Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-20T03:30:03.633Z Has data issue: false hasContentIssue false

13 - Energetic particles and manned spaceflight

Published online by Cambridge University Press:  05 April 2013

Stephen Guetersloh
Affiliation:
Texas A&M University
Neal Zapp
Affiliation:
Space Radiation Analysis Group (SRAG)
Carolus J. Schrijver
Affiliation:
Solar and Astrophysics Laboratory, Lockheed Martin
George L. Siscoe
Affiliation:
Boston University
Get access

Summary

Radiation protection: introduction

Ionizing radiation is radiation that has enough energy to cause ionization in matter, and when it passes through the tissues of the body it has sufficient energy to damage DNA (Hall, 1994). Examples are α-particles (helium nuclei), β-particles (electrons or positrons), γ-rays, X-rays and neutrons. While there are many benefits to the use of X-rays, radioisotopes, and other radioactive materials in industry, research, and power generation, their use entails exposure of personnel from normal use as well as accidents. Though some small amounts of radioisotopes are used in manned space missions for instrument calibration and research, the vast majority of crew exposures are due to the environment in which they work.

Whether an activity is controlled by the Nuclear Regulatory Commission (NRC), the Department of Energy (DOE), or the Occupational Safety and Health Administration (OSHA), an operational radiation protection program is required so that doses to personnel and members of the public are monitored and documented in order that exposures may be kept at a minimum. NASA's program includes active and passive personnel dosimetry, vehicle shielding design requirements, as well as real-time active monitoring of the heliosphere to watch for changes in the environment that would be indicative of an impending solar particle event (SPE).

Units

When considering the amount of radiation absorbed by living tissue, the standard unit known as the gray (Gy) is employed, in which 1 Gy equals 1 J of radiation energy absorbed per kilogram of tissue (the older unit of 1 rad = 0.01 Gy).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×