Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-16T15:30:32.906Z Has data issue: false hasContentIssue false

74 - Adoptive immunotherapy for herpesviruses

from Part VII - Vaccines and immunothgerapy

Published online by Cambridge University Press:  24 December 2009

Ann M. Leen
Affiliation:
Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
Uluhan Sili
Affiliation:
Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
Catherine M. Bollard
Affiliation:
Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
Cliona M. Rooney
Affiliation:
Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Introduction

Herpesvirus infections rarely cause significant problems in the immunocompetent human host. However, in the immunosuppressed, for example, recipients of hematopoietic stem cell transplants (HSCT) (Rooney et al., 1998), solid organ transplants (SOT), or human immunodeficiency virus (HIV)-infected individuals, viral infections/reactivations are common and are associated with considerable morbidity and mortality. The resultant uncontrolled infections correlate with a lack of cellular immunity against viral antigens (Weinberg et al., 2001). While effective antiviral drugs are available for the treatment of some herpesvirus infections, adoptive immunotherapy, which is the artificial reconstitution of virus-specific T-cells with in vitro expanded cytotoxic T-lymphocytes (CTLs), for the prophylaxis and/or treatment of herpesviruses is an attractive option. The γ-herpesvirus, Epstein–Barr virus (EBV) is also associated with a heterogeneous range of malignancies and diseases that occur in apparently immunocompetent individuals and since these malignancies also express “foreign” viral antigenic targets they may also be good candidates for immunotherapy (Rickinson and Kieff, 2001). The advances in such adopt ive immunotherapeutic approaches will be discussed in this chapter.

Therapy for herpesvirus-related infections and diseases

Infectious complications relating to herpes simplex virus (HSV), varicella zoster virus (VZV) (Asanuma et al., 2000), Kaposi's sarcoma virus (KSV) (Wang et al., 2000), human herpesvirus (HHV)-6, -7 (Clark, 2002; Clark et al., 2003; Clark and Griffiths, 2003), cytomegalovirus (CMV) (Michaelides et al., 2002) and EBV (Heslop et al., 1994) are common in immunocompromised individuals.

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 1318 - 1331
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbas, A. K., Murphy, K. M., and Sher, A. (1996). Functional diversity of helper T lymphocytes. Nature, 383, 787–793.CrossRefGoogle ScholarPubMed
Altman, J. D., Moss, P. A., Goulder, P. J.et al. (2001). Phenotypic analysis of antigen-specific T lymphocytes. Science, 274, 94–96.CrossRefGoogle Scholar
Amyes, E., Hatton, C., Montamat-Sicotte, D., et al. (2003). Characterization of the CD4+ T cell response to Epstein–Barr virus during primary and persistent infection. J. Exp. Med., 198(6), 903–911.CrossRefGoogle ScholarPubMed
Asanuma, H., Sharp, M., Maecker, H. T., Maino, V. C., and Arvin, A. M. (2000). Frequencies of memory T cells specific for varicella-zoster virus, herpes simplex virus, and cytomegalovirus by intracellular detection of cytokine expression. J. Infect. Dis., 181, 859–866.CrossRefGoogle ScholarPubMed
Bollard, C. M., Rossig, C., Calonge, M. J.et al. (2002). Adapting a transforming growth factor beta-related tumor protection strategy to enhance antitumor immunity. Blood, 99, 3179–3187.CrossRefGoogle ScholarPubMed
Bollard, C. M., Aguilar, L., Straathof, K. C.et al. (2004). Cytotoxic T lymphocyte therapy for Epstein–Barr virus+ Hodgkin's disease. J. Exp. Med., 200(12), 1623–1633.CrossRefGoogle ScholarPubMed
Bonini, C., Lee, S. P., Riddell, S. R., and Greenberg, P. D. (2001). Targeting antigen in mature dendritic cells for simultaneous stimulation of CD4+ and CD8+ T cells. J. Immunol., 166, 5250–5257.CrossRefGoogle ScholarPubMed
Borysiewicz, L. K. and Sissons, J. G. (1994). Cytotoxic T cells and human herpes virus infections. Curr. Top. Microbiol. Immunol., 189, 123–150.Google ScholarPubMed
Brodie, S. J., Lewinsohn, D. A., Patterson, B. K.et al. (1999). In vivo migration and function of transferred HIV-1-specific cytotoxic T cells. Nat. Med., 5, 34–41.CrossRefGoogle ScholarPubMed
Brodie, S. J., Patterson, B. K., Lewinsohn, D. A.et al. (2000). HIV-specific cytotoxic T lymphocytes traffic to lymph nodes and localize at sites of HIV replication and cell death. J. Clin. Invest., 105, 1407–1417.CrossRefGoogle ScholarPubMed
Bunde, T., Kirchner, A., Hoffmeister, B.et al. (2005). Protection from cytomegalovirus after transplantation is correlated with immediate early 1-specific CD8 T cells. J. Exp. Med., 201(7), 1031–1036.CrossRefGoogle ScholarPubMed
Chua, D., Huang, J., Zheng, B.et al. (2001). Adoptive transfer of autologous Epstein-Barr virus-specific cytotoxic T cells for nasopharyngeal carcinoma. Int. J. Cancer, 94, 73–80.CrossRefGoogle ScholarPubMed
Clark, D. A. (2002). Human herpesvirus 6 and human herpesvirus 7: emerging pathogens in transplant patients. Int. J. Hematol., 76 Suppl. 2, 246–252.CrossRefGoogle ScholarPubMed
Clark, D. A. and Griffiths, P. D. (2003). Human herpesvirus 6: relevance of infection in the immunocompromised host. Br. J. Haematol., 120, 384–395.CrossRefGoogle ScholarPubMed
Clark, D. A., Emery, V. C., and Griffiths, P. D. (2003). Cytomegalovirus, human herpesvirus-6, and human herpesvirus-7 in hematological patients. Semin. Hematol., 40, 154–162.CrossRefGoogle ScholarPubMed
Cobbold, M., Khan, N., Pourgheysari, B.et al. (2006). Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J. Exp. Med. 202(3), 379–386.CrossRefGoogle Scholar
Comoli, P., Labirio, M., Basso, S.et al. (2002). Infusion of autologous Epstein–Barr virus (EBV)-specific cytotoxic T cells for prevention of EBV-related lymphoproliferative disorder in solid organ transplant recipients with evidence of active virus replication. Blood, 99, 2592–2598.CrossRefGoogle ScholarPubMed
Coughlin, C. M., Vance, B. A., Grupp, S. A., and Vonderheide, R. H. (2004). RNA-transfected CD40-activated B cells induce functional T-cell responses against viral and tumor antigen targets: implications for pediatric immunotherapy 103(6), 2046–2054.PubMed
Curtis, R. E., Travis, L. B., Rowlings, P. A.et al. (1999). Risk of lymphoproliferative disorders after bone marrow transplantation: a multi-institutional study. Blood, 94, 2208–2216.Google ScholarPubMed
d'Amore, E. S., Manivel, J. C., Gajl-Peczalska, K. J.et al. (1991). B-cell lymphoproliferative disorders after bone marrow transplant. An analysis of ten cases with emphasis on Epstein–Barr virus detection by in situ hybridization. Cancer, 68, 1285–1295.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Dudley, M. E., Wunderlich, J. R., Robbins, P. F.et al. (2002). Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science, 298, 850–854.CrossRefGoogle ScholarPubMed
Einsele, H., Roosnek, E., Rufer, N., et al. (2002). Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood, 99, 3916–3922.CrossRefGoogle Scholar
Foster, A. E. and Rooney, C. M. (2006). Improving T cell therapy for cancer, in press. Expert Opin. Biol. Their. 6(3), 215–229.CrossRefGoogle Scholar
Foster, A. E., Gottlieb, D. J., Marangolo, M.et al. (2003). Rapid, large-scale generation of highly pure cytomegalovirus-specific cytotoxic T cells for adoptive immunotherapy. J. Hematother. Stem Cell Res., 12, 93–105.CrossRefGoogle ScholarPubMed
Gahn, B., Siller-Lopez, F., Pirooz, A. D.et al. (2001). Adenoviral gene transfer into dendritic cells efficiently amplifies the immune response to LMP2A antigen: a potential treatment strategy for Epstein–Barr virus–positive Hodgkin's lymphoma. Int. J. Cancer, 93, 706–713.CrossRefGoogle ScholarPubMed
Gottschalk, S., Ng, C. Y., Perez, M., et al. (2001). An Epstein–Barr virus deletion mutant associated with fatal lymphoproliferative disease unresponsive to therapy with virus-specific CTLs. Blood, 97, 835–843.CrossRefGoogle ScholarPubMed
Gottschalk, S., Edwards, O. L., Sili, U.et al. (2003). Generating CTLs against the subdominant Epstein–Barr virus LMP1 antigen for the adoptive immunotherapy of EBV-associated malignancies. Blood, 101, 1905–1912.CrossRefGoogle ScholarPubMed
Hale, G. and Waldmann, H. (1998). Risks of developing Epstein–Barr virus-related lymphoproliferative disorders after T-cell-depleted marrow transplants. CAMPATH Users. Blood, 91, 3079–3083.Google ScholarPubMed
Haque, T., Amlot, P. L., Helling, N.et al. (1998). Reconstitution of EBV-specific T cell immunity in solid organ transplant recipients. J. Immunol., 160, 6204–6209.Google ScholarPubMed
Heslop, H. E. and Rooney, C. M. (1997). Adoptive cellular immunotherapy for EBV lymphoproliferative disease. Immunol. Rev., 157, 217–222.CrossRefGoogle ScholarPubMed
Heslop, H. E., Li, C., Krance, R. A., Loftin, S. K., and Rooney, C. M. (1994). Epstein–Barr infection after bone marrow transplantation. Blood, 83, 1706–1708.Google ScholarPubMed
Hislop, A. D., Annels, N. E., Gudgeon, N. H., Leese, A. M., and Rickinson, A. B. (2002). Epitope-specific evolution of human CD8(+) T cell responses from primary to persistent phases of Epstein–Barr virus infection. J. Exp. Med., 195, 893–905.CrossRefGoogle ScholarPubMed
Jondal, M., Schirmbeck, R., and Reimann, J. (1996). MHC class I-restricted CTL responses to exogenous antigens. Immunity, 5, 295–302.CrossRefGoogle ScholarPubMed
Junghanss, C., Boeckh, M., Carter, R. A.et al. (2002). Incidence and outcome of cytomegalovirus infections following nonmyeloablative compared with myeloablative allogeneic stem cell transplantation, a matched control study. Blood, 99, 1978–1985.CrossRefGoogle ScholarPubMed
Keever-Taylor, C. A., Margolis, D., Konings, S.et al. (2001). Cytomegalovirus-specific cytolytic T-cell lines and clones generated against adenovirus-pp65-infected dendritic cells. Biol. Blood Marrow Transpl., 7, 247–256.CrossRefGoogle ScholarPubMed
Kern, F., Faulhaber, N., Frommel, C.et al. (2000). Analysis of CD8 T cell reactivity to cytomegalovirus using protein-spanning pools of overlapping. Eur. J. Immunol. 30(6), 1676–1682.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Khanna, R., Bell, S., Sherritt, M.et al. (1999). Activation and adoptive transfer of Epstein–Barr virus-specific cytotoxic T cells in solid organ transplant patients with posttransplant lymphoproliferative disease. Proc. Natl Acad. Sci. USA, 96, 10391–10396.CrossRefGoogle ScholarPubMed
Kuehnle, I., Huls, M. H., Liu, Z.et al. (2000). CD20 monoclonal antibody (rituximab) for therapy of Epstein–Barr virus lymphoma after hemopoietic stem-cell transplantation. Blood, 95, 1502–1505.Google ScholarPubMed
Lanzavecchia, A. (1996). Mechanisms of antigen uptake for presentation. Curr. Opin. Immunol., 8, 348–354.CrossRefGoogle ScholarPubMed
Leen, A., Ratnayake, M., Foster, A., Ahmed, N., Rooney, C. M. and Gottschalk, S. (2006a). Contact activated Monocytes: efficient antigen presenting cells for the stimulation of antigen-specific T cells. J. Immunother. (in press)Google Scholar
Leen, M., Myers, G. D., Sili, U.et al. (2006b). Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised patients. Nature Med., Nat. Med., 12(10), 1160–1166.CrossRefGoogle Scholar
Levine, A. M., Seneviratne, L., and Tulpule, A. (2001). Incidence and management of AIDS-related lymphoma. Oncology (Huntingt), 15, 629–639.Google ScholarPubMed
Li, H. and Minarovits (2003). Host cell-dependent expression of latent Epstein-Barr virus genomes: regulation by DNA methylation. J. Adv. Cancer Res. 89, 133–156.CrossRefGoogle ScholarPubMed
Lucas, K. G., Sun, Q., Burton, R. L.et al. (2000). A phase I–II trial to examine the toxicity of CMV- and EBV-specific cytotoxic T lymphocytes when used for prophylaxis against EBV and CMV disease in recipients of CD34-selected/T cell-depleted stem cell transplants. Hum Gene Ther., 11, 1453–1463.Google ScholarPubMed
Maus, M. V., Thomas, A. K., Leonard, D. G.et al. (2002). Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4–1BB. Nat. Biotechnol., 20, 143–148.CrossRefGoogle ScholarPubMed
McMichael, A. (1998). T cell responses and viral escape. Cell, 93, 673–676.CrossRefGoogle ScholarPubMed
Melenhorst, J. J., Solomon, S. R., Shenoy, A.et al. (2006). Robust expansion of viral antigen-specific CD4+ and CD8+ T cells for adoptive T cell therapy using gene-modified activated T cells as antigen presenting cells. J. Immunother., 29(4), 436–443.CrossRefGoogle ScholarPubMed
Michaelides, A., Glare, E. M., Spelman, D. W.et al. (2002). beta-Herpesvirus (human cytomegalovirus and human herpesvirus 6) reactivation in at-risk lung transplant recipients and in human immunodeficiency virus-infected patients. J. Infect. Dis., 186, 173–180.CrossRefGoogle ScholarPubMed
Miyashita, E. M., Yang, B., Babcock, G. J., and Thorley-Lawson, D.A. (1997). Identification of the site of Epstein–Barr virus persistence in vivo as a resting B cell. J. Virol., 71, 4882–4891.Google ScholarPubMed
Mocarski, E. S. and Courcelle, C. (2001). Cytomegaloviruses and their replication. In Knipe, D. M. and Howley, P. M. eds. Fields Virology. Philadelphia: Lippincott Williams & Wilkins, pp. 2629–2673.
Nguyen, Q., Champlin, R., Giralt, S.et al. (1999). Late cytomegalovirus pneumonia in adult allogeneic blood and marrow transplant recipients. Clin. Infect. Dis., 28, 618–623.CrossRefGoogle ScholarPubMed
Niedobitek, G. (2000). Epstein–Barr virus infection in the pathogenesis of nasopharyngeal carcinoma. Mol. Pathol., 53, 248–254.CrossRefGoogle ScholarPubMed
Oelke, M., Maus, M. V., Didiano, D.et al. (2003). Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells. Nat. Med., 9, 619–624.CrossRefGoogle ScholarPubMed
Pamer, E. and Cresswell, P. (1998). Mechanisms of MHC class I–restricted antigen processing. Annu. Rev. Immunol., 16, 323–358.CrossRefGoogle ScholarPubMed
Pao, W. J., Hustu, H. O., Douglass, E. C., Beckford, N. S., and Kun, L. E. (1989). Pediatric nasopharyngeal carcinoma: long term follow-up of 29 patients. Int. J. Radiat. Oncol. Biol. Phys., 17, 299–305.CrossRefGoogle ScholarPubMed
Papadopoulos, E. B., Ladanyi, M., Emanuel, D.et al. (1994). Infusions of donor leukocytes to treat Epstein–Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N. Engl. J. Med., 330, 1185–1191.CrossRefGoogle ScholarPubMed
Park, K. D., Marti, L., Kurtzberg, J. and Szabolcs, P. (2006). In vitro priming and expansion of cytomegalovirus-specific Th1 and Tc1 T cells from naive cord blood lymphocytes. Blood, 108(5), 1770–1773.CrossRefGoogle ScholarPubMed
Pass, R. (2001). Cytomegalovirus. In Knipe, D. M. and Howley, P. M. eds. Fields Virology. Philadelphia: Lippincott Williams & Wilkins, pp. 2675–2705.Google Scholar
Peggs, K. S., Verfuerth, S., Pizzey, A.et al. (2003). Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet, 362, 1375–1377.CrossRefGoogle ScholarPubMed
Qu, L. and Rowe, D. T. (1992). Epstein–Barr virus latent gene expression in uncultured peripheral blood lymphocytes. J. Virol., 66, 3715–3724.Google ScholarPubMed
Razonable, R. R. and Paya, C. V.et al. (2003). Herpesvirus infections in transplant recipients: current challenges in the clinical management of cytomegalovirus and Epstein–Barr virus infections. Herpes., 10(3), 60–65.Google ScholarPubMed
Rickinson, A. B. and Kieff, E. (2001). Epstein–Barr virus. In Knipe, D. M. and Howley, P. M., eds. Fields Virology. Philadelphia, PA: Lippincott Williams + Wilkins, pp. 2575–2628.Google Scholar
Rickinson, A. B. and Moss, D. J. (1997). Human cytotoxic T lymphocyte responses to Epstein–Barr virus infection. Annu. Rev. Immunol., 15, 405–431.CrossRefGoogle ScholarPubMed
Riddell, S. R., Elliott, M., Lewinsohn, D. A.et al. (1996). T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients. Nat. Med. 2, 216–223.CrossRefGoogle ScholarPubMed
Rooney, C. M., Loftin, S. K., Holladay, M. S.et al. (1995a). Early identification of Epstein-Barr virus-associated post-transplantation lymphoproliferative disease. Br. J. Haematol., 89, 98–103.CrossRefGoogle Scholar
Rooney, C. M., Smith, C. A., Ng, C. Y.et al. (1995b). Use of gene-modified virus-specific T lymphocytes to control Epstein–Barr-virus-related lymphoproliferation. Lancet, 345, 9–13.CrossRefGoogle Scholar
Rooney, C. M., Roskrow, M. A., Suzuki, N.et al. (1998a). Treatment of relapsed Hodgkin's disease using EBV-specific cytotoxic T cells. Ann. Oncol., 9, Suppl 5, S129–S132.CrossRefGoogle Scholar
Rooney, C. M., Smith, C. A., Ng, C. Y.et al. (1998b). Infusion of cytotoxic T cells for the prevention and treatment of Epstein–Barr virus-induced lymphoma in allogeneic transplant recipients. Blood, 92, 1549–1555.Google Scholar
Rooney, C. M., Aguilar, L. K., Huls, M. H., Brenner, M. K., and Heslop, H. E. (2001). Adoptive immunotherapy of EBV-associated malignancies with EBV-specific cytotoxic T-cell lines. Curr. Top. Microbiol. Immunol., 258, 221–229.Google ScholarPubMed
Rooney, C. M., Bollard, C., Huls, M. H.et al. (2002). Immunotherapy for Hodgkin's disease. Ann. Hematol., 81 Suppl 2, S39–S42.Google ScholarPubMed
Roskrow, M. A., Suzuki, N., Gan, Y.et al. (1998). Epstein–Barr virus (EBV)-specific cytotoxic T lymphocytes for the treatment of patients with EBV-positive relapsed Hodgkin's disease. Blood, 91, 2925–2934.Google ScholarPubMed
Savoldo, B., Goss, J. A., Hammer, M. M. et al. (2006). Treatment of solid organ transplant recipients with autologous Epstein–Barr virus-specific cytotoxic T lymphocytes (CTL). Blood., Epub ahead of print.CrossRef
Savoldo, B., Goss, J., Liu, Z.et al. (2001). Generation of autologous Epstein-Barr virus-specific cytotoxic T cells for adoptive immunotherapy in solid organ transplant recipients. Transplantation, 72, 1078–1086.CrossRefGoogle ScholarPubMed
Savoldo, B., Cubbage, M. L., Durett, A. G.et al. (2002). Generation of EBV-specific CD4+ cytotoxic T cells from virus naive individuals. J. Immunol., 168, 909–918.CrossRefGoogle ScholarPubMed
Sigal, L. J., Crotty, S., Andino, R., and Rock, K. L. (1999). Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen. Nature, 398, 77–80.CrossRefGoogle ScholarPubMed
Sili, U., Huls, M. H., Davis, A. R.et al. (2003). Large-scale expansion of dendritic cell-primed polyclonal human cytotoxic T-lymphocyte lines using lymphoblastoid cell lines for adoptive immunotherapy. J. Immunother., 26, 241–256.CrossRefGoogle ScholarPubMed
Springer, K. L., Chou, S., Li, S.et al. (2005). How evolution of mutations conferring drug resistance affects viral dynamics and clinical outcomes of cytomegalovirus-infected hematopoietic cell transplant recipients. J. Clin. Microbiol., 43(1), 208–213.CrossRefGoogle ScholarPubMed
Stevens, S. J., Verschuuren, E. A., Pronk, I.et al. (2001). Frequent monitoring of Epstein–Barr virus DNA load in unfractionated whole blood is essential for early detection of posttransplant lymphoproliferative disease in high-risk patients. Blood, 97, 1165–1171.CrossRefGoogle ScholarPubMed
Straathof, K. C., Savoldo, B., Heslop, H. E., and Rooney, C. M. (2002). Immunotherapy for post-transplant lymphoproliferative disease. Br. J. Haematol., 118, 728–740.CrossRefGoogle ScholarPubMed
Straathof, K. C., Bollard, C. M., Popat, U.et al. (2005). Treatment of nasopharyngeal carcinoma with Epstein–Barr virus–specific T lymphocytes. Blood, 105(5), 1898–1904.CrossRefGoogle ScholarPubMed
Sun, Q., Pollok, K. E., Burton, R. L.et al. (1999). Simultaneous ex vivo expansion of cytomegalovirus and Epstein–Barr virus-specific cytotoxic T lymphocytes using B-lymphoblastoid cell lines expressing cytomegalovirus pp65. Blood, 94, 3242–3250.Google ScholarPubMed
Sun, Q., Burton, R. L., Dai, L. J., Britt, W. J., and Lucas, K. G. (2000). B lymphoblastoid cell lines as efficient APC to elicit CD8+ T cell responses against a cytomegalovirus antigen. J. Immunol., 165, 4105–4111.CrossRefGoogle ScholarPubMed
Szmania, S., Galloway, A., Bruorton, M.et al. (2001). Isolation and expansion of cytomegalovirus-specific cytotoxic T lymphocytes to clinical scale from a single blood draw using dendritic cells and HLA-tetramers. Blood, 98, 505–512.CrossRefGoogle Scholar
Tierney, R. J., Steven, N., Young, L. S., and Rickinson, A. B. (1994). Epstein–Barr virus latency in blood mononuclear cells: analysis of viral gene transcription during primary infection and in the carrier state. J. Virol., 68, 7374–7385.Google ScholarPubMed
Esser, J. W., Niesters, H. G., , H. B.et al. (2002). Prevention of Epstein–Barr virus-lymphoproliferative disease by molecular monitoring and preemptive rituximab in high-risk patients after allogeneic stem cell transplantation. Blood, 99, 4364–4369.CrossRefGoogle ScholarPubMed
Vaz-Santiago, J., Lule, J., Rohrlich, P.et al. (2002). IE1-pp65 recombinant protein from human CMV combined with a nanoparticulate carrier, SMBV, as a potential source for the development of anti-human CMV adoptive immunotherapy. Cytotherapy, 4, 11–19.CrossRefGoogle ScholarPubMed
Wagner, H. J., Sili, U., Gahn, B.et al. (2003). Expansion of EBV latent membrane protein 2a specific cytotoxic T cells for the adoptive immunotherapy of EBV latency type 2 malignancies: influence of recombinant IL12 and IL15. Cytotherapy, 5, 231–240.CrossRefGoogle ScholarPubMed
Walter, E. A., Greenberg, P. D., Gilbert, M. J.et al. (1995). Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N. Engl. J. Med., 333, 1038–1044.CrossRefGoogle Scholar
Wang, Q. J., Jenkins, F. J., Jacobson, L. P.et al. (2000). CD8+ cytotoxic T lymphocyte responses to lytic proteins of human herpes virus 8 in human immunodeficiency virus type 1-infected and -uninfected individuals. J. Infect. Dis., 182, 928–932.CrossRefGoogle ScholarPubMed
Weinberg, K., Blazar, B. R., Wagner, J. E.et al. (2001). Factors affecting thymic function after allogeneic hematopoietic stem cell transplantation. Blood, 97, 1458–1466.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×