Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T08:54:29.673Z Has data issue: false hasContentIssue false

1 - Introduction and Preliminaries

Published online by Cambridge University Press:  05 June 2014

Massoud Kaviany
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

The macroscopic heat transfer rates use thermal-energy related properties, such as the thermal conductivity, and in turn these properties are related to the atomic-level properties and processes. Heat transfer physics addresses these atomic-level processes (e.g., kinetics). We begin with the macroscopic energy equation used in heat transfer analysis to describe the rates of thermal energy storage, transport (by means of conduction k, convection u, and radiation r), and conversion to and from other forms of energy. The volumetric macroscopic energy conservation (rate) equation is listed in Table 1.1. The sensible heat storage is the product of density and specific heat capacity ρcp, and the time rate of change of local temperature ∂T/∂t. The heat flux vector q is the sum of the conductive, convective, and radiative heat flux vectors. The conductive heat flux vector qk is the negative of the product of the thermal conductivity k, and the gradient of temperature ∇T, i.e., the Fourier law of conduction. The convective heat flux vector qu (assuming net local motion) is the product of ∇cp, the local velocity vector u, and temperature. For laminar flow, in contrast to turbulent flow that contains chaotic velocity fluctuations, molecular conduction of the fluid is unaltered, whereas in turbulent flow this is augmented (phenomenologically) by turbulent mixing transport (turbulent eddy conductivity). The radiative heat flux vector qr = qph (ph stands for photon) is the spatial (angular) and spectral integrals of the product of the unit vector s and the electromagnetic (EM), spectral (frequency dependent), directional radiation intensity Iph, where ω is the angular frequency of EM radiation (made up of photons).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×