Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-18T12:25:30.127Z Has data issue: false hasContentIssue false

8 - Monolithic power amplifiers

Published online by Cambridge University Press:  05 November 2011

Inder Bahl
Affiliation:
Cobham Sensor Systems
Get access

Summary

Overview of MMIC power amplifiers

Over the past 30 years, microwave power amplifier (PA) technology has gone through a significant evolution to meet necessary requirements such as high-power, high-efficiency and high-voltage operation for lower-cost solutions, circuit miniaturization, improved reliability and high-volume applications. PA component size and weight are prime factors in the design of electronic systems for satellite communications, phased-array radar (PAR), electronic warfare, and other airborne applications, whereas high-volume and low-cost drive the PAR and consumer electronics market. Monolithic microwave integrated circuit (MMIC) power amplifiers are the key to meeting these requirements. In MMICs all active and passive circuit elements are fabricated together on a semi-insulating GaAs substrate. MMIC amplifiers are integral parts of most commercial and military systems.

For radio frequency integrated circuit (RFIC) wireless applications, several Si-based device technologies including bipolar, CMOS, BiCMOS and SiGe HBT are being pursued to obtain an optimum solution in terms of performance and cost for low-power applications. In the Si based processes, Si wafers are larger and cheaper than GaAs wafers but the fabrication involves a relatively larger number of process steps. RFICs are generally partially matched and require off-chip elements to complete the matching. Both RFICs and MMICs have low Q passives, expensive nonrecurring engineering cost, long development cycle time and in MMICs no post manufacture tuning or “tweaking” to obtain the optimum performance. Power levels in an MMIC approach are much higher than those that can be realized using an RFIC technique because of breakdown voltage considerations. Therefore, Si based RFICs will not be included in this chapter.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pengelly, R. S.Turner, J. S.Monolithic broadband GaAs FET amplifiersElectron. Lett251 1976CrossRefGoogle Scholar
Dilorenzo, J. V.Khandelwal, D. D.GaAs FET Principles and TechnologyArtech HouseNorwood, MA 1982Google Scholar
Pengelly, R. S.Microwave Field-Effect Transistors – Theory, Design and ApplicationsWileyHoboken, NJ 1982Google Scholar
Soares, R.Graffeuil, J.Obregon, J.Applications of GaAs MESFETsArtech HouseNorwood, MA 1983Google Scholar
Williams, R. E.Gallium Arsenide Processing TechniquesArtech HouseNorwood, MA 1984Google Scholar
Pucel, R. A.Monolithic Microwave Integrated CircuitsIEEE PressPiscataway, NJ 1985Google Scholar
Ferry, D. K.Gallium Arsenide TechnologyHoward SamsIndianapolis, IN 1985Google Scholar
Einspruch, N. G.Wisseman, W. R.GaAs MicroelectronicsAcademic PressNew York 1985Google Scholar
Bahl, I. J.Bhartia, P.Microwave Solid State Circuit DesignWileyHoboken, NJ 2003 chGoogle Scholar
Soares, R.GaAs MESFET Circuit DesignArtech HouseNorwood, MA 1989Google Scholar
Mun, J.GaAs Integrated Circuits: Design and TechnologyNew YorkMacmillan 1988Google Scholar
Ladbrooke, P. H.MMIC Design: GaAs FETs and HEMTsArtech HouseNorwood, MA 1989Google Scholar
Goyal, R.Monolithic Microwave Integrated Circuits: Technology and DesignArtech HouseNorwood, MA 1989Google Scholar
Ali, F.Bahl, I.Gupta, A.Microwave and Millimeter-wave Heterostructure Transistors and Their ApplicationsArtech HouseNorwood, MA 1989Google Scholar
Ali, F.Gupta, A.HEMTs and HBts: Devices, Fabrication and CircuitsArtech HouseNorwood, MA 1991Google Scholar
Fisher, D.Bahl, I.Gallium Arsenide IC Applications HandbookAcademic PressSan Diego 1995Google Scholar
Goyal, R.High Frequency Analog Integrated Circuit DesignWileyHoboken, NJ 1995Google Scholar
Deal, W. R.Mei, B.Radisic, V.Yoshida, W.Liu, H.Uyeda, J.Barsky, M.Gaier, T.Fung, A.Samoska, L.Lai, R.Demonstration of a 270 GHz MMIC amplifier using 35-nm InP HEMT technologyIEEE Microw. Wireless Components Letts 17 391 2007CrossRefGoogle Scholar
Chang, K.Bahl, I.Nair, V.RF and Microwave Circuit and Component Design for Wireless SystemsWileyHoboken, NJ 2002Google Scholar
Bahl, I. J.Lumped Elements for RF and Microwave CircuitsArtech HouseNorwood, MA 2003Google Scholar
Bahl, I. J.Monolithic microwave integrated circuits (MMICs)Encyclopedia of RF and Microwave EngineeringWileyHoboken, NJ 2005Google Scholar
Robertson, I. D.Bahl, I. J.Dorf, R. C.Solid state circuitsElectrical Engineering HandbookCRC PressBoca Raton, FL 2006Google Scholar
Bahl, I. J.Fundamentals of RF and Microwave Transistor AmplifiersJohn WileyHoboken, NJ 2009CrossRefGoogle Scholar
Pribble, W. L.Palmour, J. W.Sheppard, S. T.Smith, R. PAllen, S. T.Smith, T. JRing, Z.Sumakeris, J. J.Saxler, A. W.Milligan, J. W.Applications of SiC MESFETs and GaN HEMTs in power amplifier designIEEE MTT-S Int. Microwave Symp 1819 2002Google Scholar
Pengelly, R. S.26 2002
Golio, J. M.Microwave MESFETs and HEMTsArtech HouseNorwood, MA 1991Google Scholar
Wang, H.Lai, R.Chen, Y. C.Kok, Y. LHuang, T. W.Block, T.Streit, D.Liu, P. H.Siegel, P.Allen, B.1275 1997
Gupta, K. C.Garg, R.Bahl, I.Bhartia, P.Microstrip Lines and SlotlinesArtech HouseNorwood, MA 1996Google Scholar
Steer, M. B.Bandler, J. W.Snowden, C. M.Computer-aided design of RF and microwave circuits and systemsIEEE Trans. Microw. Theory Tech 50 1005 2002CrossRefGoogle Scholar
Anholt, R.Electrical and Thermal Characterization of MESFETs, HEMTs and HBTsArtech HouseNorwood, MA 1995Google Scholar
Special Issue on Process-oriented Microwave CAD and ModelingIEEE Trans. Microw. Theory Tech 40 1992
Special Issue on Computer-aided Design of Nonlinear Microwave CircuitsInt. J. Microw. Millimeter-Wave Computer-Aided Eng 6 1996
Special Issue on Optimization-oriented Microwave Computer-aided DesignInt. J. Microw. Millimeter-Wave Computer-Aided Eng 7 1997
Bonani, F.Guerrieri, S. D.Filicori, F.Ghione, G.Pirola, M.Physics-based large-signal sensitivity analysis of microwave circuits using technological parametric sensitivity from multidimensional semiconductor device modelIEEE Trans. Microw. Theory Tech 45 846 1997CrossRefGoogle Scholar
Estreich, D.93 1987
Trew, R. J.MESFET models for microwave CAD applicationsInt. J. Microw. Millimeter-Wave Computer-Aided Eng 1 143 1991CrossRefGoogle Scholar
Walker, J. L. B.High-Power GaAs FET AmplifiersArtech HouseNorwood, MA 1993Google Scholar
Niehenke, E. C.Pucel, R. ABahl, I. J.Microwave and millimeter-wave integrated circuitsIEEE Trans. Microw. Theory Tech 50 846 2002CrossRefGoogle Scholar
Itoh, T.Numerical Techniques for Microwave and Millimeter – Wave Passive StructuresWileyHoboken, NJ 1989Google Scholar
Sorrentino, R.Numerical Methods for Passive Microwave and Millimeter-Wave StructuresWileyHoboken, NJ 1989Google Scholar
Special Issue on Engineering Applications of Electromagnetic Field SolversInt. J. Microw. Millimeter-Wave Computer-Aided Eng 5 1995
Special Issue on Automated Circuit Design Using Electromagnetic SimulatorsIEEE Trans. Microw. Theory Tech 45 1997
Conrad, A.Browne, J.EM tools enhance simulation accuracyMicrowaves RF 36 133 1997Google Scholar
Swanson, D.Hoefer, W.Electromagnetic SimulatorsArtech HouseNorwood, MA 2003Google Scholar
Bahl, I.Ku-band MMIC power amplifiers developed using MSAG MESFET technologyMicrowave J 49 56 2006CrossRefGoogle Scholar
Bahl, I. J.Griffin, L.Dilley, J.Balzan, M.Low loss multilayer microstrip line for monolithic microwave integrated circuits applicationsInt. J. RF and Microw. Computer-Aided Eng 8 441 19983.0.CO;2-L>CrossRefGoogle Scholar
Bahl, I. J.Design of a generic 2.5W, 60 percent bandwidth, C-band MMIC amplifierMicrowave J 45 54 2002Google Scholar
Griffin, E. L.709 2000
Bahl, I. J.0.7–2.7 GHz 12-watt power amplifier MMIC developed using MLP technologyIEEE Trans. Microw. Theory Tech 55 222 2007CrossRefGoogle Scholar
Bahl, I. J.2–8 GHz 8-watt power amplifier MMIC developed using MSAG MESFET technologyIEEE Microw. Wireless Comp 18 52 2008CrossRefGoogle Scholar
Akkul, M.Sarfraz, MMayock, JBosch, W. 2004
Conway, D.Fowler, M.Redus, J.8 2006
Pribble, W. L.Griffin, E. L.25 1996
Siddiqui, M. KSharma, A. K.Callejo, L.G.Lai, R.A high-power and high-efficiency monolithic power amplifier at 28 GHz for LMDS applicationsIEEE Trans. Microw. Theory Tech 46 2232 1998CrossRefGoogle Scholar
High voltage low cost FETs technology for HPA MMIC applicationsMicrowave J 47 16 2004
Darwish, A. M.Boutros, K.Luo, B.Huebschman, D.Viveiros, E.Hung, A.AlGaN/GaN Ka-band 5-W MMIC amplifierIEEE Trans. Microw. Theory Tech 54 4456 2006CrossRefGoogle Scholar
Tummala, R. R.Rayaszewski, E. J.Microelectronic Packaging HandbookVan Nostrand Reinhold, NY 1989Google Scholar
Manzione, L. T.Plastic Packing of Microelectronic DevicesVan Nostrand Reinhold, NY 1990Google Scholar
Sergent, J. E.Harper, C. A.Hybrid Microelectronics HandbookMcGraw-HillNew York 1995Google Scholar
Garrou, P. E.Turlik, I.Multichip Module Technology HandbookMcGraw-HillNew York 1998Google Scholar
Gupta, T. K.Handbook of Thick- and Thin-Film Hybrid MicroelectronicsJohn WileyHoboken, NJ 2003CrossRefGoogle Scholar
Ulrich, R. K.Brown, W. D.Advanced Electronic PackagingJohn WileyHoboken, NJ 2006CrossRefGoogle Scholar
Einspruch, N. G.Wissemen, W. R.VLSI Electronics Microstructure ScienceAcademic PressNew York 1985Google Scholar
Goyal, R.Monolithic Microwave Integrated Circuits: Technology and DesignArtech HouseNorwood, MA 1989Google Scholar
Sweet, A.MIC and MMIC Amplifier and Oscillator Circuit DesignArtech HouseNorwood, MA 1990Google Scholar
Golio, M.RF and Microwave HandbookCRC PressBoca Raton 2000CrossRefGoogle Scholar
Bahl, I. J.Lumped Elements for RF and Microwave CircuitsArtech HouseNorwood, MA 2003Google Scholar
Lee, Y. C.Packaging RF devices and modulesChang, K.Encyclopedia RF and Microwave EngineeringJohn WileyHoboken, NJ3590 2005Google Scholar
Pinel, S.RF/wireless packagingChang, K.Encyclopedia RF and Microwave EngineeringJohn WileyHoboken, NJ4516 2005Google Scholar
Bahl, I. J.Fundamentals of RF and Microwave Transistor AmplifiersJohn WileyHoboken, NJ 2009CrossRefGoogle Scholar
Lim, K.Pinel, S.Davis, M.Sutono, A.Chang-Ho, L.Deukhyoun, H.Obatoynbo, A.Laskar, J.Tantzeris, E. M.Tummala, R.RF-system-on-package (SOP) for wireless communicationsIEEE Microw. Mag 3 88 2002Google Scholar
Tavernier, C. A.Valentin, F.Mazouz, MVigo, R.Muffato, W.Maeder, P.Havasi, M.2277 2003
Fisher, D.Bahl, I.Gallium Arsenide IC Applications HandbookAcademic PressSan Diego 1995Google Scholar
Bahl, I. J.Griffin, E. L. 1987
Bahl, I. J. 1995

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×