Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-17T08:41:16.890Z Has data issue: false hasContentIssue false

39 - CMOS-based biomolecular sensor system-on-chip

from Part VII - Lab-on-a-chip

Published online by Cambridge University Press:  05 September 2015

Pei-Wen Yen
Affiliation:
National Taiwan University
Chih-Ting Lin
Affiliation:
National Taiwan University
Sandro Carrara
Affiliation:
École Polytechnique Fédérale de Lausanne
Krzysztof Iniewski
Affiliation:
Redlen Technologies Inc., Canada
Get access

Summary

Introduction

Biomolecular detection is crucial from various perspectives, such as quality control of our food and water, identification of biological terrorist agents, and diagnosis of diseases. Early detection of disease is important for effective treatment and for prognostic assessment of disease progression; in addition, the trend of ageing societies leads to an increasing requirement for biomarker diagnoses for personalized healthcare monitoring. This results in more stress on the social healthcare system [1, 2]. As a consequence, researchers have focused on developing biomolecular detection devices and systems. Over the past decade, emerging methods to address the above needs have bloomed because of developments in micro/nanotechnologies. To enhance throughputs and reduce costs, moreover, these detection devices and systems are evolving from label-based to label-free technologies.

Traditionally, label-based molecular diagnosis techniques have been used as a useful fundamental concept for the detection of potential disease biomarkers or pathogen nucleic acids. In general, the detection signal comes from the usage of a specific tag for a target molecule. The tags can be conventional fluorescent dyes or radioisotopes. To fulfill the requirements of different applications, a number of conventional label-based techniques, such as polymerase chain reaction (PCR), DNA or protein microarrays, and enzyme-linked immunosorbent assay (ELISA), have been developed and implemented. Some of them have been used to form a versatile platform for many diverse applications with promising results and represent the gold standards of biomedical diagnosis [3–5]. However, these techniques require trained staff and expensive equipment, and are time-consuming. Moreover, the detection of such low-abundance biomarkers in biological fluids (e.g. blood, urine, saliva) requires large quantities of the sample and complicated sample preparation. Consequently, these label-based techniques encounter problems of cost-effectiveness and throughput under modern circumstances.

Type
Chapter
Information
Handbook of Bioelectronics
Directly Interfacing Electronics and Biological Systems
, pp. 489 - 506
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Madu, C.O. and Lu, Y., Novel diagnostic biomarkers for prostate cancer. J Cancer, 2010. 1: p. 150–77.CrossRefGoogle ScholarPubMed
Dasilva, N., et al., Biomarker discovery by novel sensors based on nanoproteomics approaches. Sensors, 2012. 12(2): p. 2284–308.CrossRefGoogle ScholarPubMed
Bettens, K., Sleegers, K., and Van Broeckhoven, C., Genetic insights in Alzheimer’s disease. Lancet Neurol, 2013. 12(1): p. 92–104.CrossRefGoogle ScholarPubMed
Wheeler, H.E., Maitland, M.L., Dolan, M.E., Cox, N.J., and Ratain, M.J., Cancer pharmacogenomics: strategies and challenges. Nat Rev Genet, 2013. 14(1): p. 23–34.CrossRefGoogle ScholarPubMed
Gonzalez-Gonzalez, M., Jara-Acevedo, R., Matarraz, S., et al., Nanotechniques in proteomics: protein microarrays and novel detection platforms. Eur J Pharm Sci, 2012. 45(4): p. 499–506.CrossRefGoogle ScholarPubMed
Cederquist, K.B., Dean, S.L., and Keating, C.D., Encoded anisotropic particles for multiplexed bioanalysis. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2010. 2(6): p. 578–600.CrossRefGoogle ScholarPubMed
Campagnolo, C., Meyers, K.J., Ryan, T. et al., Real-time, label-free monitoring of tumor antigen and serum antibody interactions. J Biochem Biophys Methods, 2004. 61(3): p. 283–98.CrossRefGoogle ScholarPubMed
Chou, S.F., Hsu, W.L., Hwang, J.M., and Chen, C.Y., Development of an immunosensor for human ferritin, a nonspecific tumor marker, based on surface plasmon resonance. Biosens Bioelectron, 2004. 19(9): p. 999–1005.CrossRefGoogle ScholarPubMed
Sioss, J.A., Bhiladvala, R.B., Pan, W. et al., Nanoresonator chip-based RNA sensor strategy for detection of circulating tumor cells: response using PCA3 as a prostate cancer marker. Nanomed Nanotechnol Biol Med, 2012. 8(6): p. 1017–25.CrossRefGoogle ScholarPubMed
Lei, J.P. and Ju, H.X., Signal amplification using functional nanomaterials for biosensing. Chem Soc Rev, 2012. 41(6): p. 2122–34.CrossRefGoogle ScholarPubMed
Yao, C.Y., Zhu, T., Qi, Y. et al., Development of a quartz crystal microbalance biosensor with aptamers as bio-recognition element. Sensors, 2010. 10(6): p. 5859–71.CrossRefGoogle ScholarPubMed
Lequin, R.M., Enzyme Immunoassay (EIA)/Enzyme-Linked Immunosorbent Assay (ELISA). Clin Chem, 2005. 51(12): p. 2415–18.CrossRefGoogle Scholar
RayBio Human CRP ELISA Kit, I. RayBiotech, 2012.
MSD Technology Platform, Mesoscale Discovery, .
Kramer, A., Identification of barley CK2a targets by using the protein microarray technology. Phytochemistry, 2004. 65: p. 1777–1784.CrossRefGoogle Scholar
Stillman, B.A. and Tonkinson, J.L., FAST slides: a novel surface for microarrays. Biotechniques, 2000. 29(3): p. 630–5.Google ScholarPubMed
MacBeath, G. and Schreiber, S.L., Printing proteins as microarrays for high-throughput function determination. Science, 2000. 289(5485): p. 1760–3.Google ScholarPubMed
Kusnezow, W., Jacob, A., Walijew, A., Diehl, F., and Hoheisel, J.D.. Antibody microarrays: an evaluation of production parameters. Proteomics, 2003. 3(3): p. 254–64.CrossRefGoogle ScholarPubMed
Hall, D.A., Ptacek, J., and Snyder, M., Protein microarray technology. Mech Ageing Dev, 2007. 128(1): p. 161–7.CrossRefGoogle ScholarPubMed
Bertone, P. and Snyder, M., Advances in functional protein microarray technology. FEBS J, 2005. 272(21): p. 5400–11.CrossRefGoogle ScholarPubMed
Zhu, H., Bilgin, M., Bangham, R. et al., Global analysis of protein activities using proteome chips. Science, 2001. 293(5537): p. 2101–5.CrossRefGoogle ScholarPubMed
Speer, R., Wulfkuhle, JDLiotta, LA, and Petricoin, E.F.Reverse-phase protein microarrays for tissue-based analysis. Curr Opin Mol Ther, 2005. 7(3): p. 240–5.Google ScholarPubMed
ProtoArray® Human Protein Microarrays, Invitrogen, 2009.
Cederquist, K.B. and Kelley, S.O., Nanostructured biomolecular detectors: pushing performance at the nanoscale. Curr Opin Chem Biol, 2012. 16(3–4): p. 415–21.CrossRefGoogle ScholarPubMed
Frómeta, N.R., Cantilever biosensors. Biotecnol Aplic, 2006. 23: p. 321–3.Google Scholar
Kurita, R., Yokota, Y., Sato, Y. et al., On-chip enzyme immunoassay of a cardiac marker using a microfluidic device combined with a portable surface plasmon resonance system. Anal Chem, 2006. 78(15): p. 5525–31.CrossRefGoogle ScholarPubMed
Cooper, M.A., Optical biosensors in drug discovery. Nat Rev Drug Discov, 2002. 1(7): p. 515–28.CrossRefGoogle ScholarPubMed
Merwe, P.A.v.d., Surface plasmon resonance, inProtein–Ligand Interactions: Hydrodynamics and Calorimetry, Harding, S.E. and Chowdry, B., Eds., Oxford Univ. Press, 2001. p. 137–70.Google Scholar
Ladd, J., et al., Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging. Anal Bioanal Chem, 2009. 393(4): p. 1157–1163.CrossRefGoogle ScholarPubMed
O’Sullivan, C.K. and Guilbault, G.G., Commercial quartz crystal microbalances – Theory and applications. Biosens Bioelectron, 1999. 14(8–9): p. 663–670.CrossRefGoogle Scholar
Liss, M., Petersen, B., Wolf, H., and Prohaska, E., An aptamer-based quartz crystal protein biosensor. Anal Chem, 2002. 74(17): p. 4488–95.CrossRefGoogle ScholarPubMed
Minunni, M., Tombelli, S., Gullotto, A., Luzi, E., and Mascini, M., Development of biosensors with aptamers as bio-recognition element: the case of HIV-1 Tat protein. Biosens Bioelectron, 2004. 20(6): p. 1149–56.CrossRefGoogle ScholarPubMed
Luo, Y., Chen, M., Wen, Q. et al., Rapid and simultaneous quantification of 4 urinary proteins by piezoelectric quartz crystal microbalance immunosensor array. Clin Chem, 2006. 52(12): p. 2273–80.CrossRefGoogle ScholarPubMed
Zhang, B., Mao, Q., Zhang, X. et al., A novel piezoelectric quartz micro-array immunosensor based on self-assembled monolayer for determination of human chorionic gonadotropin. Biosens Bioelectron, 2004. 19(7): p. 711–20.CrossRefGoogle ScholarPubMed
Braun, T., Ghatsekar, M.K., Backmann, N. et al., Quantitative time-resolved measurement of membrane protein–ligand interactions using microcantilever array sensors. Nature Nanotechnol 2009. 4(3): p. 179–85.CrossRefGoogle ScholarPubMed
Ziegler, C., Cantilever-based biosensors. Anal Bioanal Chem, 2004. 379(7–8): p. 946–59.CrossRefGoogle ScholarPubMed
Marie, R., Jensenius, H., Thaysen, J. et al., Adsorption kinetics and mechanical properties of thiol-modified DNA-oligos on gold investigated by microcantilever sensors. Ultramicroscopy, 2002. 91(1–4): p. 29–36.CrossRefGoogle ScholarPubMed
Raiteri, R., Grattarola, M., Butt, H-J., and Skladal, P., Micromechanical cantilever-based biosensors. Sens Actuators B, 2001. 79: p. 115–126.CrossRefGoogle Scholar
Wu, G., Datar, R.H., Hansen, K.M. et al., Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nature Biotechnol, 2001. 19: p. 856–860.CrossRefGoogle ScholarPubMed
Breitenstein, M., Holzel, R., and Bier, F.F., Immobilization of different biomolecules by atomic force microscopy. J Nanobiotechnol, 2010. 8: p. 10.CrossRefGoogle ScholarPubMed
Fritz, J, Baller, M.K., Lang, H.P. et al., Translating biomolecular recognition into nanomechanics. Science, 2000. 288: p. 316–318.CrossRefGoogle ScholarPubMed
Ono, M., Lange, D., Brand, O. et al., A complementary-metal-oxide-semiconductor field effect transistor compatible atomic force microscopy tip fabrication process and integrated atomic force microscopy cantilevers fabricated with this process. Ultramicroscopy, 2002. 91(1–4): p. 9–20.CrossRefGoogle ScholarPubMed
Frank, W., Lange, D., Lee, S. et al., Nanochemical surface analyzer in CMOS technology. Ultramicroscopy, 2002. 91(1–4): p. 21–7.CrossRefGoogle ScholarPubMed
Takahashi, H., Ando, K., and Shirakawabe, Y., Self-sensing piezoresistive cantilever and its magnetic force microscopy applications. Ultramicroscopy, 2002. 91(1–4): p. 63–72.CrossRefGoogle ScholarPubMed
Hoummady, M. and Fujita, H., Micromachines for nanoscale science and technology. Nanotechnology, 1999. 10(1): p. 29–33.CrossRefGoogle Scholar
Zhang, X., Guo, Q., and Cui, D., Recent advances in nanotechnology applied to biosensors. Sensors (Basel), 2009. 9(2): p. 1033–53.CrossRefGoogle ScholarPubMed
Lange, D., Hagleitner, C., Hierlemann, A. et al., Complementary metal oxide semiconductor cantilever arrays on a single chip: mass-sensitive detection of volatile organic compounds. Anal Chem, 2002. 74(13): p. 3084–95.CrossRefGoogle ScholarPubMed
Hagleitner, C., Hierlemann, A., Lange, D., et al., Smart single-chip gas sensor microsystem. Nature, 2001. 414(6861): p. 293–6.CrossRefGoogle ScholarPubMed
Huang, C.-W., Hsueh, H.T., Huang, Y.J., et al., A fully integrated wireless CMOS microcantilever lab chip for detection of DNA from Hepatitis B virus (HBV). Sens Actuators B. 2013. 181: p. 867–73.CrossRefGoogle Scholar
Huang, Y.-J., Huang, C.-W., Lin, T.-H. et al., A fully-integrated cantilever-based DNA detection SoC in a CMOS bio-MEMS process, in 2011 Symposium on VLSI Circuits (VLSIC), 2011. p. 50–51.
Bergveld, P., Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng, 1970. 17(1): p. 70–1.CrossRefGoogle ScholarPubMed
Bergveld, P., Thirty years of ISFETOLOGY – What happened in the past 30 years and what may happen in the next 30 years. Sens Actuators B, 2003. 88(1): p. 1–20.CrossRefGoogle Scholar
Lee, C.S., Kim, S.K., and Kim, M., Ion-sensitive field-effect transistor for biological sensing. Sensors (Basel), 2009. 9(9): p. 7111–31.CrossRefGoogle ScholarPubMed
Olthuis, W., Chemical and physical FET-based sensors or variations on an equation. Sens Actuators B, 2005. 105(1): p. 96–103.CrossRefGoogle Scholar
Ishige, Y., Shimoda, M., and Kamahori, M., Extended-gate FET-based enzyme sensor with ferrocenyl-alkanethiol modified gold sensing electrode. Biosens Bioelectron, 2009. 24(5): p. 1096–102.CrossRefGoogle ScholarPubMed
Uslu, F., Ingebrandt, S., Mayer, D. et al., Labelfree fully electronic nucleic acid detection system based on a field-effect transistor device. Biosens Bioelectron, 2004. 19(12): p. 1723–31.CrossRefGoogle ScholarPubMed
Dzyadevych, S.V., Soldatkin, A.P., Elskaya, A.V. et al., Enzyme biosensors based on ion-selective field-effect transistors. Anal Chim Acta, 2006. 568(1–2): p. 248–58.CrossRefGoogle ScholarPubMed
Caras, S. and Janata, J., Field effect transistors sensitive to penicillin. Anal Chem, 1980. 52(12): p. 1935–7.CrossRefGoogle Scholar
Meyburg, S., Moers, G.M., Ingebrandt, S. et al., N-Channel field-effect transistors with floating gates for extracellular recordings. Biosens Bioelectron, 2006. 21(7): p. 1037–44.CrossRefGoogle ScholarPubMed
Stagni, C., Guidicci, C., Benini, L. et al., A fully electronic label-free DNA sensor chip. IEEE Sensors J, 2007. 7(3–4): p. 577–85.CrossRefGoogle Scholar
Prakash, S.B. and Abshire, P., Tracking cancer cell proliferation on a CMOS capacitance sensor chip. Biosens Bioelectron, 2008. 23(10): p. 1449–57.CrossRefGoogle ScholarPubMed
Levine, P.M., Gong, P., Levicky, R., and Shepard, K.L., Real-time, multiplexed electrochemical DNA detection using an active complementary metal-oxide-semiconductor biosensor array with integrated sensor electronics. Biosens Bioelectron, 2009. 24(7): p. 1995–2001.CrossRefGoogle ScholarPubMed
Bausells, J., Carrabina, J., Errachid, A., and Merlos, A., Ion-sensitive field-effect transistors fabricated in a commercial CMOS technology. Sens Actuators B, 1999. 57(1–3): p. 56–62.CrossRefGoogle Scholar
Chung, W.Y., Lin, Y.T., Pijanowska, D.G. et al., New ISFET interface circuit design with temperature compensation. Microelectron J, 2006. 37(10): p. 1105–14.CrossRefGoogle Scholar
Bergveld, P., The operation of an ISFET as an electronic device. Sens Actuators, 1981. 1(1): p. 17–29.CrossRefGoogle Scholar
Nakazato, K., An integrated ISFET sensor array. Sensors (Basel), 2009. 9(11): p. 8831–51.CrossRefGoogle ScholarPubMed
Olthuis, W., Faber, E.J., Krommenhoek, E.E., and van den Arden, A., Sensing with FETs – once, now and future. In 8th Dresdner Sensor-Symposium, 10–12 Dec 2007, Dresden, 2007, p. 37–44.
Patolsky, F. and Lieber, C.M., Nanowire nanosensors. Mater Today, 2005. 8(5): p. 20.CrossRefGoogle Scholar
He, B., Morrow, T.J., and Keating, C.D., Nanowire sensors for multiplexed detection of biomolecules. Curr Opin Chem Biol, 2008. 12(5): p. 522–8.CrossRefGoogle ScholarPubMed
Patolsky, F., Zheng, G., Hayden, O. et al., Electrical detection of single viruses. Proc Natl Acad Sci USA, 2004. 101(39): p. 14017–22.CrossRefGoogle ScholarPubMed
Patolsky, F., et al., Nanowire-based nanoelectronic devices in the life sciences. MRS Bull, 2007. 32(2): p. 142–149.CrossRefGoogle Scholar
Zheng, G.F., Gao, X.P.A., and Lieber, C.M., Frequency domain detection of biomolecules using silicon nanowire biosensors. Nano Lett, 2010. 10(8): p. 3179–3183.CrossRefGoogle ScholarPubMed
Chen, K.I., Li, B.R., and Chen, Y.T., Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today, 2011. 6(2): p. 131–154.CrossRefGoogle Scholar
Huang, C.-W., Huang, Y.J., Yen, P.-W., et al., A fully integrated hepatitis B virus DNA detection SoC based on monolithic polysilicon nanowire CMOS process, in Symposia on VLSI Technology and Circuits 2012: Hawaii, IEEE, p. 124–5.Google Scholar
Huang, C.-W., Huang, Y.J., Yen, P.-W., et al., The implementation of polysilicon nanowire based biomolecular sensor System-on-Chip, in 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2012: Okinawa, Japan.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×