Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T01:29:31.671Z Has data issue: false hasContentIssue false

13 - Comparative planetary environments

Published online by Cambridge University Press:  05 August 2013

Frances Bagenal
Affiliation:
LASP – University of Colorado
Carolus J. Schrijver
Affiliation:
Lockheed Martin Advanced Technology Center
George L. Siscoe
Affiliation:
Boston University
Get access

Summary

Introduction

The nature of the interaction between a planetary object and the surrounding plasma depends on the properties of both the object and the plasma flow in which it is embedded. A planet with a significant internal magnetic field forms a magnetosphere that extends the planet's influence beyond its surface or cloud tops. A planetary object without a significant internal dynamo can interact with any surrounding plasma via currents induced in an electrically conducting ionosphere.

All the solar system planets are embedded in the wind that streams radially away from the Sun. The flow speed of the solar wind exceeds the speed of the fastest wave mode that can propagate in the interplanetary plasma. The interaction of the supersonic solar wind with a planetary magnetic field (either generated by an internal dynamo or induced externally) produces a bow shock upstream of the planet. Objects such as the Earth's Moon that have no appreciable atmosphere and a low-conductivity surface have minimal electrodynamic interaction with the surrounding plasma and just absorb the impinging solar wind with no upstream shock. Interactions between planetary satellites and magnetospheric plasmas are as varied as the moons themselves: Ganymede's significant dynamo produces a mini-magnetosphere within the giant magnetosphere of Jupiter; the electrodynamic interactions of magnetospheric plasma flowing past the atmospheres of volcanically active Io (Jupiter) and Enceladus (Saturn) generate substantial currents and supply more plasma to the system; moons without significant atmospheres (e.g. Callisto at Jupiter) absorb the impinging plasma.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×