Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T02:30:38.744Z Has data issue: false hasContentIssue false

22 - Developmental Processes

from Topical Psychophysiology

Published online by Cambridge University Press:  27 January 2017

John T. Cacioppo
Affiliation:
University of Chicago
Louis G. Tassinary
Affiliation:
Texas A & M University
Gary G. Berntson
Affiliation:
Ohio State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akselrod, S., Gordon., D., Ubel, F. A., Shannon, D. C., Barger, A. C., & Cohen, R. J. (1981). Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science, 213: 220222.Google Scholar
Allen, J. J. B., Chambers, A. S., & Towers, D. N. (2007). The many metrics of cardiac chronotropy: A pragmatic primer and a brief comparison of metrics. Biological Psychology, 74: 243262.CrossRefGoogle Scholar
American Heart Association (2015). Understand your risk for congenital heart defects (March 15). Retrieved July 31, 2015 from www.heart.org.Google Scholar
Anokhin, A. P., Heath, A. C., & Myers, E. (2006). Genetic and environmental influences on frontal EEG asymmetry: a twin study. Biological Psychology, 71: 289295.Google Scholar
Bach, D. R. & Friston, K. J. (2012). Model-based analysis of skin conductance responses: towards causal models in psychophysiology. Psychophysiology, 50: 1522.Google Scholar
Baker, E., Baibazarova, E., Ktistaki, G., Shelton, K. H., & van Goozen, S. H. M. (2012). Development of fear and guilt in young children: stability over time and relations with psychopathology. Development and Psychopathology, 24: 833845.Google Scholar
Bal, E. (2011). Emotion recognition and social behaviors in children with attention-deficit/hyperactivity disorder. Doctoral dissertation, University of Illinois at Chicago.Google Scholar
Bar-Haim, Y., Marshall, P. J., & Fox, N. A. (2000). Developmental changes in heart period and high-frequency heart period variability from 4 months to 4 years of age. Developmental Psychobiology, 37: 4456.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Bathelt, J., O’Reilly, H., Clayden, J. D., Cross, J. H., & de Haan, M. (2013). Functional brain network organisation of children between 2 and 5 years derived from reconstructed activity of cortical sources of high-density EEG recordings. NeuroImage, 82: 595604.Google Scholar
Bazhenova, O. V., Stroganova, T. A., Doussard-Roosevelt, J. A., Posikera, I. A., & Porges, S. W. (2007). Physiological responses of 5-month-old infants to smiling and blank faces. International Journal of Psychophysiology, 63: 6476.CrossRefGoogle Scholar
Beauchaine, T. (2001). Vagal tone, development, and Gray’s motivational theory: Toward an integrated model of autonomic nervous system functioning in psychopathology. Development and Psychopathology, 13: 183214.Google Scholar
Beauchaine, T. P. (2015a). Future directions in emotion dysregulation and youth psychopathology. Journal of Clinical Child and Adolescent Psychology, 44: 875896.Google Scholar
Beauchaine, T. P. (2015b). Respiratory sinus arrhythmia: a transdiagnostic biomarker of emotion dysregulation and psychopathology. Current Opinion in Psychology, 3: 4347.Google Scholar
Beauchaine, T. P. & Gatzke-Kopp, L. M. (2012). Instantiating the multiple levels of analysis perspective in a program of study on externalizing behavior. Development and Psychopathology, 24: 10031018.Google Scholar
Beauchaine, T. P., Gatzke-Kopp, L., & Mead, H. K. (2007). Polyvagal theory and developmental psychopathology: emotion dysregulation and conduct problems from preschool to adolescence. Biological Psychology, 74: 174184.Google Scholar
Beauchaine, T. P., Gatzke-Kopp, L. M., Neuhaus, E., Chipman, J., Reid, M. J., & Webster-Stratton, C. (2013a). Sympathetic- and parasympathetic-linked cardiac function and prediction of externalizing behavior, emotion regulation, and prosocial behavior among preschoolers treated for ADHD. Journal of Consulting and Clinical Psychology, 81: 481493.Google Scholar
Beauchaine, T. P., Hong, J., & Marsh, P. (2008a). Sex differences in autonomic correlates of conduct problems and aggression. Journal of the American Academy of Child and Adolescent Psychiatry, 47: 788796.Google Scholar
Beauchaine, T. P., Klein, D. N., Erickson, N. L., & Norris, A. L. (2013b). Developmental psychopathology and the Diagnostic and Statistical Manual of Mental Disorders. In Beauchaine, T. P. & Hinshaw, S. P. (eds.), Child and Adolescent Psychopathology, 2nd edn. (pp. 29110). Hoboken, NJ: John Wiley.Google Scholar
Beauchaine, T. P. & Marsh, P. (2006). Taxometric methods: enhancing early detection and prevention of psychopathology by identifying latent vulnerability traits. In Cicchetti, D. & Cohen, D. (eds.), Developmental Psychopathology, 2nd edn. (pp. 931967). Hoboken, NJ: John Wiley.Google Scholar
Beauchaine, T. P. & McNulty, T. (2013). Comorbidities and continuities as ontogenic processes: toward a developmental spectrum model of externalizing psychopathology. Development and Psychopathology, 25: 15051528.CrossRefGoogle Scholar
Beauchaine, T. P., Neuhaus, E., Brenner, S. L., & Gatzke-Kopp, L. (2008b). Ten good reasons to consider biological processes in prevention and intervention research. Development and Psychopathology, 20: 745774.Google Scholar
Beauchaine, T. P., & Thayer, J. F. (2015). Heart rate variability as a transdiagnostic biomarker of psychopathology. International Journal of Psychophysiology, 98: 338350.CrossRefGoogle ScholarPubMed
Berntson, G. G., Bigger, J. T., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., … & Van der Molen, M. W. (1997). Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology, 34: 623648.Google Scholar
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1991). Autonomic determinsism: the modes of autonomic control, the doctrine of autonomic space, and the laws of autonomic constraint. Psychological Review, 98: 459487.Google Scholar
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1993). Cardiac psychophysiology and autonomic space in humans: emprical perspectives and conceptual implications. Psychological Bulletin, 114: 296322.Google Scholar
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1995). The metrics of cardiac chronotropism: biometric perspectives. Psychophysiology, 32: 162171.Google Scholar
Berntson, G. G., Cacioppo, J. T., Quigley, K. S., & Fabro, V. T. (1994). Autonomic space and psychophysiological response. Psychophysiology, 31: 4461.Google Scholar
Blandon, A. Y., Calkins, S. D., Keane, S. P., & O’Brien, M. (2008). Individual differences in trajectories of emotion regulation processes: the effects of maternal depressive symptoms on children’s physiological regulation. Developmental Psychology, 44: 11101123.Google Scholar
Brenner, S. L. & Beauchaine, T. P. (2011). Cardiac pre-ejection period reactivity and psychiatric comorbidity prospectively predict substance use initiation among middle-schoolers: a pilot study. Psychophysiology, 48: 15871595.Google Scholar
Brenner, S. L., Beauchaine, T. P., & Sylvers, P. D. (2005). A comparison of psychophysiological and self-report measures of BAS and BIS activation. Psychophysiology, 42: 108115.Google Scholar
Burnette, C. P., Henderson, H. A., Inge, A. P., Zahka, N. E., Schwartz, C. B., & Mundy, P. C. (2011). Anterior EEG asymmetry and the modifier model of autism. Journal of Autism and Developmental Disorders, 41: 11131124.Google Scholar
Burt, K. B. & Obradović, J. (2013). The construct of psychophysiological reactivity: statistical and psychometric issues. Developmental Review, 33: 2957.CrossRefGoogle Scholar
Byrne, E. A., Fleg, J. L., Vaitkevicius, P. V., Wright, J., & Porges, S. W. (1996). Role of aerobic capacity and body mass index in the age-associated decline in heart rate variability. Journal of Applied Physiology, 81: 743750.Google Scholar
Chambers, A. S. & Allen, J. J. B. (2007). Cardiac vagal control, emotion, psychopathology, and health. Biological Psychology, 74: 113115.Google Scholar
Chen, E., Matthews, K. A., Salomon, K., & Ewart, C. K. (2002). Cardiovascular reactivity during social and nonsocial stressors: do children’s personal goals and expressive skills matter? Health Psychology, 21: 1624.Google Scholar
Cho, Y. H., Craig, M. E., Srinivasan, S., Benitez-Aguirre, P., Mitchell, P., Jopling, T., & Donaghue, K. C. (2014). Heart rate variability in pubertal girls with type 1 diabetes: its relationship with glycaemic control, insulin resistance and hyperandrogenism. Clinical Endocrinology, 80: 818824.Google Scholar
Cicchetti, D. (2006). Development and psychopathology. In Cicchetti, D. & Cohen, D. J. (eds.), Developmental Psychopathology, vol. 1: Theory and Method (pp. 123). Hoboken, NJ: John Wiley.Google Scholar
Cicchetti, D. & Rogosch, F. A. (1996). Equifinality and multifinality in developmental psychopathology. Development and Psychopathology, 8: 597666.Google Scholar
Clarke, A. R., Barry, R. J., Irving, A. M., McCarthy, R., & Selikowitz, M. (2011). Children with attention-deficit/hyperactivity disorder and autistic features: EEG evidence for comorbid disorders. Psychiatry Research, 185: 225231.Google Scholar
Critchley, H. D., Rotshtein, P., Nagai, Y., O’Doherty, J., Mathias, C. J., & Dolan, R. J. (2005). Activity in the human brain predicting differential heart rate responses to emotional facial expressions. NeuroImage, 24: 751762.Google Scholar
Crowell, S., Beauchaine, T. P., Gatzke-Kopp, L., Sylvers, P., Mead, H., & Chipman-Chacon, J. (2006). Autonomic correlates of attention-deficit/hyperactivity disorder and oppositional defiant disorder in preschool children. Journal of Abnormal Psychology, 115: 174178.Google Scholar
Csibra, G., Kushnerenko, E., & Grossmann, T. (2008). Electrophysiological methods in studying infant cognitive development. In Nelson, C. A. & Luciana, M. (eds.), Handbook of Developmental Cognitive Neuroscience, 2nd edn. (pp. 247262). Cambridge, MA: MIT Press.Google Scholar
da Silva, C. C., Pereira, L. M., Cardoso, J. R., Moore, J. P., & Nakamura, F. Y. (2014). The effect of physical training on heart rate variability in healthy children: a systematic review with meta-analysis. Pediatric Exercise Science, 26: 147158.CrossRefGoogle ScholarPubMed
Davidson, R. J. (1984). Hemispheric asymmetry and emotion. In Scherer, K. R. & Ekman, P. (eds.), Approaches to Emotion (pp. 3958). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Davidson, R. J. (1998). Anterior electrophysiological asymmetries, emotion, and depression: conceptual and methodological conundrums. Psychophysiology, 35: 607614.Google Scholar
Dawson, G., Klinger, L. G., Panagiotides, H., Hill, D., & Spieker, S. (1992). Frontal lobe activity and affective behavior of infants of mothers with depressive symptoms. Child Development, 63: 725737.Google Scholar
Dawson, G., Klinger, L. G., Panagiotides, H., Lewy, A., & Castelloe, P. (1995). Subgroups of autistic children based on social behavior display distinct patterns of brain activity. Journal of Abnormal Child Psychology, 23: 569583.Google Scholar
Dawson, G., Webb, S. J., Carver, L., Panagiotides, H., & McPartland, J. (2004). Young children with autism show atypical brain responses to fearful versus neutral facial expressions of emotion. Developmental Science, 7: 340359.Google Scholar
de Haan, M., Johnson, M. H., & Halit, H. (2003). Development of face-sensitive event-related potentials during infancy: a review. International Journal of Psychophysiology, 51: 4558.Google Scholar
Diamond, L. M., Fagundes, C. P., & Butterworth, M. R. (2012). Attachment style, vagal tone, and empathy during mother–adolescent interactions. Journal of Research on Adolescence, 22: 165184.Google Scholar
Diamond, L. M., Hicks, A. M., & Otter-Henderson, K. D. (2011). Individual differences in vagal regulation moderate associations between daily affect and daily couple interactions. Personality and Social Psychology Bulletin, 37: 731744.Google Scholar
Dierckx, B., Tulen, J. H. M., Tharner, A., Jaddoe, V. W., Hofman, A., Verhulst, F. C., & Tiemeier, H. (2011). Low autonomic arousal as vulnerability to externalising behaviour in infants with hostile mothers. Psychiatry Research, 185: 171175.Google Scholar
Donovan, W. L. & Leavitt, L. A. (1985). Physiologic assessment of mother–infant attachment. Journal of the American Academy of Child Psychiatry, 24: 6570.Google Scholar
Eckberg, D. L. (1997). Sympathovagal balance: a critical appraisal. Circulation, 96: 32243232.Google Scholar
Eisenberg, N., Fabes, R. A., Murphy, B., Maszk, P., Smith, M., & Karbon, M. (2008). The role of emotionality and regulation in children’s social functioning: a longitudinal study. Child Development, 66: 13601384.Google Scholar
El-Sheikh, M. (2005). Does poor vagal tone exacerbate child maladjustment in the context of parental problem drinking? A longitudinal examination. Journal of Abnormal Psychology, 114: 735741.Google Scholar
El-Sheikh, M., Harger, J., & Whitson, S. M. (2001). Exposure to interparental conflict and children’s adjustment and physical health: the moderating role of vagal tone. Child Development, 72: 16171636.Google Scholar
Emde, R. N., Campos, J., Reich, J., & Gaensbauer, T. J. (1978). Infant smiling at five and nine months: analysis of heart rate and movement. Infant Behavior and Development, 1: 2635.Google Scholar
Fairchild, K. D., Sinkin, R. A., Davalian, F., Blackman, A. E., Swanson, J. R., Matsumoto, J. A., … & Blackman, J. A. (2014). Abnormal heart rate characteristics are associated with abnormal neuroimaging and outcomes in extremely low birth weight infants. Journal of Perinatology, 34: 375379.Google Scholar
Farrington, D. P. (1997). The relationship between low resting heart rate and violence. In Raine, A., Brennan, P., Farrington, D., & Mednick, S. A. (eds.), Biosocial Bases of Violence (pp. 89105). New York: Springer.Google Scholar
Feldman, R. (2009). The development of regulatory functions from birth to 5 years: insights from premature infants. Child Development, 80: 544561.CrossRefGoogle ScholarPubMed
Field, T., Diego, M. A., Dieter, J., Hernandez-Reif, M., Schanberg, S., Kuhn, C., … & Bendell, D. (2001). Depressed withdrawn and intrusive mothers’ effects on their fetuses and neonates. Infant Behavior and Development, 24: 2739.Google Scholar
Fleming, S., Thompson, M., Stevens, R., Heneghan, C., Plüddemann, A., Maconochie, I., … & Mant, D. (2011). Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: a systematic review of observational studies. Lancet, 377: 10111018.Google Scholar
Fox, N. A. & Bell, M. A. (1990). Electrophysiological indices of frontal lobe development: relations to cognitive and affective behavior in human infants over the first year of life. Annals of the New York Academy of Sciences, 608: 677698; discussion 698–704.Google Scholar
Fox, N. A., Rubin, K. H., Calkins, S. D., Marshall, T. R., Coplan, R. J., Porges, S. W., … & Stewart, S. (1995). Frontal activation asymmetry and social competence at four years of age. Child Development, 66: 17701784.Google Scholar
Fung, A., Manlhiot, C., Naik, S., Rosenberg, H., Smythe, J., Lougheed, J., … & Mital, S. (2013). Impact of prenatal risk factors on congenital heart disease in the current era. Journal of the American Heart Association, 2: e000064.Google Scholar
Gander, M. & Buchheim, A. (2015). Attachment classification, psychophysiology and frontal EEG asymmetry across the lifespan: a review. Frontiers in Human Neuroscience, 9: 79.Google Scholar
Gavin, W. J. & Davies, P. L. (2008). Obtaining reliable psychophysiological data with child participants: methodological considerations. In Schmidt, L. A. & Segalowitz, S. J. (eds.), Developmental Psychophysiology: Theory, Systems, and Methods (pp. 424448). Cambridge University Press.Google Scholar
Geier, C. & Luna, B. (2009). The maturation of incentive processing and cognitive control. Pharmacology, Biochemistry and Behavior, 93: 212221.Google Scholar
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., … & Thompson, P. M. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the USA, 101: 81748179.Google Scholar
Grossman, P. (1992). Respiratory and cardiac rhythms as windows to central and autonomic biobehavioral regulation: selection of window frames, keeping the panes clean, and viewing the neural topography. Biological Psychology, 34: 131161.Google Scholar
Grossman, P., Van Beek, J., & Wientjes, C. (1990). A comparison of three quantification methods for estimation of respiratory sinus arrhythmia. Psychophysiology, 27: 702714.Google Scholar
Halit, H., De Haan, M., & Johnson, M. H. (2003). Cortical specialization for face processing: face-sensitive event-related potential components in 3- and 12-month-old infants. NeuroImage, 19: 11801193.Google Scholar
Hämäläinen, M. S. & Ilmoniemi, R. J. (1994). Interpreting magnetic fields of the brain: minimum norm estimates. Medical & Biological Engineering & Computing, 32: 3542.Google Scholar
Hane, A. A., Fox, N. A., Henderson, H. A., & Marshall, P. J. (2008). Behavioral reactivity and approach–withdrawal bias in infancy. Developmental Psychology, 44: 14911496.CrossRefGoogle ScholarPubMed
Harrison, T. M. & Ferree, A. (2014). Maternal–infant interaction and autonomic function in healthy infants and infants with transposition of the great arteries. Research in Nursing & Health, 37: 490503.Google Scholar
Hastings, P. D., Nuselovici, J. N., Utendale, W. T., Coutya, J., McShane, K. E., & Sullivan, C. (2008). Applying the polyvagal theory to children’s emotion regulation: social context, socialization, and adjustment. Biological Psychology, 79: 229306.Google Scholar
Hayano, J., Sakakibara, Y., Yamada, A., Yamada, M., Mukai, S., Fujinami, T., … & Takata, K. (1991). Accuracy of assessment of cardiac vagal tone by heart rate variability in normal subjects. American Journal of Cardiology, 67: 199204.Google Scholar
He, B., Wang, Y., & Wu, D. (1999). Estimating cortical potentials from scalp EEGs in a realistically shaped inhomogeneous head model by means of the boundary element method. IEEE Transactions on Bio-Medical Engineering, 46: 12641268.Google Scholar
Hoehl, S. & Striano, T. (2010). The development of emotional face and eye gaze processing. Developmental Science, 13: 813825.Google Scholar
Huffman, L. C., Bryan, Y. E., del Carmen, R., Pedersen, F. A., Doussard-Roosevelt, J. A., & Porges, S. W. (1998). Infant temperament and cardiac vagal tone: assessments at twelve weeks of age. Child Development, 69: 624635.Google Scholar
Insel, T. R., Cuthbert, B. N., Garvey, M. A., Heinssen, R. K., Pine, D. S., Quinn, K. J., … & Wang, P. S. (2010). Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. American Journal of Psychiatry, 167: 748751.Google Scholar
Johnson, M. H., Grossmann, T., & Kadosh, K. C. (2009). Mapping functional brain development: building a social brain through interactive specialization. Developmental Psychology, 45: 151159.Google Scholar
Kagan, J. (1997). Temperament and the reactions to unfamiliarity. Child Development, 68: 139143.Google Scholar
Kagan, J., Reznick, J. S., & Snidman, N. (1987). The physiology and psychology of behavioral inhibition in children. Child Development, 58: 14591473.Google Scholar
Kaplan, L. A., Evans, L., & Monk, C. (2008). Effects of mothers’ prenatal psychiatric status and postnatal caregiving on infant biobehavioral regulation: can prenatal programming be modified? Early Human Development, 84: 249256.Google Scholar
Katz, L. F. & Gottman, J. M. (1995). Vagal tone protects children from marital conflict. Development and Psychopathology, 7: 8392.Google Scholar
Kay, S. M. & Marple, S. L. (1981). Spectral analysis: a modern perspective. Proceedings of the Institute of Electrical and Electronics Engineers, 69: 13801419.Google Scholar
Kelsey, R. M., Soderlund, K., & Arthur, C. M. (2004). Cardiovascular reactivity and adaptation to recurrent psychological stress: replication and extension. Psychophysiology, 41: 924934.Google Scholar
Lane, S. T., Franklin, J. C., & Curran, P. J. (2013). Clarifying the nature of startle habituation using latent curve modeling. International Journal of Psychophysiology, 88: 5563.Google Scholar
Lepage, J. F. & Théoret, H. (2006). EEG evidence for the presence of an action observation–execution matching system in children. European Journal of Neuroscience, 23: 25052510.Google Scholar
Leppänen, J., Peltola, M. J., Mäntymaa, M., Koivuluoma, M., Salminen, A., & Puura, K. (2010). Cardiac and behavioral evidence for emotional influences on attention in 7-month-old infants. International Journal of Behavioral Development, 34: 547553.Google Scholar
Liew, J., Eisenberg, N., Spinrad, T. L., Eggum, N. D., Haugen, R. G., Kupfer, A., … & Baham, M. E. (2011). Physiological regulation and fearfulness as predictors of young children’s empathy-related reactions. Social Development, 20: 111134.Google Scholar
Marsh, P., Beauchaine, T. P., & Williams, B. (2008). Dissociation of sad facial expressions and autonomic nervous system responding in boys with disruptive behavior disorders. Psychophysiology, 45: 100110.Google Scholar
Marshall, P. J., Bar-Haim, Y., & Fox, N. A. (2002). Development of the EEG from 5 months to 4 years of age. Clinical Neurophysiology, 113: 11991208.Google Scholar
Massin, M. & Von Bernuth, G. (1997). Normal ranges of heart rate variability during infancy and childhood. Pediatric Cardiology, 18: 297302.Google Scholar
Matthews, K. A., Salomon, K., Kenyon, K., & Allen, M. T. (2002). Stability of children’s and adolescents’ hemodynamic responses to psychological challenge: a three-year longitudinal study of a multiethnic cohort of boys and girls. Psychophysiology, 39: 826834.Google Scholar
Mattson, W. I., Ekas, N. V., Lambert, B., Tronick, E., Lester, B. M., & Messinger, D. S. (2013). Emotional expression and heart rate in high-risk infants during the face-to-face/still-face. Infant Behavior and Development, 36: 776785.Google Scholar
McEvoy, K., Hasenstab, K., Senturk, D., Sanders, A., & Jeste, S. S. (2015). Physiologic artifacts in resting state oscillations in young children: methodological considerations for noisy data. Brain Imaging and Behavior, 9: 104114.Google Scholar
McManis, M. H., Kagan, J., Snidman, N. C., & Woodward, S. A. (2002). EEG asymmetry, power, and temperament in children. Developmental Psychobiology, 41: 169177.Google Scholar
Nunez, P. L., Silberstein, R. B., Shi, Z., Carpenter, M. R., Srinivasan, R., Tucker, D. M., … & Wijesinghe, R. S. (1999). EEG coherency II: experimental comparisons of multiple measures. Clinical Neurophysiology, 110: 469486.CrossRefGoogle ScholarPubMed
Nunez, P. L. & Srinivasan, R. (2006). Electric Fields of the Brain: The Neurophysics of EEG. Oxford University Press.Google Scholar
Nunez, P. L., Srinivasan, R., Westdorp, A. F., Wijesinghe, R. S., Tucker, D. M., Silberstein, R. B., & Cadusch, P. J. (1997). EEG coherency I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalography & Clinical Neurophysiology, 103: 499515.Google Scholar
Nyström, P., Ljunghammar, T., Rosander, K., & von Hofsten, C. (2011). Using mu rhythm desynchronization to measure mirror neuron activity in infants. Developmental Science, 14: 327335.Google Scholar
Obrist, P. A. (1981). Cardiovascular Psychophysiology. New York: Plenum Press.Google Scholar
Orekhova, E. V., Stroganova, T. A., Posikera, I. N., & Elam, M. (2006). EEG theta rhythm in infants and preschool children. Clinical Neurophysiology, 117: 10471062.Google Scholar
Pang, K. C. & Beauchaine, T. P. (2013). Longitudinal patterns of autonomic nervous system responding to emotion evocation among children with conduct problems and/or depression. Developmental Psychobiology, 55: 698706.Google Scholar
Patriquin, M. A., Lorenzi, J., Scarpa, A., & Bell, M. A. (2014). Developmental trajectories of respiratory sinus arrhythmia: associations with social responsiveness. Developmental Psychobiology, 56: 317326.Google Scholar
Patriquin, M. A., Scarpa, A., Friedman, B. H., & Porges, S. W. (2013). Respiratory sinus arrhythmia: a marker for positive social functioning and receptive language skills in children with autism spectrum disorders. Developmental Psychobiology, 55: 101112.Google Scholar
Peltola, M. J., Leppänen, J. M., & Hietanen, J. K. (2011). Enhanced cardiac and attentional responding to fearful faces in 7-month-old infants. Psychophysiology, 48: 12911298.Google Scholar
Pfurtscheller, G. & Da Silva, F. (1999). Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology, 110: 18421857.Google Scholar
Ponton, C. W., Eggermont, J. J., Kwong, B., & Don, M. (2000). Maturation of human central auditory system activity: evidence from multi-channel evoked potentials. Clinical Neurophysiology, 111: 220236.Google Scholar
Porges, S. W. (1995). Orienting in a defensive world: mammalian modifications of our evolutionary heritage – a polyvagal perspective. Psychophysiology, 32: 301318.Google Scholar
Porges, S. W. (2003). The polyvagal theory: Phylogenetic contributions to social behavior. Physiology and Behavior, 79: 503513.Google Scholar
Preskorn, S. H. & Baker, B. (2002). The overlap of DSM-IV syndromes: potential implications for the practice of polypsychopharmacology, psychiatric drug development, and the human genome project. Journal of Psychiatric Practice, 8: 170177.Google Scholar
Quigley, K. S. & Stifter, C. A. (2006). A comparative validation of sympathetic reactivity in children and adults. Psychophysiology, 43: 357365.Google Scholar
Raine, A., Venables, P. H., & Mednick, S. A. (1997). Low resting heart rate at age 3 years predisposes to aggression at age 11 years: evidence from the Mauritius Child Health Project. Journal of the American Academy of Child & Adolescent Psychiatry, 36: 14571464.Google Scholar
Raudenbush, S. W. & Bryk, A. S. (2002). Hierarchical Linear Models, 2nd edn. Thousand Oaks, CA: Sage.Google Scholar
Reyes del Paso, G. A., Langewitz, W., Mulder, L. J. M., van Roon, A., & Duschek, S. (2013). The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: a review with emphasis on a reanalysis of previous studies. Psychophysiology, 50: 477487.Google Scholar
Reynolds, G. & Richards, J. E. (2007). Developmental psychophysiological perspective. In Schmidt, L. A. & Segalowitz, S. J. (eds.), Developmental Psychophysiology: Theory, Systems, and Methods (pp. 173212). Cambridge University Press.Google Scholar
Ritz, T. (2009). Studying noninvasive indices of vagal control: the need for respiratory control and the problem of target specificity. Biological Psychology, 80: 158168.Google Scholar
Rutter, M. & Sroufe, L. A. (2000). Developmental psychopathology: concepts and challenges. Development and Psychopathology, 12: 265296.Google Scholar
Sanislow, C. A., Pine, D. S., Quinn, K. J., Kozak, M. J., Garvey, M. A., Heinssen, R. K., … & Cuthbert, B. N. (2010). Developing constructs for psychopathology research: research domain criteria. Journal of Abnormal Psychology, 119: 631639.Google Scholar
Schächinger, H., Weinbacher, M., Kiss, A., Ritz, R., & Langewitz, W. (2001). Cardiovascular indices of peripheral and central sympathetic activation. Psychosomatic Medicine, 63: 788796.Google Scholar
Schmidt, L. A., Fox, N. A., Schulkin, J., & Gold, P. W. (1999). Behavioral and psychophysiological correlates of self-presentation in temperamentally shy children. Developmental Psychobiology, 35: 119135.Google Scholar
Schuetze, P. & Eiden, R. D. (2007). The association between prenatal exposure to cigarettes and infant and maternal negative affect. Infant Behavior and Development, 30: 387398.Google Scholar
Sechrest, L. (1984). Reliability and validity. In Bellack, A. S. and Hersen, M. (eds.), Research Methods in Clinical Psychology (pp. 2454). New York: Pergamon Press.Google Scholar
Shahrestani, S., Stewart, E. M., Quintana, D. S., Hickie, I. B., & Guastella, A. J. (2015). Heart rate variability during adolescent and adult social interactions: a meta-analysis. Biological Psychology, 105: 4350.Google Scholar
Shannon, K. E., Beauchaine, T. P., Brenner, S. L., Neuhaus, E., & Gatzke-Kopp, L. (2007). Familial and temperamental predictors of resilience in children at risk for conduct disorder and depression. Development and Psychopathology, 19: 701727.Google Scholar
Sherwood, A., Allen, M. T., Fahrenberg, J., Kelsey, R. M., Lovallo, W. R., & van Doornen, L. J. P. (1990). Methodological guidelines for impedance cardiography. Psychophysiology, 27: 123.Google Scholar
Silvetti, M. S., Drago, F., & Ragonese, P. (2001). Heart rate variability in healthy children and adolescents is partially related to age and gender. International Journal of Cardiology, 81: 169174.Google Scholar
Somsen, R. J., van ’t Klooster, B. J., Van der Molen, M. W., van Leeuwen, H. M., & Licht, R. (1997). Growth spurts in brain maturation during middle childhood as indexed by EEG power spectra. Biological Psychology, 44: 187209.Google Scholar
Southgate, V., Johnson, M. H., El Karoui, I., & Csibra, G. (2010). Motor system activation reveals infants’ on-line prediction of others’ goals. Psychological Science, 1: 355359Google Scholar
Sroufe, L. A. (1997). Psychopathology as an outcome of development. Development and Psychopathology, 9: 251268.Google Scholar
Sroufe, L. A. & Waters, E. (1977). Attachment as an organizational construct. Child Development, 48: 11841199.Google Scholar
Stifter, C. A., Dollar, J. M., & Cipriano, E. A. (2011). Temperament and emotion regulation: the role of autonomic nervous system reactivity. Developmental Psychobiology, 53: 266279.Google Scholar
Stroganova, T. A. & Orekhova, E. V. (2007). EEG and infant states. In de Haan, M. (ed.), Infant EEG and Event-Related Potentials (pp. 251287). New York: Psychology Press.Google Scholar
Stroganova, T. A., Orekhova, E. V., & Posikera, I. N. (1998). The theta rhythm of the infant EEG and the development of the mechanisms of voluntary control of attention in the 2nd half of the first year of life. [In Russian.] Zhurnal Vyssheĭ Nervnoĭ Deiatelnosti Imeni I P Pavlova, 48: 945964.Google Scholar
Stroganova, T. A. & Posikera, I. N. (1993). Functional organisation of behavioural states in wakefulness during infancy (EEG study). In Adrianov, O. S. (ed.), Brain and Behaviour in Infancy (pp. 78166). Moscow: IPRAN Press.Google Scholar
Suess, P. A., Porges, S. W., & Plude, D. J. (1994). Cardiac vagal tone and sustained attention in school-age children. Psychophysiology, 31: 1722.Google Scholar
Sutton, S. K., Burnette, C. P., Mundy, P. C., Meyer, J., Vaughan, A., Sanders, C., & Yale, M. (2005). Resting cortical brain activity and social behavior in higher functioning children with autism. Journal of Child Psychology and Psychiatry, 46: 211222.Google Scholar
Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996). Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation, 93: 10431065.Google Scholar
Taylor, M. J., Batty, M., & Itier, R. J. (2004). The faces of development: a review of early face processing over childhood. Journal of Cognitive Neuroscience, 16: 14261442.Google Scholar
Thatcher, R. W., North, D. M., & Biver, C. J. (2008). Development of cortical connections as measured by EEG coherence and phase delays. Human Brain Mapping, 29: 14001415.Google Scholar
Thayer, J. F., Hansen, A. L., & Johnsen, B. H. (2010). Non-invasive assessment of autonomic influences on the heart using impedance cardiography and heart rate variability. In Steptoe, A. (ed.), Handbook of Behavioral Medicine: Methods and Applications (pp. 723740). New York: Springer.Google Scholar
Theall-Honey, L. A. & Schmidt, L. A. (2006). Do temperamentally shy children process emotion differently than non-shy children? Behavioral, psychophysiological, and gender differences in reticent preschoolers. Developmental Psychobiology, 48: 187196.Google Scholar
Tierney, A. L., Gabard-Durnam, L., Vogel-Farley, V., Tager-Flusberg, H., & Nelson, C. A. (2012). Developmental trajectories of resting EEG power: an endophenotype of autism spectrum disorder. PLoS One, 7: e39127.Google Scholar
Uchino, B. N., Uno, D., Holt-Lunstad, J., & Flinders, J. B. (1999). Age-related differences in cardiovascular reactivity during acute psychological stress in men and women. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 54: 339346.Google Scholar
Uhlhaas, P. J., Roux, F., Rodriguez, E., Rotarska-Jagiela, A., & Singer, W. (2010). Neural synchrony and the development of cortical networks. Trends in Cognitive Sciences, 14: 7280.Google Scholar
Uhlhaas, P. J., Roux, F., Singer, W., Haenschel, C., Sireteanu, R., & Rodriguez, E. (2009). The development of neural synchrony reflects late maturation and restructuring of functional networks in humans. Proceedings of the National Academy of Sciences of the USA, 106: 98669871.Google Scholar
Van Hecke, A. A. V., Lebow, J. J., Bal, E. E., Lamb, D. D., Harden, E. E., Kramer, A. A., … & Porges, S. W. (2009). Electroencephalogram and heart rate regulation to familiar and unfamiliar people in children with autism spectrum disorders. Child Development, 80: 11181133.Google Scholar
Vasey, M. W. & Thayer, J. F. (1987). The continuing problem of false positives in repeated measures ANOVA in psychophysiology: a multivariate solution. Psychophysiology, 24: 479486.Google Scholar
Vasilev, C. A., Crowell, S. E., Beauchaine, T. P., Mead, H. K., & Gatzke-Kopp, L. M. (2009). Correspondence between physiological and self-report measures of emotion dysregulation: a longitudinal investigation of youth with and without psychopathology. Journal of Child Psychology and Psychiatry, 50: 13571364.Google Scholar
Vuga, M., Fox, N. A., Cohn, J. F., George, C. J., Levenstein, R. M., & Kovacs, M. (2006). Long-term stability of frontal electroencephalographic asymmetry in adults with a history of depression and controls. International Journal of Psychophysiology, 59: 107115.Google Scholar
Vuga, M., Fox, N. A., Cohn, J. F., Kovacs, M., & George, C. J. (2008). Long-term stability of electroencephalographic asymmetry and power in 3- to 9-year-old children. International Journal of Psychophysiology, 67: 7077.CrossRefGoogle Scholar
Webb, S. J., Jones, E. J., Merkle, K., Venema, K., Greenson, J., Murias, M., & Dawson, G. (2011). Developmental change in the ERP responses to familiar faces in toddlers with autism spectrum disorders versus typical development. Child Development, 82: 18681886.Google Scholar
Weiss, S. J. & Niemann, S. (2015). Effects of antenatal corticosteroids on cortisol and heart rate reactivity of preterm infants. Biological Research for Nursing, 17: 487494.Google Scholar
Wilks, D. C., Rank, M., Christle, J., Langhof, H., Siegrist, M., & Halle, M. (2014). An inpatient lifestyle-change programme improves heart rate recovery in overweight and obese children and adolescents (LOGIC Trial). European Journal of Preventive Cardiology, 21: 876883.Google Scholar
Zisner, A. R. & Beauchaine, T. P. (2016). Psychophysiological methods and developmental psychopathology. In Cicchetti, D. (ed.), Developmental Psychopathology: vol. 2: Developmental Neuroscience (pp. 832889), 3rd edn. Hoboken, NJ: John Wiley.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×