Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T01:58:57.347Z Has data issue: false hasContentIssue false

6 - Alphaherpes viral genes and their functions

from Part II - Basic virology and viral gene effects on host cell functions: alphaherpesviruses

Published online by Cambridge University Press:  24 December 2009

Bernard Roizman
Affiliation:
The Marjorie B. Kovler Viral Oncology Labs. The University of Chicago, IL, USA
Gabriella Campadelli-Fiume
Affiliation:
Department of Experimental Pathology, University of Bologna, Italy
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Introduction

In this chapter the emphasis is on viral replication and on the viral gene products that define the outcome of the interaction of the alphaherpesviruses with their host. Viral replicative and host management functions account for some of the RNAs and a large number of proteins encoded by the viruses. There are, however, numerous viral gene products whose functions have not been identified or which do not play a prominent role in viral replication in the systems in which these have been tested. The objective of the table contained in this section is to summarize the functions of all known gene products and provide at least a few references for each product. It should be noted however that: of the three human alphaherpesviruses, we know more about the functions of herpes simplex virus-1 and -2 (HSV-1 and HSV -2) genes than about those of varicella zoster virus (VZV). We have identified in this table the VZV genes that are related to HSV by amino acid sequence homology. We note that partial sequence conservation does not necessarily mean that the homologous HSV and VZV gene products perform identical functions.

The list understates both the number of the products and their functions. The problem is twofold. The HSV genome encodes a large number of open reading frames (ORFs) with 50 or more codons and not all of the ORFs have been probed for to determine whether they are expressed.

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 70 - 92
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermann, M., Longnecker, R., Roizman, B., and Pereira, L. (1986). Identification, properties, and gene location of a novel glycoprotein specified by herpes simplex virus 1. Virology, 150, 207–220.CrossRefGoogle ScholarPubMed
Adams, R., Cunningham, C., Davison, M. D., MacLean, C. A., and Davison, A. J. (1998). Characterization of the protein encoded by gene UL49A of herpes simplex virus type 1. J. Gen. Virol., 79(4), 813–823.CrossRefGoogle ScholarPubMed
Advani, S. J., Weichselbaum, R. R., and Roizman, B. (2003). Herpes simplex virus 1 activates cdc2 to recruit topoisomerase II alpha for post-DNA synthesis expression of late genes. Proc. Natl Acad. Sci. USA, 100, 4825–4830.CrossRefGoogle ScholarPubMed
Avitabile, E., Lombardi, G., and Campadelli-Fiume, G. (2003). Herpes simplex virus glycoprotein K, but not its syncytial allele, inhibits cell–cell fusion mediated by the four fusogenic glycoproteins, gD, gB, gH and gL. J. Virol., 77, 6836–6844.CrossRefGoogle Scholar
Avitabile, E., Lombardi, G., Gianni, T., Capri, M., and Campadelli-Fiume, G. (2004). Coexpression of UL20p and gK inhibits cell–cell fusion mediated by herpes simplex virus glycoproteins gD, gH-gL, and wt- gB or an endocytosis-defective gB mutant, and downmodulates their cell surface expression. J. Virol.
Avitabile, E., Ward, P. L., Lazzaro, C., Torrisi, M. R., Roizman, B., and Campadelli-Fiume, G. (1994). The herpes simplex virus UL20 protein compensates for the differential disruption of exocytosis of virions and membrane glycoproteins associated with fragmentation of the Golgi apparatus. J. Virol., 68, 7397–7405.Google Scholar
Baiker, A., Bagowski, C., Ito, H.et al. (2004). The immediate-early 63 protein of varicella-zoster virus: analysis of functional domains required for replication in vitro and for T-cell and skin tropism in the SCIDhu model in vivo. J. Virol., 78, 1181–1194.CrossRefGoogle ScholarPubMed
Baines, J. D., Koyama, A. H., Huang, T., and Roizman, B. (1994). The UL21 gene products of herpes simplex virus 1 are dispensable for growth in cultured cells. J. Virol., 68, 2929–2936.Google ScholarPubMed
Baines, J. D., Poon, A. P., Rovnak, J., and Roizman, B. (1994). The herpes simplex virus 1 UL15 gene encodes two proteins and is required for cleavage of genomic viral DNA. J. Virol., 68, 8118–8124.Google ScholarPubMed
Baines, J. D. and Roizman, B. (1991). The open reading frames UL3, UL4, UL10, and UL16 are dispensable for the replication of herpes simplex virus 1 in cell culture. J. Virol., 65, 938–944.Google ScholarPubMed
Baines, J. D. and Roizman, B. (1993). The UL10 gene of herpes simplex virus 1 encodes a novel viral glycoprotein, gM, which is present in the virion and in the plasma membrane of infected cells. J. Virol., 67, 1441–1452.Google Scholar
Baines, J. D. and Roizman, B. (1992). The UL11 gene of herpes simplex virus 1 encodes a function that facilitates nucleocapsid envelopment and egress from cells. J. Virol., 66, 5168–5174.Google ScholarPubMed
Baines, J. D., Ward, P. L., Campadelli-Fiume, G., and Roizman, B. (1991). The UL20 gene of herpes simplex virus 1 encodes a function necessary for viral egress. J. Virol., 65, 6414–6424.Google ScholarPubMed
Baldo, A. M. and McClure, M. A. (1999). Evolution and horizontal transfer of dUTPase-encoding genes in viruses and their hosts. J. Virol., 73, 7710–7721.Google ScholarPubMed
Baradaran, K., Dabrowski, C. E., and Schaffer, P. A. (1994). Transcriptional analysis of the region of the herpes simplex virus type 1 genome containing the UL8, UL9, and UL10 genes and identification of a novel delayed-early gene product, OBPC. J. Virol., 68, 4251–4261.Google ScholarPubMed
Baradaran, K., Hardwicke, M. A., Dabrowski, C. E., and Schaffer, P. A. (1996). Properties of the novel herpes simplex virus type 1 origin binding protein, OBPC. J. Virol., 70, 5673–5679.Google ScholarPubMed
Barker, D. E. and Roizman, B. (1990). Identification of three genes nonessential for growth in cell culture near the right terminus of the unique sequences of long component of herpes simplex virus 1. Virology, 177, 684–691.CrossRefGoogle ScholarPubMed
Barnard, E. C., Brown, G., and Stow, N. D. (1997). Deletion mutants of the herpes simplex virus type 1 UL8 protein: effect on DNA synthesis and ability to interact with and influence the intracellular localization of the UL5 and UL52 proteins. Virology, 237, 97–106.CrossRefGoogle ScholarPubMed
Barnett, B. C., Dolan, A., Telford, E. A., Davison, A. J., and McGeoch, D. J. (1992). A novel herpes simplex virus gene (UL49A) encodes a putative membrane protein with counterparts in other herpesviruses. J. Gen. Virol., 73(8), 2167–2171.CrossRefGoogle ScholarPubMed
Batterson, W. and Roizman, B. (1983). Characterization of the herpes simplex virion-associated factor responsible for the induction of alpha genes. J. Virol., 46, 371–377.Google ScholarPubMed
Baudoux, L., Defechereux, P., Rentier, B., and Piette, J. (2000). Gene activation by Varicella-zoster virus IE4 protein requires its dimerization and involves both the arginine-rich sequence, the central part, and the carboxyl-terminal cysteine-rich region. J. Biol. Chem., 275, 32822–32831.CrossRefGoogle Scholar
Beard, P. M. and Baines, J. D. (2004). The DNA cleavage and packaging protein encoded by the UL33 gene of herpes simplex virus 1 associates with capsids. Virology.CrossRefGoogle ScholarPubMed
Beard, P. M., Taus, N. S., and Baines, J. D. (2002). DNA cleavage and packaging proteins encoded by genes U(L)28, U(L)15, and U(L)33 of herpes simplex virus type 1 form a complex in infected cells. J. Virol., 76, 4785–4791.CrossRefGoogle Scholar
Benetti, L., Munger, J., and Roizman, B. (2003). The herpes simplex virus 1 US3 protein kinase blocks caspase-dependent double cleavage and activation of the proapoptotic protein BAD. J. Virol., 77, 6567–6573.CrossRefGoogle ScholarPubMed
Besser, J., Sommer, M. H., Zerboni, L. (2003). Differentiation of varicella-zoster virus ORF47 protein kinase and IE62 protein binding domains and their contributions to replication in human skin xenografts in the SCID-hu mouse. J. Virol., 77, 5964–5974.CrossRefGoogle ScholarPubMed
Biswas, N. and Weller, S. K. (2001). The UL5 and UL52 subunits of the herpes simplex virus type 1 helicase-primase subcomplex exhibit a complex interdependence for DNA binding. J. Biol. Chem., 276, 17610–17619.CrossRefGoogle ScholarPubMed
Blaho, J. A., Mitchell, C., and Roizman, B. (1994). An amino acid sequence shared by the herpes simplex virus 1 alpha regulatory proteins 0, 4, 22, and 27 predicts the nucleotidylylation of the UL21, UL31, UL47, and UL49 gene products. J. Biol. Chem., 269, 17401–17410.Google Scholar
Bloom, D. C. and Stevens, J. G. (1994). Neuron-specific restriction of a herpes simplex virus recombinant maps to the UL5 gene. J. Virol., 68, 3761–3772.Google ScholarPubMed
Bludau, H. and Freese, U. K. (1991). Analysis of the HSV-1 strain 17 DNA polymerase gene reveals the expression of four different classes of pol transcripts. Virology, 183, 505–518.CrossRefGoogle ScholarPubMed
Bohenzky, R. A., Lagunoff, M., Roizman, B., Wagner, E. K., and Silverstein, S. (1995). Two overlapping transcription units which extend across the L-S junction of herpes simplex virus type 1. J. Virol., 69, 2889–2897.Google ScholarPubMed
Bontems, S., Valentin, E., Baudoux, L., Rentier, B., Sadzot-Delvaux, C., and Piette, J. (2002). Phosphorylation of varicella-zoster virus IE63 protein by casein kinases influences its cellular localization and gene regulation activity. J. Biol. Chem., 277, 21050–21060.CrossRefGoogle ScholarPubMed
Bowman, B. R., Baker, M. L., Rixon, F. J., Chiu, W., and Quiocho, F. A. (2003). Structure of the herpesvirus major capsid protein. EMBO J., 22, 757–765.CrossRefGoogle ScholarPubMed
Brewis, N., Phelan, A., Webb, J., Drew, J., Elliott, G., and O'Hare, P. (2000). Evaluation of VP22 spread in tissue culture. J. Virol., 74, 1051–1056.CrossRefGoogle ScholarPubMed
Brideau, A. D., Banfield, B. W., and Enquist, L. W. (1998). The Us9 gene product of pseudorabies virus, an alphaherpesvirus, is a phosphorylated, tail-anchored type II membrane protein. J. Virol., 72, 4560–4570.Google ScholarPubMed
Browne, H., Bell, S., and Minson, T. (2004). Analysis of the requirement for glycoprotein m in herpes simplex virus type 1 morphogenesis. J. Virol., 78, 1039–1041.CrossRefGoogle ScholarPubMed
Buckmaster, E. A., Gompels, U., and Minson, A. (1984). Characterisation and physical mapping of an HSV-1 glycoprotein of approximately 115 X 10(3) molecular weight. Virology, 139, 408–413.CrossRefGoogle ScholarPubMed
Bzik, D. J., Fox, B. A., DeLuca, N. A., and Person, S. (1984). Nucleotide sequence of a region of the herpes simplex virus type 1 gB glycoprotein gene: mutations affecting rate of virus entry and cell fusion. Virology, 137, 185–190.CrossRefGoogle ScholarPubMed
Cai, W. Z., Person, S., DebRoy, C., and Gu, B. H. (1988). Functional regions and structural features of the gB glycoprotein of herpes simplex virus type 1. An analysis of linker insertion mutants. J. Mol. Biol., 201, 575–588.CrossRefGoogle Scholar
Cai, W. Z., Person, S., Warner, S. C., Zhou, J. H., and DeLuca, N. A. (1987). Linker-insertion nonsense and restriction-site deletion mutations of the gB glycoprotein gene of herpes simplex virus type 1. J. Virol., 61, 714–721.Google Scholar
Calder, J. M., Stow, E. C., and Stow, N. D. (1992). On the cellular localization of the components of the herpes simplex virus type 1 helicase-primase complex and the viral origin-binding protein. J. Gen. Virol., 73(3), 531–538.CrossRefGoogle ScholarPubMed
Caradonna, S., Worrad, D., and Lirette, R. (1987). Isolation of a herpes simplex virus cDNA encoding the DNA repair enzyme uracil-DNA glycosylase. J. Virol., 61, 3040–3047.Google ScholarPubMed
Carfi, A., Willis, S. H., Whitbeck, J. C.et al. (2001). Herpes simplex virus glycoprotein D bound to the human receptor HveA. Mol. Cell., 8, 169–179.CrossRefGoogle ScholarPubMed
Carter, K. L. and Roizman, B. (1996). The promoter and transcriptional unit of a novel herpes simplex virus 1 alpha gene are contained in, and encode a protein in frame with, the open reading frame of the alpha 22 gene. J. Virol., 70, 172–178.Google Scholar
Carter, K. L., Ward, P. L., and Roizman, B. (1996). Characterization of the products of the U(L)43 gene of herpes simplex virus 1: potential implications for regulation of gene expression by antisense transcription. J. Virol., 70, 7663–7668.Google ScholarPubMed
Cassady, K. A., Gross, M., and Roizman, B. (1998). The herpes simplex virus US11 protein effectively compensates for the gamma1(34.5) gene if present before activation of protein kinase R by precluding its phosphorylation and that of the alpha subunit of eukaryotic translation initiation factor 2. J. Virol., 72, 8620–8626.Google ScholarPubMed
Chang, Y. E., Menotti, L., Filatov, F., Campadelli-Fiume, G., and Roizman, B. (1998). UL27.5 is a novel gamma2 gene antisense to the herpes simplex virus 1 gene encoding glycoprotein B. J. Virol., 72, 6056–6064.Google ScholarPubMed
Chang, Y. E., Poon, A. P., and Roizman, B. (1996). Properties of the protein encoded by the UL32 open reading frame of herpes simplex virus 1. J. Virol., 70, 3938–3946.Google ScholarPubMed
Chang, Y. E. and Roizman, B. (1993). The product of the UL31 gene of herpes simplex virus 1 is a nuclear phosphoprotein which partitions with the nuclear matrix. J. Virol., 67, 6348–6356.Google ScholarPubMed
Chang, Y. E., Sant, C., Krug, P. W., Sears, A. E., and Roizman, B. (1997). The null mutant of the U(L)31 gene of herpes simplex virus 1: construction and phenotype in infected cells. J. Virol., 71, 8307–8315.Google ScholarPubMed
Chen, D., Stabell, E. C., and Olivo, P. D. (1995). Varicella-zoster virus gene 51 complements a herpes simplex virus type 1 UL9 null mutant. J. Virol., 69, 4515–4518.Google ScholarPubMed
Chen, I. H., Sciabica, K. S., and Sandri-Goldin, R. M. (2002). ICP27 interacts with the RNA export factor Aly/REF to direct herpes simplex virus type 1 intronless mRNAs to the TAP export pathway. J. Virol., 76, 12877–12889.CrossRefGoogle ScholarPubMed
Cheung, P., Ellison, K. S., Verity, R., and Smiley, J. R. (2000). Herpes simplex virus ICP27 induces cytoplasmic accumulation of unspliced polyadenylated alpha-globin pre-mRNA in infected HeLa cells. J. Virol., 74, 2913–2919.CrossRefGoogle ScholarPubMed
Chiang, H. Y., Cohen, G. H., and Eisenberg, R. J. (1994). Identification of functional regions of herpes simplex virus glycoprotein gD by using linker-insertion mutagenesis. J. Virol., 68, 2529–2543.Google ScholarPubMed
Chung, T. D., Wymer, J. P., Smith, C. C., Kulka, M., and Aurelian, L. (1989). Protein kinase activity associated with the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10). J. Virol., 63, 3389–3398.Google Scholar
Clase, A. C., Lyman, M. G., Rio, T.et al. (2003). The pseudorabies virus Us2 protein, a virion tegument component, is prenylated in infected cells. J. Virol., 77, 12285–12298.CrossRefGoogle ScholarPubMed
Cocchi, F., Menotti, L., Mirandola, P., Lopez, M., and Campadelli-Fiume, G. (1998). The ectodomain of a novel member of the immunoglobulin superfamily related to the poliovirus receptor has the attibutes of a bonafide receptor for herpes simplex viruses 1 and 2 in human cells. J. Virol., 72, 9992–10002.Google Scholar
Cohen, G. H., Ponce de Leon, M., Diggelmann, H., Lawrence, W. C., Vernon, S. K., and Eisenberg, R. J. (1980). Structural analysis of the capsid polypeptides of herpes simplex virus types 1 and 2. J. Virol., 34, 521–531.Google ScholarPubMed
Cohen, J. I., Sato, H., Srinivas, S., and Lekstrom, K. (2001). Varicella-zoster virus (VZV) ORF65 virion protein is dispensable for replication in cell culture and is phosphorylated by casein kinase II, but not by the VZV protein kinases. Virology, 280, 62–71.CrossRefGoogle Scholar
Cohen, J. I. and Seidel, K. (1994). Varicella-zoster virus (VZV) open reading frame 10 protein, the homolog of the essential herpes simplex virus protein VP16, is dispensable for VZV replication in vitro. J. Virol., 68, 7850–7858.Google ScholarPubMed
Cohen, J. I. and Seidel, K. E. (1995). Varicella-zoster virus open reading frame 1 encodes a membrane protein that is dispensable for growth of VZV in vitro. Virology, 206, 835–842.CrossRefGoogle ScholarPubMed
Compel, P. and DeLuca, N. A. (2003). Temperature-dependent conformational changes in herpes simplex virus ICP4 that affect transcription activation. J. Virol., 77, 3257–3268.CrossRefGoogle ScholarPubMed
Constantin, N. and Dodson, M. S. (1999). Two-hybrid analysis of the interaction between the UL52 and UL8 subunits of the herpes simplex virus type 1 helicase-primase. J. Gen. Virol., 80(9), 2411–2415.CrossRefGoogle ScholarPubMed
Cook, W. J., Lin, S. M., DeLuca, N. A., and Coen, D. M. (1995). Initiator elements and regulated expression of the herpes simplex virus thymidine kinase gene. J. Virol., 69, 7291–7294.Google ScholarPubMed
Costa, R. H., Draper, K. G., Kelly, T. J., and Wagner, E. K. (1985). An unusual spliced herpes simplex virus type 1 transcript with sequence homology to Epstein-Barr virus DNA. J. Virol., 54, 317–328.Google ScholarPubMed
Cunningham, C., Davison, A. J., MacLean, A. R., Taus, N. S., and Baines, J. D. (2000). Herpes simplex virus type 1 gene UL14: phenotype of a null mutant and identification of the encoded protein. J. Virol., 74, 33–41.CrossRefGoogle ScholarPubMed
Daikoku, T., Ikenoya, K., Yamada, H., Goshima, F., and Nishiyama, Y. (1998). Identification and characterization of the herpes simplex virus type 1 UL51 gene product. J. Gen. Virol., 79(12), 3027–3031.CrossRefGoogle ScholarPubMed
Daikoku, T., Shibata, S., Goshima, F.et al. (1997). Purification and characterization of the protein kinase encoded by the UL13 gene of herpes simplex virus type 2. Virology, 235, 82–93.CrossRefGoogle ScholarPubMed
Daikoku, T., Yamamoto, N., Maeno, K., and Nishiyama, Y. (1991). Role of viral ribonucleotide reductase in the increase of dTTP pool size in herpes simplex virus-infected Vero cells. J. Gen. Virol., 72(6), 1441–1444.CrossRefGoogle ScholarPubMed
Davison, A. (1983). DNA sequence of the US component of the varicella-zoster virus genome. EMBO J., 2, 2203–2209.Google ScholarPubMed
Debroy, C., Pederson, N., and Person, S. (1985). Nucleotide sequence of a herpes simplex virus type 1 gene that causes cell fusion. Virology, 145, 36–48.CrossRefGoogle ScholarPubMed
Desai, P., DeLuca, N. A., and Person, S. (1998). Herpes simplex virus type 1 VP26 is not essential for replication in cell culture but influences production of infectious virus in the nervous system of infected mice. Virology, 247, 115–124.CrossRefGoogle Scholar
Desai, P. J. (2000). A null mutation in the UL36 gene of herpes simplex virus type 1 results in accumulation of unenveloped DNA-filled capsids in the cytoplasm of infected cells. J. Virol., 74, 11608–11618.CrossRefGoogle ScholarPubMed
Desai, P. J., Schaffer, P. A., and Minson, A. C. (1988). Excretion of non-infectious virus particles lacking glycoprotein H by a temperature-sensitive mutant of herpes simplex virus type 1: evidence that gH is essential for virion infectivity. J. Gen. Virol., 69(6), 1147–1156.CrossRefGoogle Scholar
Dingwell, K. S., Brunetti, C. R., Hendricks, R. L.et al. (1994). Herpes simplex virus glycoproteins E and I facilitate cell-to-cell spread in vivo and across junctions of cultured cells. J. Virol., 68, 834–845.Google Scholar
Dingwell, K. S. and Johnson, D. C. (1998). The herpes simplex virus gE-gI complex facilitates cell-to-cell spread and binds to components of cell junctions. J. Virol., 72, 8933–8942.Google ScholarPubMed
Dodson, M. S. and Lehman, I. R. (1991). Association of DNA helicase and primase activities with a subassembly of the herpes simplex virus 1 helicase-primase composed of the UL5 and UL52 gene products. Proc. Natl Acad. Sci. USA, 88, 1105–1109.CrossRefGoogle ScholarPubMed
Donnelly, M. and Elliott, G. (2001). Nuclear localization and shuttling of herpes simplex virus tegument protein VP13/14. J. Virol., 75, 2566–2574.CrossRefGoogle ScholarPubMed
Duus, K. M. and Grose, C. (1996). Multiple regulatory effects of varicella-zoster virus (VZV) gL on trafficking patterns and fusogenic properties of VZV gH. J. Virol., 70, 8961–8971.Google ScholarPubMed
Duus, K. M., Hatfield, C., and Grose, C. (1995). Cell surface expression and fusion by the varicella-zoster virus gH:gL glycoprotein complex: analysis by laser scanning confocal microscopy. Virology, 210, 429–440.CrossRefGoogle ScholarPubMed
Elliott, G. and O'Hare, P. (1997). Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell, 88, 223–233.CrossRefGoogle ScholarPubMed
Eom, C. Y. and Lehman, I. R. (2003). Replication-initiator protein (UL9) of the herpes simplex virus 1 binds NFB42 and is degraded via the ubiquitin-proteasome pathway. Proc. Natl Acad. Sci. USA, 100, 9803–9807.CrossRefGoogle ScholarPubMed
Esclatine, A., Taddeo, B., Evans, L., and Roizman, B. (2004a). The herpes simplex virus 1 UL41 gene-dependent destabilization of cellular RNAs is selective and may be sequence-specific. Proc. Natl Acad. Sci. USA, 101, 3603–3608.CrossRefGoogle Scholar
Esclatine, A., Taddeo, B., and Roizman, B. (2004b). The UL41 protein of herpes simplex virus mediates selective stabilization or degradation of cellular mRNAs. Proc. Natl Acad. Sci. USA, 101, 18165–18170.CrossRefGoogle Scholar
Farrell, M. J., Dobson, A. T., and Feldman, L. T. (1991). Herpes simplex virus latency-associated transcript is a stable intron. Proc. Natl Acad. Sci. USA, 88, 790–794.CrossRefGoogle ScholarPubMed
Forrester, A., Farrell, H., Wilkinson, G., Kaye, J., Poynter, Davis N., and Minson, T. (1992). Construction and properties of a mutant of herpes simplex virus type 1 with glycoprotein H coding sequences deleted. J. Virol., 66, 341–348.Google ScholarPubMed
Foster, T. P., Alvarez, X., and Kousoulas, K. G. (2003). Plasma membrane topology of syncytial domains of herpes simplex virus type 1 glycoprotein K (gK): the UL20 protein enables cell surface localization of gK but not gK-mediated cell-to-cell fusion. J. Virol., 77, 499–510.CrossRefGoogle Scholar
Foster, T. P. and Kousoulas, K. G. (1999). Genetic analysis of the role of herpes simplex virus type 1 glycoprotein K in infectious virus production and egress. J. Virol., 73, 8457–8468.Google ScholarPubMed
Frink, R. J., Eisenberg, R., Cohen, G., and Wagner, E. K. (1983). Detailed analysis of the portion of the herpes simplex virus type 1 genome encoding glycoprotein C. J. Virol., 45, 634–647.Google ScholarPubMed
Gambhir, S. S., Bauer, E., Black, M. E.et al. (2000). A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc. Natl Acad. Sci. USA, 97, 2785–2790.CrossRefGoogle ScholarPubMed
Garcia-Valcarcel, M., Fowler, W. J., Harper, D. R., Jeffries, D. J., and Layton, G. T. (1997). Cloning, expression, and immunogenicity of the assembly protein of varicella-zoster virus and detection of the products of open reading frame 33. J. Med. Virol., 53, 332–339.3.0.CO;2-8>CrossRefGoogle Scholar
Georgopoulou, U., Kakkanas, A., Miriagou, V., Michaelidou, A., and Mavromara, P. (1995). Characterization of the US8.5 protein of herpes simplex virus. Arch. Virol., 140, 2227–2241.CrossRefGoogle ScholarPubMed
Geraghty, R. J., Krummenacher, C., Cohen, G. H., Eisenberg, R. J., and Spear, P. G. (1998). Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science, 280, 1618–1620.CrossRefGoogle ScholarPubMed
Goldstein, J. N. and Weller, S. K. (1998). In vitro processing of herpes simplex virus type 1 DNA replication intermediates by the viral alkaline nuclease, UL12. J. Virol., 72, 8772–8781.Google ScholarPubMed
Gompels, U. and Minson, A. (1986). The properties and sequence of glycoprotein H of herpes simplex virus type 1. Virology, 153, 230–247.CrossRefGoogle ScholarPubMed
Gompels, U. A., Nicholas, J., Lawrence, G.et al. (1995). The DNA sequence of human herpesvirus-6: structure, coding content, and genome evolution. Virology, 209, 29–51.CrossRefGoogle ScholarPubMed
Gottlieb, J., Marcy, A. I., Coen, D. M., and Challberg, M. D. (1990). The herpes simplex virus type 1 UL42 gene product: a subunit of DNA polymerase that functions to increase processivity. J. Virol., 64, 5976–5987.Google ScholarPubMed
Grondin, B. and DeLuca, N. (2000). Herpes simplex virus type 1 ICP4 promotes transcription preinitiation complex formation by enhancing the binding of TFIID to DNA. J. Virol., 74, 11504–11510.CrossRefGoogle Scholar
Haanes, E. J., Nelson, C. M., Soule, C. L., and Goodman, J. L. (1994). The UL45 gene product is required for herpes simplex virus type 1 glycoprotein B-induced fusion. J. Virol., 68, 5825–5834.Google ScholarPubMed
Hagglund, R. and Roizman, B. (2004). Role of ICP0 in the strategy of conquest of the host cell by herpes simplex virus 1. J. Virol., 78, 2169–2178.CrossRefGoogle ScholarPubMed
He, B., Gross, M., and Roizman, B. (1998). The gamma1 34.5 protein of herpes simplex virus 1 has the structural and functional attributes of a protein phosphatase 1 regulatory subunit and is present in a high molecular weight complex with the enzyme in infected cells. J. Biol. Chem., 273, 20737–20743.CrossRefGoogle Scholar
He, B., Gross, M., and Roizman, B. (1997). The gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc. Natl Acad. Sci. USA, 94, 843–848.CrossRefGoogle Scholar
Heineman, T. C., Seidel, K., and Cohen, J. I. (1996). The varicella-zoster virus ORF66 protein induces kinase activity and is dispensable for viral replication. J. Virol., 70, 7312–7317.Google ScholarPubMed
Herold, B. C., WuDunn, D., Soltys, N., and Spear, P. G. (1991). Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity. J. Virol., 65, 1090–1098.Google Scholar
Hill, A., Jugovic, P., York, I.et al. (1995). Herpes simplex virus turns off the TAP to evade host immunity. Nature, 375, 411–415.CrossRefGoogle ScholarPubMed
Hubenthal-Voss, J., Starr, L., and Roizman, B. (1987). The herpes simplex virus origins of DNA synthesis in the S component are each contained in a transcribed open reading frame. J. Virol., 61, 3349–3355.Google Scholar
Hutchinson, L., Browne, H., Wargent, V.et al. (1992). A novel herpes simplex virus glycoprotein, gL, forms a complex with glycoprotein H (gH) and affects normal folding and surface expression of gH. J. Virol., 66, 2240–2250.Google ScholarPubMed
Hutchinson, L., Goldsmith, K., Snoddy, D., Ghosh, H., Graham, F. L., and Johnson, D. C. (1992). Identification and characterization of a novel herpes simplex virus glycoprotein, gK, involved in cell fusion. J. Virol., 66, 5603–5609.Google ScholarPubMed
Ingemarson, R., Graslund, A., Darling, A., and Thelander, L. (1989). Herpes simplex virus ribonucleotide reductase: expression in Escherichia coli and purification to homogeneity of a tyrosyl free radical-containing, enzymatically active form of the 38-kilodalton subunit. J. Virol., 63, 3769–3776.Google ScholarPubMed
Jacquet, A., Haumont, M., Chellun, D.et al. (1998). The varicella zoster virus glycoprotein B (gB) plays a role in virus binding to cell surface heparan sulfate proteoglycans. Virus Res., 53, 197–207.CrossRefGoogle Scholar
Jahedi, S., Markovitz, N. S., Filatov, F., and Roizman, B. (1999). Colocalization of the herpes simplex virus 1 UL4 protein with infected cell protein 22 in small, dense nuclear structures formed prior to onset of DNA synthesis. J. Virol., 73, 5132–5138.Google Scholar
Jerome, K. R., Fox, R., Chen, Z., Sears, A. E., Lee, H., and Corey, L. (1999). Herpes simplex virus inhibits apoptosis through the action of two genes, Us5 and Us3. J. Virol., 73, 8950–8957.Google ScholarPubMed
Jiang, Y. M., Yamada, H., Goshima, F.et al. (1998). Characterization of the herpes simplex virus type 2 (HSV-2) US2 gene product and a US2-deficient HSV-2 mutant. J. Gen. Virol., 79(11), 2777–2784.CrossRefGoogle Scholar
Jun, P. Y., Strelow, L. I., Herman, R. C.et al. (1998). The UL4 gene of herpes simplex virus type 1 is dispensable for latency, reactivation and pathogenesis in mice. J. Gen. Virol., 79(7), 1603–1611.CrossRefGoogle ScholarPubMed
Kamiyama, T., Kurokawa, M., and Shiraki, K. (2001). Characterization of the DNA polymerase gene of varicella-zoster viruses resistant to acyclovir. J. Gen. Virol., 82, 2761–2765.CrossRefGoogle ScholarPubMed
Kemble, G. W., Annunziato, P., Lungu, O.et al. (2000). Open reading frame S/L of varicella-zoster virus encodes a cytoplasmic protein expressed in infected cells. J. Virol., 74, 11311–11321.CrossRefGoogle ScholarPubMed
Kenyon, T. K., Cohen, J. I., and Grose, C. (2002). Phosphorylation by the varicella-zoster virus ORF47 protein serine kinase determines whether endocytosed viral gE traffics to the trans-Golgi network or recycles to the cell membrane. J. Virol., 76, 10980–10993.CrossRefGoogle ScholarPubMed
Kenyon, T. K., Lynch, J., Hay, J., Ruyechan, W., and Grose, C. (2001). Varicella-zoster virus ORF47 protein serine kinase: characterization of a cloned, biologically active phosphotransferase and two viral substrates, ORF62 and ORF63. J. Virol., 75, 8854–8858.CrossRefGoogle ScholarPubMed
Kinchington, P. R., Bookey, D., and Turse, S. E. (1995). The transcriptional regulatory proteins encoded by varicella-zoster virus open reading frames (ORFs) 4 and 63, but not ORF 61, are associated with purified virus particles. J. Virol., 69, 4274–4282.Google Scholar
Kinchington, P. R., Fite, K., Seman, A., and Turse, S. E. (2001). Virion association of IE62, the varicella-zoster virus (VZV) major transcriptional regulatory protein, requires expression of the VZV open reading frame 66 protein kinase. J. Virol., 75, 9106–9113.CrossRefGoogle ScholarPubMed
Kinchington, P. R., Fite, K., and Turse, S. E. (2000). Nuclear accumulation of IE62, the varicella-zoster virus (VZV) major transcriptional regulatory protein, is inhibited by phosphorylation mediated by the VZV open reading frame 66 protein kinase. J. Virol., 74, 2265–2277.CrossRefGoogle ScholarPubMed
Kinchington, P. R., Hougland, J. K., Arvin, A. M., Ruyechan, W. T., and Hay, J. (1992). The varicella-zoster virus immediate-early protein IE62 is a major component of virus particles. J. Virol., 66, 359–366.Google ScholarPubMed
Kinchington, P. R., Ling, P., Pensiero, M., Moss, B., Ruyechan, W. T., and Hay, J. (1990). The glycoprotein products of varicella-zoster virus gene 14 and their defective accumulation in a vaccine strain (Oka). J. Virol., 64, 4540–4548.Google Scholar
Kinoshita, H., Hondo, R., Taguchi, F., and Yogo, Y. (1988). Variation of R1 repeated sequence present in open reading frame 11 of varicella-zoster virus strains. J. Virol., 62, 1097–1100.Google ScholarPubMed
Kirkitadze, M. D., Barlow, P. N., Price, N. C.et al. (1998). The herpes simplex virus triplex protein, VP23, exists as a molten globule. J. Virol., 72, 10066–10072.Google ScholarPubMed
Klupp, B. G., Hengartner, C. J., Mettenleiter, T. C., and Enquist, L. W. (2004). Complete, annotated sequence of the pseudorabies virus genome. J. Virol., 78, 424–440.CrossRefGoogle ScholarPubMed
Koff, A., Schwedes, J. F., and Tegtmeyer, P. (1991). Herpes simplex virus origin-binding protein (UL9) loops and distorts the viral replication origin. J. Virol., 65, 3284–3292.Google ScholarPubMed
Koshizuka, T., Goshima, F., Takakuwa, H.et al. (2002). Identification and characterization of the UL56 gene product of herpes simplex virus type 2. J. Virol., 76, 6718–6728.CrossRefGoogle ScholarPubMed
Lagunoff, M., Randall, G., and Roizman, B. (1996). Phenotypic properties of herpes simplex virus 1 containing a derepressed open reading frame P gene. J. Virol., 70, 1810–1817.Google ScholarPubMed
Lagunoff, M. and Roizman, B. (1995). The regulation of synthesis and properties of the protein product of open reading frame P of the herpes simplex virus 1 genome. J. Virol., 69, 3615–3623.Google ScholarPubMed
Lamberti, C. and Weller, S. K. (1998). The herpes simplex virus type 1 cleavage/packaging protein, UL32, is involved in efficient localization of capsids to replication compartments. J. Virol., 72, 2463–2473.Google ScholarPubMed
Lee, F. K., Coleman, R. M., Pereira, L., Bailey, P. D., Tatsuno, M., and Nahmias, A. J. (1985). Detection of herpes simplex virus type 2-specific antibody with glycoprotein G. J. Clin. Microbiol., 22, 641–644.Google ScholarPubMed
Lee, S. S. and Lehman, I. R. (1997). Unwinding of the box I element of a herpes simplex virus type 1 origin by a complex of the viral origin binding protein, single-strand DNA binding protein, and single-stranded DNA. Proc. Natl Acad. Sci. USA, 94, 2838–2842.CrossRefGoogle Scholar
Leopardi, R., Sant, C., and Roizman, B. (1997). The herpes simplex virus 1 protein kinase US3 is required for protection from apoptosis induced by the virus. Proc. Natl Acad. Sci. USA, 94, 7891–7896.CrossRefGoogle ScholarPubMed
Liang, X., Tang, M., Manns, B., Babiuk, L. A., and Zamb, T. J. (1993). Identification and deletion mutagenesis of the bovine herpesvirus 1 dUTPase gene and a gene homologous to herpes simplex virus UL49.5. Virology, 195, 42–50.CrossRefGoogle Scholar
Ligas, M. W. and Johnson, D. C. (1988). A herpes simplex virus mutant in which glycoprotein D sequences are replaced by beta-galactosidase sequences binds to but is unable to penetrate into cells. J. Virol., 62, 1486–1494.Google ScholarPubMed
Liu, F. Y. and Roizman, B. (1991). The herpes simplex virus 1 gene encoding a protease also contains within its coding domain the gene encoding the more abundant substrate. J. Virol., 65, 5149–5156.Google ScholarPubMed
Liu, F. Y. and Roizman, B. (1991). The promoter, transcriptional unit, and coding sequence of herpes simplex virus 1 family 35 proteins are contained within and in frame with the UL26 open reading frame. J. Virol., 65, 206–212.Google ScholarPubMed
Liu, Y., Gong, W., Huang, C. C., Herr, W., and Cheng, X. (1999). Crystal structure of the conserved core of the herpes simplex virus transcriptional regulatory protein VP16. Genes Dev., 13, 1692–1703.CrossRefGoogle ScholarPubMed
Long, M. C., Leong, V., Schaffer, P. A., Spencer, C. A., and Rice, S. A. (1999). ICP22 and the UL13 protein kinase are both required for herpes simplex virus-induced modification of the large subunit of RNA polymerase II. J. Virol., 73, 5593–5604.Google ScholarPubMed
Loomis, J. S., Bowzard, J. B., Courtney, R. J., and Wills, J. W. (2001). Intracellular trafficking of the UL11 tegument protein of herpes simplex virus type 1. J. Virol., 75, 12209–12219.CrossRefGoogle ScholarPubMed
Loomis, J. S., Courtney, R. J., and Wills, J. W. (2003). Binding partners for the UL11 tegument protein of herpes simplex virus type 1. J. Virol., 77, 11417–11424.CrossRefGoogle ScholarPubMed
Lubinski, J., Wang, L., Mastellos, D., Sahu, A., Lambris, J. D., and Friedman, H. M. (1999). In vivo role of complement-interacting domains of herpes simplex virus type 1 glycoprotein gC. J. Exp. Med., 190, 1637–1646.CrossRefGoogle ScholarPubMed
MacLean, C. A., Clark, B., and McGeoch, D. J. (1989). Gene UL11 of herpes simplex virus type 1 encodes a virion protein which is myristylated. J. Gen. Virol., 70(12), 3147–3157.CrossRefGoogle ScholarPubMed
MacLean, C. A., Dolan, A., Jamieson, F. E., and McGeoch, D. J. (1992). The myristylated virion proteins of herpes simplex virus type 1: investigation of their role in the virus life cycle. J. Gen. Virol., 73, 539–547.CrossRefGoogle ScholarPubMed
MacLean, C. A., Efstathiou, S., Elliott, M. L., Jamieson, F. E., and McGeoch, D. J. (1991). Investigation of herpes simplex virus type 1 genes encoding multiply inserted membrane proteins. J. Gen. Virol., 72(4), 897–906.CrossRefGoogle ScholarPubMed
Mahalingam, R., Lasher, R., Wellish, M., Cohrs, R. J., and Gilden, D. H. (1998). Localization of varicella-zoster virus gene 21 protein in virus-infected cells in culture. J. Virol., 72, 6832–6837.Google ScholarPubMed
Mahalingam, R., Wellish, M., Cabirac, G., Gilden, D., and Vafai, A. (1988). Regulation of varicella zoster virus gene 27 translation in vitro by upstream sequences. Virus Res., 10, 193–204.CrossRefGoogle ScholarPubMed
Makhov, A. M., Lee, S. S., Lehman, I. R., and Griffith, J. D. (2003). Origin-specific unwinding of herpes simplex virus 1 DNA by the viral UL9 and ICP8 proteins: visualization of a specific preunwinding complex. Proc. Natl Acad. Sci. USA, 100, 898–903.CrossRefGoogle ScholarPubMed
Mallory, S., Sommer, M., and Arvin, A. M. (1997). Mutational analysis of the role of glycoprotein I in varicella-zoster virus replication and its effects on glycoprotein E conformation and trafficking. J. Virol., 71, 8279–8288.Google Scholar
Mapelli, M., Muhleisen, M., Persico, G., Zandt, H., and Tucker, P. A. (2000). The 60-residue C-terminal region of the single-stranded DNA binding protein of herpes simplex virus type 1 is required for cooperative DNA binding. J. Virol., 74, 8812–8822.CrossRefGoogle ScholarPubMed
Maresova, L., Pasieka, T., Wagenaar, T., Jackson, W., and Grose, C. (2003). Identification of the authentic varicella-zoster virus gB (gene 31) initiating methionine overlapping the 3' end of gene 30. J. Med. Virol., 70 Suppl 1, S64–S70.CrossRefGoogle ScholarPubMed
Markovitz, N. S., Filatov, F., and Roizman, B. (1999). The U(L)3 protein of herpes simplex virus 1 is translated predominantly from the second in-frame methionine codon and is subject to at least two posttranslational modifications. J. Virol., 73, 8010–8018.Google ScholarPubMed
Marsden, H. S., McLean, G. W., Barnard, E. C.et al. (1997). The catalytic subunit of the DNA polymerase of herpes simplex virus type 1 interacts specifically with the C terminus of the UL8 component of the viral helicase-primase complex. J. Virol., 71, 6390–6397.Google Scholar
Martinez, R., Sarisky, R. T., Weber, P. C., and Weller, S. K. (1996). Herpes simplex virus type 1 alkaline nuclease is required for efficient processing of viral DNA replication intermediates. J. Virol., 70, 2075–2085.Google ScholarPubMed
Mavromara-Nazos, P., Ackermann, M., and Roizman, B. (1986). Construction and properties of a viable herpes simplex virus 1 recombinant lacking coding sequences of the alpha 47 gene. J. Virol., 60, 807–812.Google Scholar
Mavromara-Nazos, P., Silver, S., Hubenthal-Voss, J., McKnight, J. L., and Roizman, B. (1986). Regulation of herpes simplex virus 1 genes: alpha gene sequence requirements for transient induction of indicator genes regulated by beta or late (gamma 2) promoters. Virology, 149, 152–164.CrossRefGoogle ScholarPubMed
McKnight, J. L., Pellett, P. E., Jenkins, F. J., and Roizman, B. (1987). Characterization and nucleotide sequence of two herpes simplex virus 1 genes whose products modulate alpha-trans-inducing factor-dependent activation of alpha genes. J. Virol., 61, 992–1001.Google ScholarPubMed
McKnight, S. L. (1980). The nucleotide sequence and transcript map of the herpes simplex virus thymidine kinase gene. Nucl. Acids Res., 8, 5949–5964.CrossRefGoogle ScholarPubMed
McLean, G. W., Abbotts, A. P., Parry, M. E., Marsden, H. S., and Stow, N. D. (1994). The herpes simplex virus type 1 origin-binding protein interacts specifically with the viral UL8 protein. J. Gen. Virol., 75(10), 2699–2706.CrossRefGoogle ScholarPubMed
McMillan, D. J., Kay, J., and Mills, J. S. (1997). Characterization of the proteinase specified by varicella-zoster virus gene 33. J. Gen. Virol., 78(9), 2153–2157.CrossRefGoogle ScholarPubMed
McNab, A. R., Desai, P., Person, S.et al. (1998). The product of the herpes simplex virus type 1 UL25 gene is required for encapsidation but not for cleavage of replicated viral DNA. J. Virol., 72, 1060–1070.Google Scholar
Megaw, A. G., Rapaport, D., Avidor, B., Frenkel, N., and Davison, A. J. (1998). The DNA sequence of the RK strain of human herpesvirus 7. Virology, 244, 119–132.CrossRefGoogle ScholarPubMed
Meindl, A. and Osterrieder, N. (1999). The equine herpesvirus 1 Us2 homolog encodes a nonessential membrane-associated virion component. J. Virol., 73, 3430–3437.Google ScholarPubMed
Meredith, D. M., Lindsay, J. A., Halliburton, I. W., and Whittaker, G. R. (1991). Post-translational modification of the tegument proteins (VP13 and VP14) of herpes simplex virus type 1 by glycosylation and phosphorylation. J. Gen. Virol., 72(11), 2771–2775.CrossRefGoogle ScholarPubMed
Mitchell, C., Blaho, J. A., McCormick, A. L., and Roizman, B. (1997). The nucleotidylylation of herpes simplex virus 1 regulatory protein alpha22 by human casein kinase II. J. Biol. Chem., 272, 25394–25400.CrossRefGoogle ScholarPubMed
Mo, C., Lee, J., Sommer, M., Grose, C., and Arvin, A. M. (2002). The requirement of varicella zoster virus glycoprotein E (gE) for viral replication and effects of glycoprotein I on gE in melanoma cells. Virology, 304, 176–186.CrossRefGoogle ScholarPubMed
Mo, C., Suen, J., Sommer, M., and Arvin, A. (1999). Characterization of Varicella-Zoster virus glycoprotein K (open reading frame 5) and its role in virus growth. J. Virol., 73, 4197–4207.Google ScholarPubMed
Moffat, J., Ito, H., Sommer, M., Taylor, S., and Arvin, A. M. (2002). Glycoprotein I of varicella-zoster virus is required for viral replication in skin and T cells. J. Virol., 76, 8468–8471.CrossRefGoogle ScholarPubMed
Montague, M. G. and Hutchison, C. A., 3rd (2000). Gene content phylogeny of herpesviruses. Proc. Natl Acad. Sci. USA, 97, 5334–5339.CrossRefGoogle ScholarPubMed
Mori, H., Shiraki, K., Kato, T., Hayakawa, Y., Yamanishi, K., and Takahashi, M. (1988). Molecular analysis of the thymidine kinase gene of thymidine kinase-deficient mutants of varicella-zoster virus. Intervirology, 29, 301–310.Google ScholarPubMed
Moriuchi, H., Moriuchi, M., and Cohen, J. I. (1994). The RING finger domain of the varicella-zoster virus open reading frame 61 protein is required for its transregulatory functions. Virology, 205, 238–246.CrossRefGoogle ScholarPubMed
Moriuchi, H., Moriuchi, M., Pichyangkura, R., Triezenberg, S. J., Straus, S. E., and Cohen, J. I. (1995). Hydrophobic cluster analysis predicts an amino-terminal domain of varicella-zoster virus open reading frame 10 required for transcriptional activation. Proc. Natl Acad. Sci. USA, 92, 9333–9337.CrossRefGoogle ScholarPubMed
Moriuchi, M., Moriuchi, H., Debrus, S., Piette, J., and Cohen, J. I. (1995). The acidic amino-terminal region of varicella-zoster virus open reading frame 4 protein is required for transactivation and can functionally replace the corresponding region of herpes simplex virus ICP27. Virology, 208, 376–382.CrossRefGoogle ScholarPubMed
Nalwanga, D., Rempel, S., Roizman, B., and Baines, J. D. (1996). The UL 16 gene product of herpes simplex virus 1 is a virion protein that colocalizes with intranuclear capsid proteins. Virology, 226, 236–242.CrossRefGoogle ScholarPubMed
Newcomb, W. W. and Brown, J. C. (1989). Use of Ar+ plasma etching to localize structural proteins in the capsid of herpes simplex virus type 1. J. Virol., 63, 4697–4702.Google ScholarPubMed
Newcomb, W. W., Juhas, R. M., Thomsen, D. R.et al. (2001). The UL6 gene product forms the portal for entry of DNA into the herpes simplex virus capsid. J. Virol., 75, 10923–10932.CrossRefGoogle ScholarPubMed
Newcomb, W. W., Trus, B. L., Booy, F. P., Steven, A. C., Wall, J. S., and Brown, J. C. (1993). Structure of the herpes simplex virus capsid. Molecular composition of the pentons and the triplexes. J. Mol. Biol., 232, 499–511.CrossRefGoogle ScholarPubMed
Niizuma, T., Zerboni, L., Sommer, M. H., Ito, H., Hinchliffe, S., and Arvin, A. M. (2003). Construction of varicella-zoster virus recombinants from parent Oka cosmids and demonstration that ORF65 protein is dispensable for infection of human skin and T cells in the SCID-hu mouse model. J. Virol., 77, 6062–6065.CrossRefGoogle Scholar
Nishiyama, Y., Kurachi, R., Daikoku, T., and Umene, K. (1993). The US 9, 10, 11, and 12 genes of herpes simplex virus type 1 are of no importance for its neurovirulence and latency in mice. Virology, 194, 419–423.CrossRefGoogle ScholarPubMed
Noble, A. G., Lee, G. T., Sprague, R., Parish, M. L., and Spear, P. G. (1983). Anti-gD monoclonal antibodies inhibit cell fusion induced by herpes simplex virus type 1. Virology, 129, 218–224.CrossRefGoogle ScholarPubMed
Nozawa, N., Daikoku, T., Yamauchi, Y.et al. (2002). Identification and characterization of the UL7 gene product of herpes simplex virus type 2. Virus Genes, 24, 257–266.CrossRefGoogle ScholarPubMed
Olson, J. K. and Grose, C. (1997). Endocytosis and recycling of varicella-zoster virus Fc receptor glycoprotein gE: internalization mediated by a YXXL motif in the cytoplasmic tail. J. Virol., 71, 4042–4054.Google ScholarPubMed
Papavassiliou, A. G., Wilcox, K. W., and Silverstein, S. J. (1991). The interaction of ICP4 with cell/infected-cell factors and its state of phosphorylation modulate differential recognition of leader sequences in herpes simplex virus DNA. EMBO J., 10, 397–406.Google ScholarPubMed
Pasieka, T. J., Maresova, L., and Grose, C. (2003). A functional YNKI motif in the short cytoplasmic tail of varicella-zoster virus glycoprotein gH mediates clathrin-dependent and antibody-independent endocytosis. J. Virol., 77, 4191–4204.CrossRefGoogle ScholarPubMed
Pearson, A. and Coen, D. M. (2002). Identification, localization, and regulation of expression of the UL24 protein of herpes simplex virus type 1. J. Virol., 76, 10821–10828.CrossRefGoogle ScholarPubMed
Pellett, P. E., Kousoulas, K. G., Pereira, L., and Roizman, B. (1985). Anatomy of the herpes simplex virus 1 strain F glycoprotein B gene: primary sequence and predicted protein structure of the wild type and of monoclonal antibody-resistant mutants. J. Virol., 53, 243–253.Google Scholar
Pellett, P. E., McKnight, J. L., Jenkins, F. J., and Roizman, B. (1985). Nucleotide sequence and predicted amino acid sequence of a protein encoded in a small herpes simplex virus DNA fragment capable of trans-inducing alpha genes. Proc. Natl Acad. Sci. USA, 82, 5870–5874.CrossRefGoogle Scholar
Peng, H., He, H., Hay, J., and Ruyechan, W. T. (2003). Interaction between the varicella zoster virus IE62 major transactivator and cellular transcription factor Sp1. J. Biol. Chem., 278, 38068–38075.CrossRefGoogle ScholarPubMed
Peng, T., Hunter, J. R., and Nelson, J. W. (1996). The novel protein kinase of the RR1 subunit of herpes simplex virus has autophosphorylation and transphosphorylation activity that differs in its ATP requirements for HSV-1 and HSV-2. Virology, 216, 184–196.CrossRefGoogle ScholarPubMed
Perelygina, L., Zhu, L., Zurkuhlen, H., Mills, R., Borodovsky, M., and Hilliard, J. K. (2003). Complete sequence and comparative analysis of the genome of herpes B virus (Cercopithecine herpesvirus 1) from a rhesus monkey. J. Virol., 77, 6167–6177.CrossRefGoogle Scholar
Perng, G. C., Jones, C., Ciacci-Zanella, J.et al. (2000). Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science, 287, 1500–1503.CrossRefGoogle ScholarPubMed
Perng, G. C., Maguen, B., Jin, L.et al. (2002). A gene capable of blocking apoptosis can substitute for the herpes simplex virus type 1 latency-associated transcript gene and restore wild-type reactivation levels. J. Virol., 76, 1224–1235.CrossRefGoogle ScholarPubMed
Pogue-Geile, K. L., Lee, G. T., Shapira, S. K., and Spear, P. G. (1984). Fine mapping of mutations in the fusion-inducing MP strain of herpes simplex virus type 1. Virology, 136, 100–109.CrossRefGoogle Scholar
Pomeranz, L. E. and Blaho, J. A. (1999). Modified VP22 localizes to the cell nucleus during synchronized herpes simplex virus type 1 infection. J. Virol., 73, 6769–6781.Google ScholarPubMed
Post, L. E., Mackem, S., and Roizman, B. (1981). Regulation of alpha genes of herpes simplex virus: expression of chimeric genes produced by fusion of thymidine kinase with alpha gene promoters. Cell, 24, 555–565.CrossRefGoogle ScholarPubMed
Purves, F. C. and Roizman, B. (1992). The UL13 gene of herpes simplex virus 1 encodes the functions for posttranslational processing associated with phosphorylation of the regulatory protein alpha 22. Proc. Natl Acad. Sci. USA, 89, 7310–7314.CrossRefGoogle ScholarPubMed
Purves, F. C., Spector, D., and Roizman, B. (1991). The herpes simplex virus 1 protein kinase encoded by the US3 gene mediates posttranslational modification of the phosphoprotein encoded by the UL34 gene. J. Virol., 65, 5757–5764.Google ScholarPubMed
Randall, G., Lagunoff, M., and Roizman, B. (1997). The product of ORF O located within the domain of herpes simplex virus 1 genome transcribed during latent infection binds to and inhibits in vitro binding of infected cell protein 4 to its cognate DNA site. Proc. Natl Acad. Sci. USA, 94, 10379–10384.CrossRefGoogle ScholarPubMed
Reynolds, A. E., Fan, Y., and Baines, J. D. (2000). Characterization of the U(L)33 gene product of herpes simplex virus 1. Virology, 266, 310–318.CrossRefGoogle ScholarPubMed
Reynolds, A. E., Ryckman, B. J., Baines, J. D., Zhou, Y., Liang, L., and Roller, R. J. (2001). U(L)31 and U(L)34 proteins of herpes simplex virus type 1 form a complex that accumulates at the nuclear rim and is required for envelopment of nucleocapsids. J. Virol., 75, 8803–8817.CrossRefGoogle Scholar
Reynolds, A. E., Wills, E. G., Roller, R. J., Ryckman, B. J., and Baines, J. D. (2002). Ultrastructural localization of the herpes simplex virus type 1 UL31, UL34, and US3 proteins suggests specific roles in primary envelopment and egress of nucleocapsids. J. Virol., 76, 8939–8952.CrossRefGoogle ScholarPubMed
Roller, R. J., Monk, L. L., Stuart, D., and Roizman, B. (1996). Structure and function in the herpes simplex virus 1 RNA-binding protein U(s)11: mapping of the domain required for ribosomal and nucleolar association and RNA binding in vitro. J. Virol., 70, 2842–2851.Google ScholarPubMed
Roop, C., Hutchinson, L., and Johnson, D. C. (1993). A mutant herpes simplex virus type 1 unable to express glycoprotein L cannot enter cells, and its particles lack glycoprotein H. J. Virol., 67, 2285–2297.Google ScholarPubMed
Rosen-Wolff, A., Lamade, W., Berkowitz, C., Becker, Y., and Darai, G. (1991). Elimination of UL56 gene by insertion of LacZ cassette between nucleotide position 116030 to 121753 of the herpes simplex virus type 1 genome abrogates intraperitoneal pathogenicity in tree shrews and mice. Virus Res., 20, 205–221.Google Scholar
Ross, J., Williams, M., and Cohen, J. I. (1997). Disruption of the varicella-zoster virus dUTPase and the adjacent ORF9A gene results in impaired growth and reduced syncytia formation in vitro. Virology, 234, 186–195.CrossRefGoogle ScholarPubMed
Salmon, B. and Baines, J. D. (1998). Herpes simplex virus DNA cleavage and packaging: association of multiple forms of U(L)15-encoded proteins with B capsids requires at least the U(L)6, U(L)17, and U(L)28 genes. J. Virol., 72, 3045–3050.Google ScholarPubMed
Salmon, B., Cunningham, C., Davison, A. J., Harris, W. J., and Baines, J. D. (1998). The herpes simplex virus type 1 U(L)17 gene encodes virion tegument proteins that are required for cleavage and packaging of viral DNA. J. Virol., 72, 3779–3788.Google ScholarPubMed
Salmon, B., Nalwanga, D., Fan, Y., and Baines, J. D. (1999). Proteolytic cleavage of the amino terminus of the U(L)15 gene product of herpes simplex virus type 1 is coupled with maturation of viral DNA into unit-length genomes. J. Virol., 73, 8338–8348.Google ScholarPubMed
Sato, B., Ito, H., Hinchliffe, S., Sommer, M. H., Zerboni, L., and Arvin, A. M. (2003). Mutational analysis of open reading frames 62 and 71, encoding the varicella-zoster virus immediate-early transactivating protein, IE62, and effects on replication in vitro and in skin xenografts in the SCID-hu mouse in vivo. J. Virol., 77, 5607–5620.CrossRefGoogle Scholar
Sato, B., Sommer, M., Ito, H., and Arvin, A. M. (2003). Requirement of varicella-zoster virus immediate-early 4 protein for viral replication. J. Virol., 77, 12369–12372.CrossRefGoogle ScholarPubMed
Sato, H., Callanan, L. D., Pesnicak, L., Krogmann, T., and Cohen, J. I. (2002). Varicella-zoster virus (VZV) ORF17 protein induces RNA cleavage and is critical for replication of VZV at 37 degrees C but not 33 degrees C. J. Virol., 76, 11012–11023.CrossRefGoogle Scholar
Sato, H., Pesnicak, L., and Cohen, J. I. (2002). Varicella-zoster virus open reading frame 2 encodes a membrane phosphoprotein that is dispensable for viral replication and for establishment of latency. J. Virol., 76, 3575–3578.CrossRefGoogle ScholarPubMed
Schmitz, J. B., Albright, A. G., Kinchington, P. R., and Jenkins, F. J. (1995). The UL37 protein of herpes simplex virus type 1 is associated with the tegument of purified virions. Virology, 206, 1055–1065.CrossRefGoogle ScholarPubMed
Sciortino, M. T., Taddeo, B., Poon, A. P., Mastino, A., and Roizman, B. (2002). Of the three tegument proteins that package mRNA in herpes simplex virions, one (VP22) transports the mRNA to uninfected cells for expression prior to viral infection. Proc. Natl Acad. Sci. USA, 99, 8318–8323.CrossRefGoogle ScholarPubMed
Shiba, C., Daikoku, T., Goshima, F.et al. (2000). The UL34 gene product of herpes simplex virus type 2 is a tail-anchored type II membrane protein that is significant for virus envelopment. J. Gen. Virol., 81, 2397–2405.CrossRefGoogle ScholarPubMed
Smiley, J. R. (2004). Herpes simplex virus virion host shutoff protein: immune evasion mediated by a viral RNaseγJ. Virol., 78, 1063–1068.CrossRefGoogle Scholar
Smith, R. F. and Smith, T. F. (1989). Identification of new protein kinase-related genes in three herpesviruses, herpes simplex virus, varicella-zoster virus, and Epstein–Barr virus. J. Virol., 63, 450–455.Google ScholarPubMed
Sommer, M. H., Zagha, E., Serrano, O. K.et al. (2001). Mutational analysis of the repeated open reading frames, ORFs 63 and 70 and ORFs 64 and 69, of varicella-zoster virus. J. Virol., 75, 8224–8239.CrossRefGoogle ScholarPubMed
Spencer, J. V., Newcomb, W. W., Thomsen, D. R., Homa, F. L., and Brown, J. C. (1998). Assembly of the herpes simplex virus capsid: preformed triplexes bind to the nascent capsid. J. Virol., 72, 3944–3951.Google ScholarPubMed
Spengler, M. L., Ruyechan, W. T., and Hay, J. (2000). Physical interaction between two varicella zoster virus gene regulatory proteins, IE4 and IE62. Virology, 272, 375–381.CrossRefGoogle ScholarPubMed
Stevens, J. G., Wagner, E. K., Devi-Rao, G. B., Cook, M. L., and Feldman, L. T. (1987). RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science, 235, 1056–1059.CrossRefGoogle ScholarPubMed
Stevenson, D., Colman, K. L., and Davison, A. J. (1994). Delineation of a sequence required for nuclear localization of the protein encoded by varicella-zoster virus gene 61. J. Gen. Virol., 75(11), 3229–3233.CrossRefGoogle ScholarPubMed
Stow, N. D. (2001). Packaging of genomic and amplicon DNA by the herpes simplex virus type 1 UL25-null mutant KUL25NS. J. Virol., 75, 10755–10765.CrossRefGoogle ScholarPubMed
Stow, N. D., Weir, H. M., and Stow, E. C. (1990). Analysis of the binding sites for the varicella-zoster virus gene 51 product within the viral origin of DNA replication. Virology, 177, 570–577.CrossRefGoogle ScholarPubMed
Strom, T. and Frenkel, N. (1987). Effects of herpes simplex virus on mRNA stability. J. Virol., 61, 2198–2207.Google ScholarPubMed
Takakuwa, H., Goshima, F., Koshizuka, T., Murata, T., Daikoku, T., and Nishiyama, Y. (2001). Herpes simplex virus encodes a virion-associated protein which promotes long cellular processes in over-expressing cells. Genes Cells, 6, 955–966.CrossRefGoogle ScholarPubMed
Taus, N. S., Salmon, B., and Baines, J. D. (1998). The herpes simplex virus 1 UL 17 gene is required for localization of capsids and major and minor capsid proteins to intranuclear sites where viral DNA is cleaved and packaged. Virology, 252, 115–125.CrossRefGoogle ScholarPubMed
Telford, E. A., Watson, M. S., Aird, H. C., Perry, J., and Davison, A. J. (1995). The DNA sequence of equine herpesvirus 2. J. Mol. Biol., 249, 520–528.CrossRefGoogle ScholarPubMed
Tenney, D. J., Hurlburt, W. W., Micheletti, P. A., Bifano, M., and Hamatake, R. K. (1994). The UL8 component of the herpes simplex virus helicase-primase complex stimulates primer synthesis by a subassembly of the UL5 and UL52 components. J. Biol. Chem., 269, 5030–5035.Google ScholarPubMed
Trgovcich, J., Johnson, D., and Roizman, B. (2002). Cell surface major histocompatibility complex class II proteins are regulated by the products of the gamma(1)34.5 and U(L)41 genes of herpes simplex virus 1. J. Virol., 76, 6974–6986.CrossRefGoogle ScholarPubMed
Trus, B. L., Booy, F. P., Newcomb, W. W.et al. (1996). The herpes simplex virus procapsid: structure, conformational changes upon maturation, and roles of the triplex proteins VP19c and VP23 in assembly. J. Mol. Biol., 263, 447–462.CrossRefGoogle ScholarPubMed
Zeijl, M., Fairhurst, J., Jones, T. R.et al. (2000). Novel class of thiourea compounds that inhibit herpes simplex virus type 1 DNA cleavage and encapsidation: resistance maps to the UL6 gene. J. Virol., 74, 9054–9061.CrossRefGoogle ScholarPubMed
Visalli, R. J. and Brandt, C. R. (1991). The HSV-1 UL45 gene product is not required for growth in Vero cells. Virology, 185, 419–423.CrossRefGoogle Scholar
Visse, B., Huraux, J. M., and Fillet, A. M. (1999). Point mutations in the varicella-zoster virus DNA polymerase gene confers resistance to foscarnet and slow growth phenotype. J. Med. Virol., 59, 84–90.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Wang, Z. H., Gershon, M. D., Lungu, O., Zhu, Z., Mallory, S., Arvin, A. M., and Gershon, A. A. (2001). Essential role played by the C-terminal domain of glycoprotein I in envelopment of varicella-zoster virus in the trans-Golgi network: interactions of glycoproteins with tegument. J. Virol., 75, 323–340.CrossRefGoogle ScholarPubMed
Ward, P. L., Barker, D. E., and Roizman, B. (1996). A novel herpes simplex virus 1 gene, UL43.5, maps antisense to the UL43 gene and encodes a protein which colocalizes in nuclear structures with capsid proteins. J. Virol., 70, 2684–2690.Google ScholarPubMed
Ward, P. L., Taddeo, B., Markovitz, N. S., and Roizman, B. (2000). Identification of a novel expressed open reading frame situated between genes U(L)20 and U(L)21 of the herpes simplex virus 1 genome. Virology, 266, 275–285.CrossRefGoogle ScholarPubMed
Weir, H. M. and Stow, N. D. (1990). Two binding sites for the herpes simplex virus type 1 UL9 protein are required for efficient activity of the oriS replication origin. J. Gen. Virol., 71(6), 1379–1385.CrossRefGoogle ScholarPubMed
Weisshart, K., Kuo, A. A., Hwang, C. B., Kumura, K., and Coen, D. M. (1994). Structural and functional organization of herpes simplex virus DNA polymerase investigated by limited proteolysis. J. Biol. Chem., 269, 22788–22796.Google ScholarPubMed
Weisshart, K., Kuo, A. A., Painter, G. R., Wright, L. L., Furman, P. A., and Coen, D. M. (1993). Conformational changes induced in herpes simplex virus DNA polymerase upon DNA binding. Proc. Natl Acad. Sci. USA, 90, 1028–1032.CrossRefGoogle ScholarPubMed
Weller, S. K., Seghatoleslami, M. R., Shao, L., Rowse, D., and Carmichael, E. P. (1990). The herpes simplex virus type 1 alkaline nuclease is not essential for viral DNA synthesis: isolation and characterization of a lacZ insertion mutant. J. Gen. Virol., 71(12), 2941–2952.CrossRefGoogle Scholar
White, C. A., Stow, N. D., Patel, A. H., Hughes, M., and Preston, V. G. (2003). Herpes simplex virus type 1 portal protein UL6 interacts with the putative terminase subunits UL15 and UL28. J. Virol., 77, 6351–6358.CrossRefGoogle ScholarPubMed
Wingfield, P. T., Stahl, S. J., Thomsen, D. R.et al. (1997). Hexon-only binding of VP26 reflects differences between the hexon and penton conformations of VP5, the major capsid protein of herpes simplex virus. J. Virol., 71, 8955–8961.Google ScholarPubMed
Winters, T. A. and Williams, M. V. (1993). Purification and characterization of the herpes simplex virus type 2-encoded uracil-DNA glycosylase. Virology, 195, 315–326.CrossRefGoogle ScholarPubMed
Worrad, D. M. and Caradonna, S. (1993). The herpes simplex virus type 2 UL3 open reading frame encodes a nuclear localizing phosphoprotein. Virology, 195, 364–376.CrossRefGoogle ScholarPubMed
Wu, T. T., Su, Y. H., Block, T. M., and Taylor, J. M. (1996). Evidence that two latency-associated transcripts of herpes simplex virus type 1 are nonlinear. J. Virol., 70, 5962–5967.Google ScholarPubMed
Xia, D. and Straus, S. E. (1999). Transcript mapping and transregulatory behavior of varicella-zoster virus gene 21, a latency-associated gene. Virology, 258, 304–313.CrossRefGoogle ScholarPubMed
Yamada, H., Daikoku, T., Yamashita, Y., Jiang, Y. M., Tsurumi, T., and Nishiyama, Y. (1997). The product of the US10 gene of herpes simplex virus type 1 is a capsid/tegument-associated phosphoprotein which copurifies with the nuclear matrix. J. Gen. Virol., 78(11), 2923–2931.CrossRefGoogle ScholarPubMed
Yamada, H., Jiang, Y. M., Oshima, S.et al. (1998). Characterization of the UL4 gene product of herpes simplex virus type 2. Arch. Virol., 143, 1199–1207.CrossRefGoogle ScholarPubMed
Yamauchi, Y., Wada, K., Goshima, F.et al. (2001). The UL14 protein of herpes simplex virus type 2 translocates the minor capsid protein VP26 and the DNA cleavage and packaging UL33 protein into the nucleus of coexpressing cells. J. Gen. Virol., 82, 321–330.CrossRefGoogle ScholarPubMed
York, I. A., Roop, C., Andrews, D. W., Riddell, S. R., Graham, F. L., and Johnson, D. C. (1994). A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes. Cell, 77, 525–535.CrossRefGoogle ScholarPubMed
Zhang, Y. and McKnight, J. L. (1993). Herpes simplex virus type 1 UL46 and UL47 deletion mutants lack VP11 and VP12 or VP13 and VP14, respectively, and exhibit altered viral thymidine kinase expression. J. Virol., 67, 1482–1492.Google ScholarPubMed
Zhou, C. and Knipe, D. M. (2002). Association of herpes simplex virus type 1 ICP8 and ICP27 proteins with cellular RNA polymerase II holoenzyme. J. Virol., 76, 5893–5904.CrossRefGoogle ScholarPubMed
Zhou, G., Galvan, V., Campadelli-Fiume, G., and Roizman, B. (2000). Glycoprotein D or J delivered in trans blocks apoptosis in SK-N-SH cells induced by a herpes simplex virus 1 mutant lacking intact genes expressing both glycoproteins. J. Virol., 74, 11782–11791.CrossRefGoogle ScholarPubMed
Zhu, Z., Hao, Y., Gershon, M. D., Ambron, R. T., and Gershon, A. A. (1996). Targeting of glycoprotein I (gE) of varicella-zoster virus to the trans-Golgi network by an AYRV sequence and an acidic amino acid-rich patch in the cytosolic domain of the molecule. J. Virol., 70, 6563–6575.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×