Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-22T10:13:47.212Z Has data issue: false hasContentIssue false

Chapter 34 - Hematopoietic Cell Transplants for Acute Myeloid Leukemia: Is There a Best Approach?

from Section 10 - Hematopoietic Cell Transplants for Acute Leukemia and Myelodysplastic Syndrome

Published online by Cambridge University Press:  24 May 2017

Hillard M. Lazarus
Affiliation:
Case Western Reserve University, Ohio
Robert Peter Gale
Affiliation:
Imperial College London
Armand Keating
Affiliation:
University of Toronto
Andrea Bacigalupo
Affiliation:
Ospedale San Martino, Genoa
Reinhold Munker
Affiliation:
Louisiana State University, Shreveport
Kerry Atkinson
Affiliation:
University of Queensland
Syed Ali Abutalib
Affiliation:
Midwestern Regional Medical Center, Cancer Treatment Centers of America, Chicago
Get access
Type
Chapter
Information
Hematopoietic Cell Transplants
Concepts, Controversies and Future Directions
, pp. 316 - 327
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Passweg, JR, Baldomero, H, Gratwohl, A, Bregni, M, Cesaro, S, Dreger, P, et al. The EBMT activity survey: 1990–2010. Bone Marrow Transplantation. 2012;47(7):906–23.CrossRefGoogle ScholarPubMed
Passweg, JR, Baldomero, H, Bregni, M, Cesaro, S, Dreger, P, Duarte, RF, et al. Hematopoietic SCT in Europe: data and trends in 2011. Bone Marrow Transplantation. 2013;48(9):1161–7.CrossRefGoogle ScholarPubMed
Pasquini, MC,Wang, Z. Current use and outcome of hematopoietic stem cell transplantation: CIBMTR Summary Slides. 2013.Google Scholar
Horan, JT, Logan, BR, Agovi-Johnson, MA, Lazarus, HM, Bacigalupo, AA, Ballen, KK, et al. Reducing the risk for transplantation-related mortality after allogeneic hematopoietic cell transplantation: how much progress has been made? Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2011;29(7):805–13.CrossRefGoogle Scholar
Gooley, TA, Chien, JW, Pergam, SA, Hingorani, S, Sorror, ML, Boeckh, M, et al. Reduced mortality after allogeneic hematopoietic-cell transplantation. The New England Journal of Medicine. 2010;363(22):2091–101.CrossRefGoogle ScholarPubMed
Luger, SM, Ringden, O, Zhang, MJ, Perez, WS, Bishop, MR, Bornhauser, M, et al. Similar outcomes using myeloablative vs reduced-intensity allogeneic transplant preparative regimens for AML or MDS. Bone Marrow Transplantation. 2012;47(2):203–11.CrossRefGoogle ScholarPubMed
Chang, YJ, Huang, XJ. Donor lymphocyte infusions for relapse after allogeneic transplantation: when, if and for whom? Blood Reviews. 2013;27(1):5562.CrossRefGoogle Scholar
Bleakley, M, Riddell, SR. Exploiting T cells specific for human minor histocompatibility antigens for therapy of leukemia. Immunology and Cell Biology. 2011;89(3):396407.CrossRefGoogle ScholarPubMed
Norde, WJ, Overes, IM, Maas, F, Fredrix, H, Vos, JC, Kester, MG, et al. Myeloid leukemic progenitor cells can be specifically targeted by minor histocompatibility antigen LRH-1-reactive cytotoxic T cells. Blood. 2009;113(10):2312–23.CrossRefGoogle ScholarPubMed
Warren, EH, Fujii, N, Akatsuka, Y, Chaney, CN, Mito, JK, Loeb, KR, et al. Therapy of relapsed leukemia after allogeneic hematopoietic cell transplantation with T cells specific for minor histocompatibility antigens. Blood. 2010;115(19):3869–78.CrossRefGoogle Scholar
Rezvani, K, Yong, AS, Mielke, S, Savani, BN, Musse, L, Superata, J, et al. Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood. 2008;111(1):236–42.CrossRefGoogle ScholarPubMed
Oka, Y, Tsuboi, A, Taguchi, T, Osaki, T, Kyo, T, Nakajima, H, et al. Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proceedings of the National Academy of Sciences of the USA. 2004;101(38):13885–90.Google ScholarPubMed
Van Tendeloo, VF, Van de Velde, A, Van Driessche, A, Cools, N, Anguille, S, Ladell, K, et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proceedings of the National Academy of Sciences of the USA. 2010;107(31):13824–9.Google ScholarPubMed
Miller, JS, Soignier, Y, Panoskaltsis-Mortari, A, McNearney, SA, Yun, GH, Fautsch, SK, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005;105(8):3051–7.CrossRefGoogle ScholarPubMed
Bashey, A, Medina, B, Corringham, S, Pasek, M, Carrier, E, Vrooman, L, et al. CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood. 2009;113(7):1581–8.CrossRefGoogle ScholarPubMed
Yanada, M, Matsuo, K, Emi, N, Naoe, T. Efficacy of allogeneic hematopoietic stem cell transplantation depends on cytogenetic risk for acute myeloid leukemia in first disease remission: a metaanalysis. Cancer. 2005;103(8):1652–8.CrossRefGoogle ScholarPubMed
Cornelissen, JJ, van Putten, WL, Verdonck, LF, Theobald, M, Jacky, E, Daenen, SM, et al. Results of a HOVON/SAKK donor versus no-donor analysis of myeloablative HLA-identical sibling stem cell transplantation in first remission acute myeloid leukemia in young and middle-aged adults: benefits for whom? Blood. 2007;109(9):3658–66.CrossRefGoogle Scholar
Koreth, J, Schlenk, R, Kopecky, KJ, Honda, S, Sierra, J, Djulbegovic, BJ, et al. Allogeneic stem cell transplantation for acute myeloid leukemia in first complete remission: systematic review and meta-analysis of prospective clinical trials. JAMA: The Journal of the American Medical Association. 2009;301(22):2349–61.CrossRefGoogle ScholarPubMed
Burnett, AK, Wheatley, K, Goldstone, AH, Stevens, RF, Hann, IM, Rees, JH, et al. The value of allogeneic bone marrow transplant in patients with acute myeloid leukaemia at differing risk of relapse: results of the UK MRC AML 10 trial. British Journal of Haematology. 2002;118(2):385400.CrossRefGoogle ScholarPubMed
Sorror, ML, Maris, MB, Storb, R, Baron, F, Sandmaier, BM, Maloney, DG, et al. Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood. 2005;106(8):2912–9.CrossRefGoogle ScholarPubMed
Sorror, ML, Sandmaier, BM, Storer, BE, Maris, MB, Baron, F, Maloney, DG, et al. Comorbidity and disease status based risk stratification of outcomes among patients with acute myeloid leukemia or myelodysplasia receiving allogeneic hematopoietic cell transplantation. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2007;25(27):4246–54.CrossRefGoogle ScholarPubMed
Gratwohl, A, Stern, M, Brand, R, Apperley, J, Baldomero, H, de Witte, T, et al. Risk score for outcome after allogeneic hematopoietic stem cell transplantation: a retrospective analysis. Cancer. 2009;115(20):4715–26.CrossRefGoogle ScholarPubMed
Armand, P, Kim, HT, Zhang, MJ, Perez, WS, Dal Cin, PS, Klumpp, TR, et al. Classifying cytogenetics in patients with acute myelogenous leukemia in complete remission undergoing allogeneic transplantation: a Center for International Blood and Marrow Transplant Research study. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2012;18(2):280–8.CrossRefGoogle ScholarPubMed
Cornelissen, JJ, Breems, D, van Putten, WL, Gratwohl, AA, Passweg, JR, Pabst, T, et al. Comparative analysis of the value of allogeneic hematopoietic stem-cell transplantation in acute myeloid leukemia with monosomal karyotype versus other cytogenetic risk categories. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2012;30(17):2140–6.CrossRefGoogle ScholarPubMed
Goldman, JM, Gale, RP. What does MRD in leukemia really mean? Leukemia. 2014;28(5):1131.CrossRefGoogle ScholarPubMed
Walter, RB, Buckley, SA, Pagel, JM, Wood, BL, Storer, BE, Sandmaier, BM, et al. Significance of minimal residual disease before myeloablative allogeneic hematopoietic cell transplantation for AML in first and second complete remission. Blood. 2013;122(10):1813–21.Google ScholarPubMed
Appelbaum, FR. Measurement of minimal residual disease before and after myeloablative hematopoietic cell transplantation for acute leukemia. Best Practice & Research Clinical Haematology. 2013;26(3):279–84.CrossRefGoogle ScholarPubMed
Patel, JP, Gonen, M, Figueroa, ME, Fernandez, H, Sun, Z, Racevskis, J, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. The New England Journal of Medicine. 2012;366(12):1079–89.CrossRefGoogle ScholarPubMed
Ley, TJ, Ding, L, Walter, MJ, McLellan, MD, Lamprecht, T, Larson, DE, et al. DNMT3A mutations in acute myeloid leukemia. The New England Journal of Medicine. 2010;363(25):2424–33.CrossRefGoogle ScholarPubMed
Allen, C, Hills, RK, Lamb, K, Evans, C, Tinsley, S, Sellar, R, et al. The importance of relative mutant level for evaluating impact on outcome of KIT, FLT3 and CBL mutations in core-binding factor acute myeloid leukemia. Leukemia. 2013;27(9):1891–901.CrossRefGoogle ScholarPubMed
Paschka, P, Du, J, Schlenk, RF, Gaidzik, VI, Bullinger, L, Corbacioglu, A, et al. Secondary genetic lesions in acute myeloid leukemia with inv(16) or t(16;16): a study of the German-Austrian AML Study Group (AMLSG). Blood. 2013;121(1):170–7.CrossRefGoogle Scholar
Kurosawa, S, Yamaguchi, T, Miyawaki, S, Uchida, N, Sakura, T, Kanamori, H, et al. Prognostic factors and outcomes of adult patients with acute myeloid leukemia after first relapse. Haematologica. 2010;95(11):1857–64.CrossRefGoogle ScholarPubMed
Duval, M, Klein, JP, He, W, Cahn, JY, Cairo, M, Camitta, BM, et al. Hematopoietic stem-cell transplantation for acute leukemia in relapse or primary induction failure. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2010;28(23):3730–8.CrossRefGoogle ScholarPubMed
Burnett, AK, Goldstone, A, Hills, RK, Milligan, D, Prentice, A, Yin, J, et al. Curability of patients with acute myeloid leukemia who did not undergo transplantation in first remission. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2013;31(10):1293–301.CrossRefGoogle Scholar
San Miguel, JF, Martinez, A, Macedo, A, Vidriales, MB, Lopez-Berges, C, Gonzalez, M, et al. Immunophenotyping investigation of minimal residual disease is a useful approach for predicting relapse in acute myeloid leukemia patients. Blood. 1997;90(6):2465–70.CrossRefGoogle ScholarPubMed
Kern, W, Voskova, D, Schoch, C, Hiddemann, W, Schnittger, S, Haferlach, T. Determination of relapse risk based on assessment of minimal residual disease during complete remission by multiparameter flow cytometry in unselected patients with acute myeloid leukemia. Blood. 2004;104(10):3078–85.Google ScholarPubMed
Terwijn, M, van Putten, WL, Kelder, A, van der Velden, VH, Brooimans, RA, Pabst, T, et al. High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: data from the HOVON/SAKK AML 42A study. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2013;31(31):3889–97.CrossRefGoogle ScholarPubMed
Buccisano, F, Maurillo, L, Del Principe, MI, Del Poeta, G, Sconocchia, G, Lo-Coco, F, et al. Prognostic and therapeutic implications of minimal residual disease detection in acute myeloid leukemia. Blood. 2012;119(2):332–41.CrossRefGoogle ScholarPubMed
Rubnitz, JE, Inaba, H, Dahl, G, Ribeiro, RC, Bowman, WP, Taub, J, et al. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. The Lancet Oncology. 2010;11(6):543–52.CrossRefGoogle ScholarPubMed
Fang, M, Storer, B, Wood, B, Gyurkocza, B, Sandmaier, BM, Appelbaum, FR. Prognostic impact of discordant results from cytogenetics and flow cytometry in patients with acute myeloid leukemia undergoing hematopoietic cell transplantation. Cancer. 2012;118(9):2411–9.CrossRefGoogle ScholarPubMed
Copelan, EA, Hamilton, BK, Avalos, B, Ahn, KW, Bolwell, BJ, Zhu, X, et al. Better leukemia-free and overall survival in AML in first remission following cyclophosphamide in combination with busulfan compared with TBI. Blood. 2013;122(24):3863–70.CrossRefGoogle ScholarPubMed
Bredeson, C, LeRademacher, J, Kato, K, Dipersio, JF, Agura, E, Devine, SM, et al. Prospective cohort study comparing intravenous busulfan to total body irradiation in hematopoietic cell transplantation. Blood. 2013;122(24):3871–8.CrossRefGoogle ScholarPubMed
Nagler, A, Rocha, V, Labopin, M, Unal, A, Ben Othman, T, Campos, A, et al. Allogeneic hematopoietic stem-cell transplantation for acute myeloid leukemia in remission: comparison of intravenous busulfan plus cyclophosphamide (Cy) versus total-body irradiation plus Cy as conditioning regimen–a report from the acute leukemia working party of the European group for blood and marrow transplantation. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2013;31(28):3549–56.CrossRefGoogle ScholarPubMed
Bacigalupo, A, Ballen, K, Rizzo, D, Giralt, S, Lazarus, H, Ho, V, et al. Defining the intensity of conditioning regimens: working definitions. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2009;15(12):1628–33.CrossRefGoogle ScholarPubMed
Aoudjhane, M, Labopin, M, Gorin, NC, Shimoni, A, Ruutu, T, Kolb, HJ, et al. Comparative outcome of reduced intensity and myeloablative conditioning regimen in HLA identical sibling allogeneic haematopoietic stem cell transplantation for patients older than 50 years of age with acute myeloblastic leukaemia: a retrospective survey from the Acute Leukemia Working Party (ALWP) of the European group for Blood and Marrow Transplantation (EBMT). Leukemia. 2005;19(12):2304–12.CrossRefGoogle Scholar
Scott, BL, Pasquini, MC, Logan, B, et al. Results of a phase III randomized, multi-center study of allogeneic stem cell transplantation after high versus reduced intensity conditioning in patients with myelodysplastic syndrome or acute myeloid leukemia: Blood and Marrow Transplant Clinical Trials network (BMT CTN) 0901. Blood. 2015;126.CrossRefGoogle Scholar
Bensinger, WI, Martin, PJ, Storer, B, Clift, R, Forman, SJ, Negrin, R, et al. Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers. The New England Journal of Medicine. 2001;344(3):175–81.CrossRefGoogle ScholarPubMed
Stem Cell Trialists’ Collaborative G. Allogeneic peripheral blood stem-cell compared with bone marrow transplantation in the management of hematologic malignancies: an individual patient data meta-analysis of nine randomized trials. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2005;23(22):5074–87.Google Scholar
Anasetti, C, Logan, BR, Lee, SJ, Waller, EK, Weisdorf, DJ, Wingard, JR, et al. Peripheral-blood stem cells versus bone marrow from unrelated donors. The New England Journal of Medicine. 2012;367(16):1487–96.CrossRefGoogle ScholarPubMed
Appelbaum, FR. Pursuing the goal of a donor for everyone in need. The New England Journal of Medicine. 2012;367(16):1555–6.CrossRefGoogle ScholarPubMed
Walter, RB, Pagel, JM, Gooley, TA, Petersdorf, EW, Sorror, ML, Woolfrey, AE, et al. Comparison of matched unrelated and matched related donor myeloablative hematopoietic cell transplantation for adults with acute myeloid leukemia in first remission. Leukemia. 2010;24(7):1276–82.CrossRefGoogle ScholarPubMed
Imahashi, N, Suzuki, R, Fukuda, T, Kakihana, K, Kanamori, H, Eto, T, et al. Allogeneic hematopoietic stem cell transplantation for intermediate cytogenetic risk AML in first CR. Bone Marrow Transplantation. 2013;48(1):5662.CrossRefGoogle ScholarPubMed
Gupta, V, Tallman, MS, He, W, Logan, BR, Copelan, E, Gale, RP, et al. Comparable survival after HLA-well-matched unrelated or matched sibling donor transplantation for acute myeloid leukemia in first remission with unfavorable cytogenetics at diagnosis. Blood. 2010;116(11):1839–48.CrossRefGoogle ScholarPubMed
Gragert, L, Eapen, M, Williams, E, Freeman, J, Spellman, S, Baitty, R, et al. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. The New England Journal of Medicine. 2014;371(4):339–48.CrossRefGoogle ScholarPubMed
Lee, SJ, Klein, J, Haagenson, M, Baxter-Lowe, LA, Confer, DL, Eapen, M, et al. High-resolution donor-recipient HLA-matching contributes to the success of unrelated donor marrow transplantation. Blood. 2007;110(13):4576–83.Google Scholar
Barker, JN, Scaradavou, A, Stevens, CE. Combined effect of total nucleated cell dose and HLA match on transplantation outcome in 1061 cord blood recipients with hematologic malignancies. Blood. 2010;115(9):1843–9.CrossRefGoogle ScholarPubMed
Eapen, M, Klein, JP, Sanz, GF, Spellman, S, Ruggeri, A, Anasetti, C, et al. Effect of donor-recipient HLA matching at HLA A, B, C, and DRB1 on outcomes after umbilical-cord blood transplantation for leukaemia and myelodysplastic syndrome: a retrospective analysis. The Lancet Oncology. 2011;12(13):1214–21.CrossRefGoogle Scholar
Ruggeri, A, Sanz, G, Bittencourt, H, Sanz, J, Rambaldi, A, Volt, F, et al. Comparison of outcomes after single or double cord blood transplantation in adults with acute leukemia using different types of myeloablative conditioning regimen, a retrospective study on behalf of Eurocord and the Acute Leukemia Working Party of EBMT. Leukemia. 2014;28(4):779–86.CrossRefGoogle ScholarPubMed
Scaradavou, A, Brunstein, CG, Eapen, M, Le-Rademacher, J, Barker, JN, Chao, N, et al. Double unit grafts successfully extend the application of umbilical cord blood transplantation in adults with acute leukemia. Blood. 2013;121(5):752–8.CrossRefGoogle ScholarPubMed
Verneris, MR, Brunstein, CG, Barker, J, MacMillan, ML, DeFor, T, McKenna, DH, et al. Relapse risk after umbilical cord blood transplantation: enhanced graft-versus-leukemia effect in recipients of 2 units. Blood. 2009;114(19):4293–9.CrossRefGoogle ScholarPubMed
Wagner, JE Jr., Eapen, M, Carter, S, Wang, Y, Schultz, KR, Wall, DA, et al. One-unit versus two-unit cord-blood transplantation for hematologic cancers. The New England Journal of Medicine. 2014;371(18):1685–94.CrossRefGoogle ScholarPubMed
Ciceri, F, Labopin, M, Aversa, F, Rowe, JM, Bunjes, D, Lewalle, P, et al. A survey of fully haploidentical hematopoietic stem cell transplantation in adults with high-risk acute leukemia: a risk factor analysis of outcomes for patients in remission at transplantation. Blood. 2008;112(9):3574–81.CrossRefGoogle ScholarPubMed
Huang, XJ, Liu, DH, Liu, KY, Xu, LP, Chen, H, Han, W, et al. Treatment of acute leukemia with unmanipulated HLA-mismatched/haploidentical blood and bone marrow transplantation. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2009;15(2):257–65.CrossRefGoogle ScholarPubMed
Champlin, RE, Passweg, JR, Zhang, MJ, Rowlings, PA, Pelz, CJ, Atkinson, KA, et al. T-cell depletion of bone marrow transplants for leukemia from donors other than HLA-identical siblings: advantage of T-cell antibodies with narrow specificities. Blood. 2000;95(12):39964003.Google ScholarPubMed
Baron, F, Labopin, M, Blaise, D, Lopez-Corral, L, Vigouroux, S, Craddock, C, et al. Impact of in vivo T-cell depletion on outcome of AML patients in first CR given peripheral blood stem cells and reduced-intensity conditioning allo-SCT from a HLA-identical sibling donor: a report from the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplantation. 2014;49(3):389–96.CrossRefGoogle ScholarPubMed
Bayraktar, UD, de Lima, M, Saliba, RM, Maloy, M, Castro-Malaspina, HR, Chen, J, et al. Ex vivo T cell-depleted versus unmodified allografts in patients with acute myeloid leukemia in first complete remission. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2013;19(6):898903.CrossRefGoogle ScholarPubMed
Pavletic, SZ, Kumar, S, Mohty, M, de Lima, M, Foran, JM, Pasquini, M, et al. NCI First International Workshop on the Biology, Prevention, and Treatment of Relapse after Allogeneic Hematopoietic Stem Cell Transplantation: report from the Committee on the Epidemiology and Natural History of Relapse following Allogeneic Cell Transplantation. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2010;16(7):871–90.CrossRefGoogle Scholar
Fung, HC, Stein, A, Slovak, M, O’Donnell, M R, Snyder, DS, Cohen, S, et al. A long-term follow-up report on allogeneic stem cell transplantation for patients with primary refractory acute myelogenous leukemia: impact of cytogenetic characteristics on transplantation outcome. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2003;9(12):766–71.CrossRefGoogle ScholarPubMed
Ferrant, A, Labopin, M, Frassoni, F, Prentice, HG, Cahn, JY, Blaise, D, et al. Karyotype in acute myeloblastic leukemia: prognostic significance for bone marrow transplantation in first remission: a European Group for Blood and Marrow Transplantation study. Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation (EBMT). Blood. 1997;90(8):2931–8.Google Scholar
Tallman, MS, Dewald, GW, Gandham, S, Logan, BR, Keating, A, Lazarus, HM, et al. Impact of cytogenetics on outcome of matched unrelated donor hematopoietic stem cell transplantation for acute myeloid leukemia in first or second complete remission. Blood. 2007;110(1):409–17.CrossRefGoogle ScholarPubMed
Brunet, S, Labopin, M, Esteve, J, Cornelissen, J, Socie, G, Iori, AP, et al. Impact of FLT3 internal tandem duplication on the outcome of related and unrelated hematopoietic transplantation for adult acute myeloid leukemia in first remission: a retrospective analysis. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2012;30(7):735–41.CrossRefGoogle ScholarPubMed
Randolph, SS, Gooley, TA, Warren, EH, Appelbaum, FR, Riddell, SR. Female donors contribute to a selective graft-versus-leukemia effect in male recipients of HLA-matched, related hematopoietic stem cell transplants. Blood. 2004;103(1):347–52.CrossRefGoogle ScholarPubMed
Goldstone, AH, Burnett, AK, Wheatley, K, Smith, AG, Hutchinson, RM, Clark, RE, et al. Attempts to improve treatment outcomes in acute myeloid leukemia (AML) in older patients: the results of the United Kingdom Medical Research Council AML11 trial. Blood. 2001;98(5):1302–11.CrossRefGoogle Scholar
Buyse, M, Squifflet, P, Lange, BJ, Alonzo, TA, Larson, RA, Kolitz, JE, et al. Individual patient data meta-analysis of randomized trials evaluating IL-2 monotherapy as remission maintenance therapy in acute myeloid leukemia. Blood. 2011;117(26):7007–13.CrossRefGoogle ScholarPubMed
de Lima, M, Giralt, S, Thall, PF, de Padua, Silva L, Jones, RB, Komanduri, K, et al. Maintenance therapy with low-dose azacitidine after allogeneic hematopoietic stem cell transplantation for recurrent acute myelogenous leukemia or myelodysplastic syndrome: a dose and schedule finding study. Cancer. 2010;116(23):5420–31.CrossRefGoogle ScholarPubMed
Platzbecker, U, Wermke, M, Radke, J, Oelschlaegel, U, Seltmann, F, Kiani, A, et al. Azacitidine for treatment of imminent relapse in MDS or AML patients after allogeneic HSCT: results of the RELAZA trial. Leukemia. 2012;26(3):381–9.CrossRefGoogle ScholarPubMed
Metzelder, SK, Schroeder, T, Finck, A, Scholl, S, Fey, M, Gotze, K, et al. High activity of sorafenib in FLT3-ITD-positive acute myeloid leukemia synergizes with allo-immune effects to induce sustained responses. Leukemia. 2012;26(11):2353–9.CrossRefGoogle ScholarPubMed
Keilholz, U, Letsch, A, Busse, A, Asemissen, AM, Bauer, S, Blau, IW, et al. A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood. 2009;113(26):6541–8.CrossRefGoogle ScholarPubMed
Rezvani, K, Yong, AS, Mielke, S, Jafarpour, B, Savani, BN, Le, RQ, et al. Repeated PR1 and WT1 peptide vaccination in Montanide-adjuvant fails to induce sustained high-avidity, epitope-specific CD8+ T cells in myeloid malignancies. Haematologica. 2011;96(3):432–40.CrossRefGoogle ScholarPubMed
Gale, RP and Fuchs, EJ. Is there really a specific graft-versus-leukaemia effect? Bone Marrow Transplant. 2016; Nov; 51(11):1413–15.CrossRefGoogle ScholarPubMed
Deol, A, Sengsayadeth, S, Ahn, KW, et al. Does FLT 3 mutation impact survival after hematopoietic stem cell transplantation for acute myeloid leukemia? A Center for International Blood and Marrow Transplant Research (CIBMTR) analysis. Cancer. 2016;122(19):3005–14.CrossRefGoogle Scholar
Papaemmanuil, E, Gerstung, M, Bullinger, L, et al. Genomic classification and prognosis in acute myeloid leukemia. New England Journal of Medicine. 2016;374(23):2209–21.CrossRefGoogle ScholarPubMed
Schlenk, RF, Kayser, S, Bullinger, L, et al. Differential impact of allelic ratio and insertion site in FLT3-ITD-positive AML with respect to allogeneic transplantation. Blood. 2014;124(23):3441–9.CrossRefGoogle ScholarPubMed
Linch, DC, Hills, RK, Burnett, AK, et al. Impact of FLT3(ITD) mutant allele level on relapse risk in intermediate-risk acute myeloid leukemia. Blood. 2014;124(2):273–6.CrossRefGoogle ScholarPubMed
Krug, U, Berdel, WE, Gale, RP. Increasing intensity of therapies assigned at diagnosis does not improve survival of adults with acute myeloid leukemia. Leukemia. 2016;30(6):1230–6.CrossRefGoogle Scholar
Sanz, J, Gale, RP. One or two umbilical cord blood cell units? Caveat emptor. Bone Marrow Transplantation. In press.Google Scholar
Bacigalupo, A, Lamparelli, T, Barisione, G, et al. Thymoglobulin prevents chronic graft-versus-host disease, chronic lung dysfunction, and late transplant-related mortality: long-term follow-up of a randomized trial in patients undergoing unrelated donor transplantation. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2006;12:560–5.CrossRefGoogle ScholarPubMed
Finke, J, Bethge, WA, Schmoor, C, et al. Standard graft-versus-host disease prophylaxis with or without anti-T-cell globulin in haematopoietic cell transplantation from matched unrelated donors: a randomised, open-label, multicentre phase 3 trial. Lancet Oncology. 2009;10(9):855–64.CrossRefGoogle ScholarPubMed
Kroger, N, Solano, C, Wolschke, C, et al. Antilymphocyte globulin for prevention of chronic graft-versus-host-disease. New England Journal of Medicne. 2016;374(1):4353. PMID: 26735993.CrossRefGoogle ScholarPubMed
Walker, I, Panzarella, T, Couban, S, et al. Pretreatment with anti-thymocyte globulin versus no anti-thymocyte globulin in patients witih haematological malignancies undergoing haemopoietic cell transplantation from unrelated donors: a randomised, controlled, open-label, phase 3, multicenter trial. Lancet Oncology. 2016;17:164–73.CrossRefGoogle Scholar
Ivey, A, Hills, RK, Simpson, MA, et al. Assessment of minimal residual disease in standard-risk AML. New England Journal of Medicine. 2016;374(5):422–33.CrossRefGoogle ScholarPubMed
Othus, M, Estey, E, Gale, RP. Assessment of minimal residual disease in standard-risk AML. New England Journal of Medicine. 2016;375(6): e9.Google ScholarPubMed
Adults with acute myeloid leukaemia or high-risk myelodysplastic syndrome (AML 19): a randomized, controlled, open label Phase III trial. Retrieved December 21, 2016, from www.isrctn.com/ISRCTN78449203.Google Scholar
Milano, F, Gooley, T, Wood, B, et al. Cord-blood transplantation in patients with minimal residual disease. New England Journal of Medicine. 2016;375(10):944–53.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×