes. J. Immunol., 155, 259–265.Google Scholar
Manickan, E., Yu, Z., Rouse, R. J., Wire, W. S., and Rouse, B. T. (1995b). Induction of protective immunity against herpes simplex virus with DNA encoding the immediate early protein ICP 27. Viral Immunol., 8, 53–61.CrossRefGoogle Scholar
Martin, T., Parker, S. E., Hedstrom, R.et al. (1999). Plasmid DNA malaria vaccine: the potential for genomic integration after intramuscular injection. Hum. Gene. Ther., 10, 759–768.CrossRefGoogle ScholarPubMed
Massaer, M., Haumont, M., Garcia, L.et al. (1999). Differential neutralizing antibody responses to varicella-zoster virus glycoproteins B and E following naked DNA immunization. Viral Immunol., 12, 227–236.CrossRefGoogle Scholar
McClements, W. L., Armstrong, M. E., Keys, R. D., and Liu, M. A. (1996). Immunization with DNA vaccines encoding glycoprotein D or glycoprotein B, alone or in combination, induces protective immunity in animal models of herpes simplex virus-2 disease. Proc. Natl Acad. Sci. USA, 93, 11414–11420.CrossRefGoogle Scholar
McClements, W. L., Armstrong, M. E., Keys, R. D., and Liu, M. A. (1997). The prophylactic effect of immunization with DNA encoding herpes simplex virus glycoproteins on HSV-induced disease in guinea pigs. Vaccine, 15, 857–860.CrossRefGoogle Scholar
McLaughlin-Taylor, E., Pande, H., Forman, S. J.et al. (1994). Identification of the major late human cytomegalovirus matrix protein pp65 as a target antigen for CD8+ virus-specific cytotoxic T lymphocytes. J. Med. Virol. 43, 103–110.CrossRefGoogle Scholar
McShane, H., (2002). Prime-boost immunization strategies for infectious diseases. Curr. Opin. Mol. Ther., 4, 23–27.Google ScholarPubMed
Mena, A., Andrew, M. E., and Coupar, B. E. (2001). Rapid dissemination of intramuscularly inoculated DNA vaccines. Immunol. Cell Biol., 79, 87–89.CrossRefGoogle ScholarPubMed
Mocarski, E. S. Jr. (2002). Immunomodulation by cytomegaloviruses: manipulative strategies beyond evasion. Trends Microbiol., 10, 332–339.CrossRefGoogle ScholarPubMed
Morello, C. S., Cranmer, L. D., and Spector, D. H. (2000). Suppression of murine cytomegalovirus (MCMV) replication with a DNA vaccine encoding MCMV M84 (a homolog of human cytomegalovirus pp65). J. Virol., 74, 3696–3708.CrossRefGoogle Scholar
Nass, P. H., Elkins, K. L., and Weir, J. P. (1998). Antibody response and protective capacity of plasmid vaccines expressing three different herpes simplex virus glycoproteins. J. Infect. Dis., 178, 611–617.CrossRefGoogle ScholarPubMed
Norman, J. A., Hobart, P., Manthorpe, M., Felgner, P., and Wheeler, C. (1997). Development of improved vectors for DNA-based immunization and other gene therapy applications. Vaccine, 15, 801–803.CrossRefGoogle ScholarPubMed
Osorio, J. E., Tomlinson, C. C., Frank, R. S.et al. (1999). Immunization of dogs and cats with a DNA vaccine against rabies virus. Vaccine, 17, 1109–1116.CrossRefGoogle ScholarPubMed
Padoll, D. M. and Beckerleg, A. M. (1995). Exposing the immunology of naked DNA vaccines. Immunity, 3, 165–169.CrossRefGoogle Scholar
Plotkin, S. A. (1999). Vaccination against cytomegalovirus, the changeling demon. Pediatr. Infect. Dis. J., 18, 313–325; quiz 326.CrossRefGoogle ScholarPubMed
Raz, E., Carson, D. A., Parker, S. E.et al. (1994). Intradermal gene immunization: the possible role of DNA uptake in the induction of cellular immunity to viruses. Proc. Natl Acad. Sci. USA, 91, 9519–9523.CrossRefGoogle ScholarPubMed
Rickinson, A. B., and Kieff, E., (2001). Epstein–Barr virus. In Knipe, D. M., and Howley, P. M. eds. Fields Virology. Philadelphia: Lippincott Williams and Wilkins, pp. 2575–2628.Google Scholar
Robinson, H. L., Boyle, C. A., Feltquate, D. M., Morin, M. J., Santoro, J. C., Webster, and R. G. (1997). DNA immunization for influenza virus: studies using hemagglutinin- and nucleoprotein-expressing DNAs. J. Infect. Dis., 176, Suppl. 1, S50–S55.CrossRefGoogle ScholarPubMed
Rouse, R. J., Nair, S. K., Lydy, S. L., Bowen, J. C., and Rouse, B. T. (1994). Induction in vitro of primary cytotoxic T-lymphocyte responses with DNA encoding herpes simplex virus proteins. J. Virol., 68, 5685–5689.Google ScholarPubMed
Roy, M. J., Wu, M. S., Barr, L. J.et al. (2000). Induction of antigen-specific CD8+ T cells, T helper cells, and protective levels of antibody in humans by particle-mediated administration of a hepatitis B virus DNA vaccine. Vaccine, 19, 764–778.CrossRefGoogle ScholarPubMed
Sasaki, S., Tsuji, T., Asakura, Y., Fukushima, J., and Okuda, K. (1998). The search for a potent DNA vaccine against AIDS: the enhancement of immunogenicity by chemical and genetic adjuvants. Anticancer Res., 18, 3907–3915.Google ScholarPubMed
Schleiss, M. R., Bourne, N., Jensen, N. J., Bravo, F., and Bernstein, D. I. (2000). Immunogenicity evaluation of DNA vaccines that target guinea pig cytomegalovirus proteins glycoprotein B and UL83. Viral Immunol., 13, 155–167.CrossRefGoogle ScholarPubMed
Schleiss, M. R., Bowne, N., Stroup, G., Bravo, F. J., Jensen, N. J., and Bernstein, D. I. (2004). Protection against congenital megalovirus infection and disease in guinea pigs, conferred by a purified recombinant glycoprotein B vaccine. J. Infect. Dis., 189(8), 1374–1381.CrossRefGoogle Scholar
Shiver, J. W., Fu, T. M., Chen, L.et al. (2002). Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature, 415, 331–335.CrossRefGoogle ScholarPubMed
Shroff, K. E., Marcucci-Borges, L. A., Bruin, S. J.et al. (1999). Induction of HSV-gD2 specific CD4(+) cells in Peyer's patches and mucosal antibody responses in mice following DNA immunization by both parenteral and mucosal administration. Vaccine, 18, 222–230.CrossRefGoogle ScholarPubMed
Sin, J. I., Kim, J. J., Ugen, K. E., Ciccarelli, R. B., Higgins, T. J., and Weiner, D. B. (1998). Enhancement of protective humoral (Th2) and cell-mediated (Th1) immune responses against herpes simplex virus-2 through co-delivery of granulocyte–macrophage colony-stimulating factor expression cassettes. Eur. J. Immunol., 28, 3530–3540.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Sin, J. I., Bagarazzi, M., Pachuk, C., and Weiner, D. B. (1999a). DNA priming-protein boosting enhances both antigen-specific antibody and Th1-type cellular immune responses in a murine herpes simplex virus-2 gD vaccine model. DNA Cell Biol., 18, 771–779.CrossRefGoogle Scholar
Sin, J. I., Kim, J. J., Arnold, R. L.et al. (1999b). IL-12 gene as a DNA vaccine adjuvant in a herpes mouse model: IL-12 enhances Th1-type CD4+ T cell-mediated protective immunity against herpes simplex virus-2 challenge. J. Immunol., 162, 2912–2921.Google Scholar
Sin, J. I., Kim, J. J., Pachuk, C., Satishchandran, C., and Weiner, D. B. (2000a). DNA vaccines encoding interleukin-8 and RANTES enhance antigen-specific Th1-type CD4(+) T-cell-mediated protective immunity against herpes simplex virus type 2 in vivo. J. Virol., 74, 11173–11180.CrossRefGoogle Scholar
Sin, J. I., Kim, J., Dang, K.et al. (2000b). LFA-3 plasmid DNA enhances Ag-specific humoral- and cellular-mediated protective immunity against herpes simplex virus-2 in vivo: involvement of CD4+ T cells in protection. Cell Immunol., 203, 19–28.CrossRefGoogle Scholar
Sin, J. I., Kim, J. J., Zhang, D., and Weiner, D. B. (2001). Modulation of cellular responses by plasmid CD40L: CD40L plasmid vectors enhance antigen-specific helper T cell type 1 CD4+ T cell-mediated protective immunity against herpes simplex virus type 2 in vivo. Hum. Gene. Ther., 12, 1091–2002.CrossRefGoogle Scholar
Stasikova, J., Kutinova, L., Smahel, M., and Nemeckova, S. (2003). Immunization with Varicella-zoster virus glycoprotein E expressing vectors: comparison of antibody response to DNA vaccine and recombinant vaccinia virus. Acta Virol., 47, 1–10.Google ScholarPubMed
Suter, M., Lew, A. M., Grob, P.et al. (1999). BAC-VAC, a novel generation of (DNA) vaccines: a bacterial artificial chromosome (BAC) containing a replication-competent, packaging-defective virus genome induces protective immunity against herpes simplex virus 1. Proc. Natl Acad. Sci. USA, 96, 12697–12702.CrossRefGoogle ScholarPubMed
Tabi, Z., Moutaftsi, M., and Borysiewicz, L. K. (2001). Human cytomegalovirus pp65- and immediate early 1 antigen-specific HLA class I-restricted cytotoxic T cell responses induced by cross- presentation of viral antigens. J. Immunol., 166, 5695–5703.CrossRefGoogle ScholarPubMed
Thomson, S. A., Sherritt, M. A., Medveczky, J.et al. (1998). Delivery of multiple CD8 cytotoxic T cell epitopes by DNA vaccination. J. Immunol., 160, 1717–1723.Google ScholarPubMed
Torres, C. A., Iwasaki, A., Barber, B. H., and Robinson, H. L. (1997). Differential dependence on target site tissue for gene gun and intramuscular DNA immunizations. J. Immunol., 158, 4529–4532.Google ScholarPubMed
Toussaint, J. F., Letellier, C., Paquet, D., Dispas, M., and Kerkhofs, P. (2005). Prime-boost strategies combining DNA and inactivated vaccines confer high immunity and protection in cattle against bovine herpesvirus-1. Vaccine, 23, 5073–5081.CrossRefGoogle ScholarPubMed
Uchijima, M., Yoshida, A., Nagata, T., and Koide, Y. (1998). Optimization of codon usage of plasmid DNA vaccine is required for the effective MHC class I-restricted T cell responses against an intracellular bacterium. J. Immunol., 161, 5594–5599.Google ScholarPubMed
Ulmer, J. B. (2001). An update on the state of the art of DNA vaccines. Curr. Opin. Drug Discov. Devel., 4, 192–197.Google ScholarPubMed
Ulmer, J. B., Donnelly, J. J., Parker, S. E.et al. (1993). Heterologous protection against influenza by injection of DNA encoding a viral protein. Science, 259, 1745–1749.CrossRefGoogle ScholarPubMed
Ulmer, J. B., Deck, R. R., Dewitt, C. M., Donnhly, J. I., and Liu, M. A. (1996). Generation of MHC class I-restricted cytotoxic T lymphocytes by expression of a viral protein in muscle cells: antigen presentation by non-muscle cells. Immunology, 89, 59–67.CrossRefGoogle ScholarPubMed
Ulmer, J. B., DeWitt, C. M., Chastain, M.et al. (1999). Enhancement of DNA vaccine potency using conventional aluminum adjuvants. Vaccine, 18, 18–28.CrossRefGoogle ScholarPubMed
Ulmer, J. B., Wahren, B., and Liu, M. A. (2006). Gene-based vaccines recent technical and clinical advances. Trends in Molec. Med., 12(8).CrossRefGoogle ScholarPubMed
Wang, R., Epstein, J., Baraceros, F. M.et al. (2001). Induction of CD4(+) T cell-dependent CD8(+) type 1 responses in humans by a malaria DNA vaccine. Proc. Natl Acad. Sci. USA, 98, 10817–10822.CrossRefGoogle Scholar
Wills, M. R., Carmichael, A. J., Mynard, K.et al. (1996). The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T-cell receptor usage of pp65-specific CTL. J. Virol., 70, 7569–7579.Google ScholarPubMed
Wolff, J. A., Malone, R. W., Williams, P.et al. (1990). Direct gene transfer into mouse muscle in vivo. Science, 247, 1465–1468.CrossRefGoogle ScholarPubMed
Ye, M., Morello, C. S., and Spector, D. H. (2002). CD8 T-cell responses following coimmunization with plasmids expressing the dominant pp89 and subdominant M84 antigens of murine cytomegalovirus correlate with long-term protection against subsequent viral challenge. J. Virol., 76, 2100–2112.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×