Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T08:40:22.945Z Has data issue: false hasContentIssue false

23 - Language

from Topical Psychophysiology

Published online by Cambridge University Press:  27 January 2017

John T. Cacioppo
Affiliation:
University of Chicago
Louis G. Tassinary
Affiliation:
Texas A & M University
Gary G. Berntson
Affiliation:
Ohio State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel Rahman, R. & Summer, W. (2003). Does phonological encoding in speech production always follow the retrieval of semantic knowledge? Electrophysiological evidence for parallel processing. Cognitive Brain Research, 16: 372382.Google Scholar
Amsel, B. D. (2011). Tracking real-time neural activation of conceptual knowledge using single-trial event-related potentials. Neuropsychologia, 49: 970983.Google Scholar
Amsel, B. D., Urbach, T. P., & Kutas, M. (2013). Alive and grasping: stable and rapid semantic access to an object category but not object graspability. NeuroImage, 77: 113.Google Scholar
Amsel, B. D., Urbach, T. P., & Kutas, M. (2014). Empirically grounding grounded cognition: the case of color. NeuroImage, 99: 149157.Google Scholar
Astesano, C., Besson, M., & Alter, K. (2004). Brain potentials during semantic and prosodic processing in French. Cognitive Brain Research, 18: 172184.Google Scholar
Baddeley, A. (1992). Working memory. Science, 255: 556569.Google Scholar
Barber, H. & Kutas, M. (2007). Interplay between computational models and cognitive electrophysiology in visual word recognition. Brain Research Reviews, 53: 98123.Google Scholar
Barber, H. A., Otten, L. J., Kousta, S., & Vigliocco, G. (2013). Concreteness in word processing: ERP and behavioral effects in a lexical decision task. Brain and Language, 125: 4753.Google Scholar
Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59: 617645.Google Scholar
Bartholow, B. D., Fabiani, M., Gratton, G., & Bettencourt, B. A. (2001). A psychophysiological examination of cognitive processing of and affective responses to social expectancy violations. Psychological Science, 12: 197204.Google Scholar
Bastuji, H., Perrin, F., & Garcia-Larrea, L. (2002). Semantic analysis of auditory input during sleep: studies with event related potentials. International Journal of Psychophysiology, 46: 243255.Google Scholar
Beeman, M. & Chiarello, C. (eds.) (1998). Right Hemisphere Language Comprehension: Perspectives from Cognitive Neuroscience. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Besson, M. & Macar, F. (1987). An event-related potential analysis of incongruity in music and other non-linguistic contexts. Psychophysiology, 24: 1425.Google Scholar
Boatman, D. (2004). Cortical bases of speech perception: evidence from functional lesion studies. Cognition, 92: 4765.Google Scholar
Brouwer, H., Fitz, H., & Hoeks, J. (2012). Getting real about semantic illusions: rethinking the functional role of the P600 in language comprehension. Brain Research, 1446: 127143.Google Scholar
Burkhardt, P. (2006). Inferential bridging relations reveal distinct neural mechanisms: evidence from event-related brain potentials. Brain and Language, 98: 159168.Google Scholar
Carreiras, M., Perea, M., Vergara, M., & Pollatsek, A. (2009). The time course of orthography and phonology: ERP correlates of masked priming effects in spanish. Psychophysiology, 46: 11131122.Google Scholar
Chan, A. M., Baker, J. M., Eskandar, E., Schomer, D., Ulbert, I., Marinkovic, K., … & Halgren, E. (2011). First-pass selectivity for semantic categories in human anteroventral temporal lobe. Journal of Neuroscience, 31: 1811918129.Google Scholar
Chomsky, N. (1965). Aspects of the Theory of Syntax. Cambridge, MA: MIT Press.Google Scholar
Chomsky, N. (1980). Rules and representations. Behavioral and Brain Sciences, 3: 161.Google Scholar
Cohn, N., Paczynski, M., Jackendoff, R., Holcomb, P. J., & Kuperberg, G. R. (2012). (Pea)nuts and bolts of visual narrative: structure and meaning in sequential image comprehension. Cognitive Psychology, 65: 138.Google Scholar
Coulson, S. & Davenport, T. S. (2012). Cognitive neuroscience of creative language: the poetic and the prosaic. In Faust, M. (ed.), The Handbook of the Neuropsychology of Language (pp. 386405). Chichester: John Wiley.Google Scholar
Coulson, S., King, J. W., & Kutas, M. (1998a). Expect the unexpected: event-related brain response to morphosyntactic violations. Language and Cognitive Processes, 1: 2158.Google Scholar
Coulson, S., King, J. W., & Kutas, M. (1998b). ERPs and domain specificity: beating a straw horse. Language and Cognitive Processes, 13: 653672.Google Scholar
Cowan, N. (1998). What are the differences between long-term, short-term, and working memory? Progress in Brain Research, 169: 323338.Google Scholar
Dambacher, M., Dimigen, O., Braun, M., Wille, K., Jacobs, A. M., & Kliegl, R. (2012). Stimulus onset asynchrony and the timeline of word recognition: event-related potentials during sentence reading. Neuropsychologia, 50: 18521870.Google Scholar
Deacon, D. & Shelley-Tremblay, J. (2000). How automatically is meaning accessed: a review of the effects of attention on semantic processing, Frontiers in Bioscience, 5: E8294.Google Scholar
DeLong, K. A., Quante, L., & Kutas, M. (2014a). Predictability, plausibility, and two late ERP positivities during written sentence comprehension. Neuropsychologia, 61: 150162.Google Scholar
DeLong, K. A., Troyer, M., & Kutas, M. (2014b). Pre-processing in sentence comprehension: sensitivity to likely upcoming meaning and structure. Language and Linguistics Compass, 8: 631645.Google Scholar
Dikker, S. & Pylkkanen, L. (2011). Before the N400: effects of lexical-semantic violations in visual cortex. Brain and Language, 118: 2328.Google Scholar
Dominguez, A., de Vega, M., & Barber, H. (2004). Event-related brain potentials elicited by morphological, homographic, orthographic, and semantic priming. Journal of Cognitive Neuroscience, 16: 598608.Google Scholar
Dronkers, N. F., Wilkins, D. P., Van Valin, R. D. Jr., Redfern, B. B., & Jaeger, J. J. (2004). Lesion analysis of the brain areas involved in language comprehension. Cognition, 92: 145177.Google Scholar
Egidi, G. & Nussbaum, H. (2012). Emotional language processing: how mood affects integration processes during discourse comprehension. Brain and Language, 122: 199210.Google Scholar
Fedorenko, E. & Thompson-Schill, S. L. (2014). Reworking the language network, Trends in Cognitive Sciences, 18: 120126.Google Scholar
Filik, R. & Leuthold, H. (2008). Processing local semantic anomalies in fictional contexts: evidence from the N400. Psychophysiology, 45: 554558.Google Scholar
Fodor, J. A. (1983). Modularity of Mind: An Essay on Faculty Psychology. Cambridge, MA: MIT Press.Google Scholar
Frey, S., Campbell, J. S. W., Pike, G. B., & Petrides, M. (2008). Dissociating the human language pathways with high angular resolution diffusion fiber tract-ography. Journal of Neuroscience, 28: 1143511444.Google Scholar
Friederici, A. D. (2002). Towards a neural basis of auditory sensory processing. Trends in Cognitive Science, 6: 7884.Google Scholar
Friederici, A. D. (2009). Pathways to language: fiber tracts in the human brain. Trends in Cognitive Science, 13: 175181.Google Scholar
Grainger, J. & Holcomb, P. J. (2009). Watching the word go by: on the time course of component processes in visual word recognition. Language and Linguistics Compass, 3: 128156.Google Scholar
Grice, P. (1989) Studies in the Way of Words. Cambridge, MA: Harvard University Press.Google Scholar
Griffiths, J. D., Marslen-Wilson, W. D., Stamatakis, E. A., & Tyler, L. K. (2013). Functional organization of the neural language system: dorsal and ventral pathways are critical for syntax. Cerebral Cortex, 23: 139147.Google Scholar
Grossi, G., Savill, N., Thomas, E., & Thierry, G. (2012). Electrophysiological cross-language neighborhood density effects in late and early English–Welsh bilinguals. Frontiers in Psychology, 3: 408.Google Scholar
Hagoort, P. (2014). Nodes and networks in the neural architecture for language: Broca’s region and beyond. Current Opinion in Neurobiology, 28: 136141.Google Scholar
Hagoort, P. & Levinson, S. C. (2014). Neuropragmatics. In Gazzaniga, M. S. & Mangun, G. R. (eds.), The Cognitive Neurosciences, 5th edn. (pp. 667674). Cambridge, MA: MIT Press.Google Scholar
Hauk, O., Coutout, C., Holden, A., & Chen, Y. (2012). The time-course of single-word reading: evidence from fast behavioral and brain responses. NeuroImage, 60: 14621477.Google Scholar
Hauk, O., Pulvermüller, F., Ford, M., Marslen-Wilson, W. D., & Davis, M. H. (2009). Can I have a quick word? Early electrophysiological manifestations of psycholinguistic processes revealed by event-related regression analysis of the EEG. Biological Psychology, 80: 6474.Google Scholar
Hickok, G. & Poeppel, D. (2004). Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition, 92: 6799.Google Scholar
Hickok, G. & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8: 393402.Google Scholar
Hoenig, K., Sim, E., Bochev, V., Herrnberger, B., & Kiefer, M. (2008). Conceptual flexibility in the human brain: dynamic recruitment of semantic maps from visual, motor, and motion-related areas. Journal of Cognitive Neuroscience, 20: 17991814.Google Scholar
Holcomb, P. J. & Grainger, J. (2009). ERP effects of short interval masked associative and repetition priming. Journal of Neurolinguistics, 22: 301312.Google Scholar
Holcomb, P. J., Kounios, J., Anderson, J. E., & West, C. (1999). Dual-coding, context-availability, and concreteness effects in sentence comprehension: an electrophysiological investigation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25: 721742.Google Scholar
Holt, D., Lynne, S., & Kuperburg, G. (2008). Neurophysiological correlates of processing meaning in context. Journal of Cognitive Neuroscience, 21: 22452262.Google Scholar
Huang, H., Lee, C., & Federmeier, K. D. (2010). Imagine that! ERPs provide evidence for distinct hemispheric contributions to the processing of concrete and abstract concepts. NeuroImage, 49: 11161123.Google Scholar
Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286: 25262528.Google Scholar
Indefrey, P. & Levelt, W. J. M. (2004). The spatial and temporal signatures of word production components. Cognition, 92: 101144.Google Scholar
Justus, T., Larsen, J., de Mornay Davies, P., & Swick, D. (2008). Interpreting dissociations between regular and irregular past-tense morphology: evidence from event-related potentials. Cognitive, Affective, & Behavioral Neuroscience, 8: 178194.Google Scholar
Kellenbach, M. L., Wijers, A. A., & Mulder, G. (2000). Visual semantic features are activated during the processing of concrete words: event-related potential evidence for perceptual semantic priming. Cognitive Brain Research, 10: 6775.Google Scholar
Kielar, A. & Joanisse, M. (2009). Graded effects of regularity in language revealed by N400 indices of morphological priming. Journal of Cognitive Neuroscience, 22: 12731398.Google Scholar
King, J. W. & Kutas, M. (1998). Neural plasticity in the dynamics of human visual word recognition. Neuroscience Letters, 244: 6164.Google Scholar
Kluender, R. & Kutas, M. (1993). Subjacency as a processing phenomenon. Language and Cognitive Processes, 8: 573633.Google Scholar
Kounios, J., Green, D. L., Payne, L., Fleck, J. I., Grondin, R., & McRae, K. (2009). Semantic richness and the activation of concepts in semantic memory: evidence from event-related potentials. Brain Research, 1282: 95102.Google Scholar
Kounios, J. & Holcomb, P. J. (1994). Concreteness effects in semantic processing: ERP evidence supporting dual-coding theory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20: 804823.Google Scholar
Krauss, G., Fisher, R., Plate, C., Hart, J., Uematsu, S., Gordon, B. & Lesser, R. (1996). Cognitive effects of resecting basal temporal language areas. Epilepsia, 37: 476483.Google Scholar
Krishnan, A., Xu, Y. S., Gandour, J., & Cariani, P. (2005). Encoding of pitch in the human brainstem is sensitive to language experience. Cognitive Brain Research, 25: 161168.Google Scholar
Kuperberg, G., Pacyznski, M, & Ditman, T. (2011). Establishing causal coherence across sentences: an ERP study. Journal of Cognitive Neuroscience, 23: 12301246.Google Scholar
Kutas, M. & Federmeier, K. D. (2011). Thirty years and counting: finding meaning in the N400 component of the event related brain potential (ERP). Annual Review of Psychology, 62: 621647.Google Scholar
Kutas, M. & Hillyard, S. A. (1983). Event-related brain potentials to grammatical errors and semantic anomalies. Memory & Cognition, 11: 539550.Google Scholar
Kwon, N., Kluender, R., Kutas, M., & Polinsky, M. (2013). Subject/object processing asymmetries in Korean relative clauses: evidence from ERP data. Language, 89: 537585.Google Scholar
Laszlo, S. & Armstrong, B. C. (2014). PSPs and ERPs: applying the dynamics of post-synaptic potentials to individual units in simulation of temporally extended event-related potential reading data. Brain and Language, 132: 2227.Google Scholar
Laszlo, S. & Federmeier, K. D. (2009). A beautiful day in the neighborhood: an event-related potential study of lexical relationships and prediction in context. Journal of Memory and Language, 61: 326338.Google Scholar
Laszlo, S. & Federmeier, K. D. (2014). Never seem to find the time: evaluating the physiological time course of visual word recognition with regression analysis of single-item event-related potentials. Language, Cognition and Neuroscience, 29: 642661.Google Scholar
Laszlo, S. & Plaut, D. (2012). A neurally plausible parallel distributed processing model of event-related potential word reading data. Brain and Language, 120: 271281.Google Scholar
Laszlo, S., Stites, M., & Federmeier, K. (2012). Won’t get fooled again: an event-related potential study of task and repetition effects on the semantic processing of items without semantics. Language and Cognitive Processes, 27: 257274.Google Scholar
Lau, E. F., Holcomb, P. J., & Kuperberg, G. R. (2013). Dissociating N400 effects of prediction from association in single-word contexts. Journal of Cognitive Neuroscience, 25: 484502.Google Scholar
Lau, E. F., Phillips, C., & Poeppel, D. (2008). A cortical network for semantics: (de)constructing the N400. Nature Reviews Neuroscience, 9: 920933.Google Scholar
Lewis, R. L., Vasishth, S., & Van Dyke, J. A. (2006). Computational principles of working memory in sentence comprehension. Trends in Cognitive Sciences, 10: 447454Google Scholar
Luka, B. J. & Van Petten, C. (2014). Prospective and retrospective semantic processing: prediction, time, and relationship strength in event-related potentials. Brain and Language, 135: 115129.Google Scholar
Maess, B., Herrmann, C. S., Hahne, A., Nakamura, A., & Friederici, A. D. (2006). Localizing the distributed language network responsible for the N400 measured by MEG during auditory sentence processing. Brain Research, 1096: 163172.Google Scholar
Makris, N. & Pandya, D. (2009). The extreme capsule in humans and rethinking of the language circuitry. Brain Structure & Function, 213: 343358.Google Scholar
Mancini, S., Molinaro, N., Rizzi, L., & Carreiras, M. (2011). When persons disagree: an ERP study of Unagreement in Spanish. Psychophysiology, 48: 13611371.Google Scholar
Martens, U., Ansorge, U., & Kiefer, M. (2011). Controlling the unconscious: attentional task sets modulate subliminal semantic and visuomotor processes differentially. Psychological Science, 22: 282291.Google Scholar
Martin, A. (2007). The representation of object concepts in the brain. Annual Review of Psychology, 58: 2545.Google Scholar
Martin, A. E., Nieuwland, M. S., & Carreiras, M. (2014). Agreement attraction during comprehension of grammatical sentences: ERP evidence from ellipsis. Brain and Language, 135: 4251.Google Scholar
Martín-Loeches, M., Muñoz, F., Casado, P., Melcon, A., & Fernández-Frías, C. (2005). Are the anterior negativities to grammatical violations indexing working memory? Psychophysiology, 42: 508519.Google Scholar
McKinnon, R. & Osterhout, L. (1996). Constraints on movement phenomena in sentence processing: evidence from event-related brain potentials. Language and Cognitive Processes, 11: 495523.Google Scholar
Midgley, K. J., Holcomb, P. J., van Heuven, W. J. B., & Grainger, J. (2008). An electrophysiological investigation of cross-language effects of orthographic neighborhood. Brain Research, 1246: 123135.Google Scholar
Misra, M. & Holcomb, P. (2003). Event-related potential indices of masked repetition priming. Psychophysiology, 40: 115130.Google Scholar
Moreno, E., Federmeier, K., & Kutas, M. (2002). Switching languages, switching palabras (words): an electrophysiological study of code switching. Brain and Language, 80: 188207.Google Scholar
Morris, J. & Stockall, L. (2012). Early, equivalent ERP masked priming effects for regular and irregular morphology. Brain and Language, 123: 8193.Google Scholar
Moscoso del Prado, M., Hauk, O., & Pulvermüller, F. (2006). Category specificity in the processing of color-related and form-related words: an ERP study. NeuroImage, 29: 2937.Google Scholar
Müller, R. A. & Basho, S. (2004). Are nonlinguistic functions in “Broca’s area” prerequisites for language acquisition? FMRI findings from an ontogenetic viewpoint. Brain and Language, 89: 329336.Google Scholar
Münte, T. F., Heinze, H.-J., Matzke, M., Wieringa, B. M., & Johannes, S. (1998a). Brain potentials and syntactic violations revisited: no evidence for specificity of the syntactic positive shift. Neuropsychologia, 36: 217226.Google Scholar
Münte, T. F., Schiltz, K., & Kutas, M. (1998b). When temporal terms belie conceptual order. Nature, 395: 7173.Google Scholar
Newman, A., Supalla, T., Hauser, P, Newport, E., & Bavalier, D. (2010). Prosodic and narrative processing in American Sign Language: an fMRI study. NeuroImage, 52: 669676.Google Scholar
Nieuwland, M. S. (2014). “Who’s he?” Event-related brain potentials and unbound pronouns. Journal of Memory and Language, 76: 128.Google Scholar
Nieuwland, M. S. & Kuperberg, G. (2008). When the truth is not too hard to handle: an event-related potential study on the pragmatics of negation. Psychological Science, 19: 12131218.Google Scholar
Noppeney, U. & Price, C. J. (2004). An fMRI study of syntactic adaptation. Journal of Cognitive Neuroscience, 16: 702713.Google Scholar
Nunez-Pena, M. I. & Honrubia-Serrano, M. L. (2004). P600 related to rule violation in an arithmetic task. Cognitive Brain Research, 18: 130141.Google Scholar
Olichney, J., van Petten, C., Paller, K. A., Salmon, D. P., Iragui, V. J., & Kutas, M. (2000). Word repetition in amnesia: electrophysiological measures of impaired and spared memory. Brain, 123: 19481963.Google Scholar
Osterhout, L. (1997). On the brain response to syntactic anomalies: manipulations of word position and word class reveal individual differences. Brain and Language, 59: 494522.Google Scholar
Osterhout, L. & Hagoort, P. (1999). A superficial resemblance does not necessarily mean that you are part of the family: counterarguments to Coulson, King, and Kutas (1998) in the P600/SPS-P300 debate. Language and Cognitive Processes, 14: 114.Google Scholar
Palva, S., Palva, J. M., Shtyrov, Y., Kujala, T., Ilmoniemi, R. J., Kaila, K., & Näätänen, R. (2002). Distinct gamma-band evoked responses to speech and non-speech sounds in humans. Journal of Neuroscience, 22: RC211.Google Scholar
Patel, A. D., Gibson, E., Ratner, J., Besson, M., & Holcomb, P. J. (1998). Processing syntactic relations in language and music: an event-related potential study. Journal of Cognitive Neuroscience, 10: 717733.Google Scholar
Pattamadilok, C., Perre, L., Dufau, S., & Ziegler, J. C. (2009). On-line orthographic influences on spoken language in a semantic task. Journal of Cognitive Neuroscience, 21: 169179.Google Scholar
Plaut, D. C. & Booth, J. R. (2000). Individual and developmental differences in semantic priming: empirical and computational support for a single-mechanism account of lexical processing. Psychological Review, 107: 786823.Google Scholar
Poeppel, D. (2001). Pure word deafness and the bilateral processing of the speech code. Cognitive Science, 25: 679693.Google Scholar
Poeppel, D., Emmorey, K., & Hickok, G. (2012). Towards a new neurobiology of language. Journal of Neuroscience, 32: 1412514131.Google Scholar
Price, C. J. & Devlin, J. T. (2011). The interactive account of ventral occipitotemporal contributions to reading. Trends in Cognitive Sciences, 15: 246253.Google Scholar
Rabovsky, M. & McRae, K. (2014). Simulating the N400 ERP component as semantic network error: insights from a feature-based connectionist attractor model of word meaning. Cognition, 132: 6889.Google Scholar
Rastle, K., Lavric, A., Elchepp, H., & Crepaldi, D. (2015). Processing differences across regular and irregular inflections revealed through ERPs. Journal of Experimental Psychology: Human Perception and Performance, 41: 747760Google Scholar
Rauschecker, J. P. & Scott, S. K. (2009). Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nature Neuroscience, 12: 718724.Google Scholar
Regel, S., Coulson, S., & Gunter, T. (2010). The communicative style of a speaker can affect language comprehension? ERP evidence from the comprehension of irony. Brain Research, 1311: 121135.Google Scholar
Regel, S., Gunter, T. C., & Friederici, A. D. (2011). Isn’t it ironic? An electrophysiological exploration of figurative language processing. Journal of Cognitive Neuroscience, 23: 277293.Google Scholar
Rilling, J. K., Glasser, M. F., Jababdi, S., Andersson, J., & Preuss, T. M. (2012). Continuity, divergence, and the evolution of brain language pathways. Frontiers in Evolutionary Neuroscience, 3: 11.Google Scholar
Rogalsky, C. & Hickok, G. (2011). The role of Broca’s area in sentence comprehension. Journal of Cognitive Neuroscience, 23: 16641680.Google Scholar
Rolke, B., Heil, M., Streb, J., & Hennighausen, E. (2001). Missed prime words within the attentional blink evoke an N400 semantic priming effect. Psychophysiology, 38: 165174.Google Scholar
Roll, M., Horne, M., & Lindgren, M. (2007). Object shift and event-related brain potentials. Journal of Neurolinguistics, 20: 462481.Google Scholar
Schmitt, B. M., Schiltz, K., Zaake, W., Kutas, M., & Münte, T. F. (2001). An electrophysiological analysis of the time course of conceptual and syntactic encoding during tacit picture naming. Journal of Cognitive Neuroscience, 13: 510522.Google Scholar
Scott, S. K. & Wise, R. J. S. (2004). The functional neuroanatomy of prelexical processing in speech perception. Cognition, 92: 1345.Google Scholar
Sereno, S. C. & Rayner, K. (2003). Measuring word recognition in reading: eye movements and event-related potentials. Trends in Cognitive Sciences, 7: 489493.Google Scholar
Smolka, E., Khader, P. H., Wiese, R., Zwitserlood, P., & Rösler, F. (2013). Electrophysiological evidence for the continuous processing of linguistic categories of regular and irregular verb inflection in German. Journal of Cognitive Neuroscience, 25: 12841304.Google Scholar
St. George, M., Mannes, S., & Hoffinan, J. E. (1994). Global semantic expectancy and language comprehension. Journal of Cognitive Neuroscience, 6: 7083.Google Scholar
Steinhauer, K. & Drury, J. (2012). On the early left anterior negativity (ELAN) in syntax studies. Brain and Language, 120: 135162.Google Scholar
Stockall, L. & Marantz, A. (2006). A single route, full decomposition model of morphological complexity: MEG evidence. The Mental Lexicon, 1: 85123.Google Scholar
Strijkers, K., Holcomb, P., & Costa, A. (2011). Conscious intention to speak proactively facilitates lexical access during overt object naming. Journal of Memory and Language, 65: 345362.Google Scholar
Swaab, T., Ledoux, K., Camblin, C. C., & Boudewyn, M. A. (2011). Language-related ERP components. In Luck, S. & Kappenman, E., The Oxford Handbook of Event-Related Potential Components (pp. 397440). Oxford University Press.Google Scholar
Trumpp, N. M., Traub, F., & Kiefer, M. (2013). Masked priming of conceptual features reveals differential brain activation during unconscious access to conceptual action and sound information. PLoS One, 8: e65910.Google Scholar
Trumpp, N. M., Traub, F., Pulvermueller, F., & Kiefer, M. (2014). Unconscious automatic brain activation of acoustic and action-related conceptual features during masked repetition priming. Journal of Cognitive Neuroscience, 26: 352364.Google Scholar
Trupe, L., Varma, D., Gomez, Y., Race, D., Leigh, R., Hillis, A., & Gottesman, R. (2013). Chronic apraxia of speech and Broca’s area. Stroke, 44: 740744.Google Scholar
Tse, C. Y., Li, C.-L., Sullivan, J., Garnsey, S. M., Dell, G. S., Fabiani, M., & Gratton, G. (2007). Imaging cortical dynamics of language processing with the event-related optical signal. Proceedings of the National Academy of Sciences of the USA, 104: 1715717162.Google Scholar
Turken, A. U. & Dronkers, N. F. (2011). The neural architecture of the language comprehension network: converging evidence from lesion and connectivity analyses. Frontiers in Systems Neuroscience, 5: 1.Google Scholar
Tyler, L. K., Marslen-Wilson, W. D., Randall, B., Wright, P., Devereux, B. J., Zhuang, J., & Stamatakis, E. A. (2011). Left inferior frontal cortex and syntax: function, structure and behaviour in left-hemisphere damaged patients. Brain, 134: 415431.Google Scholar
Vachon, F. & Jolicoeur, P. (2012). On the automaticity of semantic processing during task switching. Journal of Cognitive Neuroscience, 24: 611626.Google Scholar
van Berkum, J. J. A. (2009). The neuropragmatics of “simple” utterance comprehension: an ERP review. In Sauerland, U. & Yatsushiro, K. (eds.), Semantics and Pragmatics: From Experiment to Theory (pp. 276316). Basingstoke: Palgrave Macmillan.Google Scholar
van Berkum, J. J. A., Brown, C., & Hagoort, P. (1999). Early referential context effects in sentence processing: evidence from event-related brain potentials. Journal of Memory and Language, 41: 147182.Google Scholar
van Berkum, J., Holleman, B., Nieuwland, M., Otten, M., & Murre, J. (2009). Right or wrong? The brain’s fast response to morally objectionable statements. Psychological Science, 20: 10921099.Google Scholar
van Berkum, J. J. A., Koornneef, A., Otten, M., & Nieuwland, M. (2007). Establishing reference in language comprehension: an electrophysiological perspective. Brain Research, 1146: 158171.Google Scholar
van den Brink, D., van Berkum, J., Bastiaansen, M. C., Tesink, C., Kos, M., Buitelaar, J., & Hagoort, P. (2012) Empathy matters: ERP evidence for inter-individual differences in social language processing, Social Cognitive and Affective Neuroscience, 7: 173183.Google Scholar
Van Petten, C. & Luka, B. J. (2006). Neural localization of semantic context effects in electromagnetic and hemodynamic studies. Brain and Language, 97: 279293.Google Scholar
Van Petten, C. & Luka, B. (2012). Prediction during language comprehension: benefits, costs, and ERP components. International Journal of Psychophysiology, 83: 176190.Google Scholar
van Turennout, M., Hagoort, P., & Brown, C. M. (1998). Brain activity during speaking: from syntax to phonology in 40 milliseconds. Science, 280: 572574.Google Scholar
Vigliocco, G., Vinson, D. P., Druks, J., Barber, H., & Cappa, S. F. (2011). Nouns and verbs in the brain: a review of behavioural, electrophysiological, neuropsychological and imaging studies. Neuroscience & Biobehavioral Reviews, 35: 407426.Google Scholar
Vogel, E. K., Luck, S. J., & Shapiro, K. L. (1998). Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink. Journal of Experimental Psychology: Human Perception and Performance, 24: 16561674.Google Scholar
Vos, S. H., Gunter, T. C., Schriefers, H., & Friederici, A. (2001). Syntactic parsing and working memory: the effects of syntactic complexity, reading span, and concurrent load. Language and Cognitive Processes, 16: 65103.Google Scholar
West, W. C. & Holcomb, P. J. (2000). Imaginal, semantic, and surface-level processing of concrete and abstract words: an electrophysiological investigation. Journal of Cognitive Neuroscience, 12: 10241037.Google Scholar
Wilson, S. M., Galantucci, S., Tartaglia, M. C., Rising, K., Patterson, D. K., Henry, M., … & Gorno-Tempini, M. (2011). Syntactic processing depends on dorsal language tracts. Neuron, 72: 397403.Google Scholar
Xiang, M. & Kuperberg, G. (2015). Reversing expectations during discourse comprehension. Language, Cognition, and Neuroscience, 30: 648672.Google Scholar
Zhang, Y. & Zhang, J. (2008). Brain responses to agreement violations of Chinese grammatical aspect. NeuroReport, 19: 10391043.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×