Skip to main content Accessibility help
×
Home
  • Print publication year: 2015
  • Online publication date: September 2015

39 - CMOS-based biomolecular sensor system-on-chip

from Part VII - Lab-on-a-chip

Summary

Introduction

Biomolecular detection is crucial from various perspectives, such as quality control of our food and water, identification of biological terrorist agents, and diagnosis of diseases. Early detection of disease is important for effective treatment and for prognostic assessment of disease progression; in addition, the trend of ageing societies leads to an increasing requirement for biomarker diagnoses for personalized healthcare monitoring. This results in more stress on the social healthcare system [1, 2]. As a consequence, researchers have focused on developing biomolecular detection devices and systems. Over the past decade, emerging methods to address the above needs have bloomed because of developments in micro/nanotechnologies. To enhance throughputs and reduce costs, moreover, these detection devices and systems are evolving from label-based to label-free technologies.

Traditionally, label-based molecular diagnosis techniques have been used as a useful fundamental concept for the detection of potential disease biomarkers or pathogen nucleic acids. In general, the detection signal comes from the usage of a specific tag for a target molecule. The tags can be conventional fluorescent dyes or radioisotopes. To fulfill the requirements of different applications, a number of conventional label-based techniques, such as polymerase chain reaction (PCR), DNA or protein microarrays, and enzyme-linked immunosorbent assay (ELISA), have been developed and implemented. Some of them have been used to form a versatile platform for many diverse applications with promising results and represent the gold standards of biomedical diagnosis [3–5]. However, these techniques require trained staff and expensive equipment, and are time-consuming. Moreover, the detection of such low-abundance biomarkers in biological fluids (e.g. blood, urine, saliva) requires large quantities of the sample and complicated sample preparation. Consequently, these label-based techniques encounter problems of cost-effectiveness and throughput under modern circumstances.

References
Madu, C.O. and Lu, Y., Novel diagnostic biomarkers for prostate cancer. J Cancer, 2010. 1: p. 150–77.
Dasilva, N., et al., Biomarker discovery by novel sensors based on nanoproteomics approaches. Sensors, 2012. 12(2): p. 2284–308.
Bettens, K., Sleegers, K., and Van Broeckhoven, C., Genetic insights in Alzheimer’s disease. Lancet Neurol, 2013. 12(1): p. 92–104.
Wheeler, H.E., Maitland, M.L., Dolan, M.E., Cox, N.J., and Ratain, M.J., Cancer pharmacogenomics: strategies and challenges. Nat Rev Genet, 2013. 14(1): p. 23–34.
Gonzalez-Gonzalez, M., Jara-Acevedo, R., Matarraz, S., et al., Nanotechniques in proteomics: protein microarrays and novel detection platforms. Eur J Pharm Sci, 2012. 45(4): p. 499–506.
Cederquist, K.B., Dean, S.L., and Keating, C.D., Encoded anisotropic particles for multiplexed bioanalysis. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2010. 2(6): p. 578–600.
Campagnolo, C., Meyers, K.J., Ryan, T. et al., Real-time, label-free monitoring of tumor antigen and serum antibody interactions. J Biochem Biophys Methods, 2004. 61(3): p. 283–98.
Chou, S.F., Hsu, W.L., Hwang, J.M., and Chen, C.Y., Development of an immunosensor for human ferritin, a nonspecific tumor marker, based on surface plasmon resonance. Biosens Bioelectron, 2004. 19(9): p. 999–1005.
Sioss, J.A., Bhiladvala, R.B., Pan, W. et al., Nanoresonator chip-based RNA sensor strategy for detection of circulating tumor cells: response using PCA3 as a prostate cancer marker. Nanomed Nanotechnol Biol Med, 2012. 8(6): p. 1017–25.
Lei, J.P. and Ju, H.X., Signal amplification using functional nanomaterials for biosensing. Chem Soc Rev, 2012. 41(6): p. 2122–34.
Yao, C.Y., Zhu, T., Qi, Y. et al., Development of a quartz crystal microbalance biosensor with aptamers as bio-recognition element. Sensors, 2010. 10(6): p. 5859–71.
Lequin, R.M., Enzyme Immunoassay (EIA)/Enzyme-Linked Immunosorbent Assay (ELISA). Clin Chem, 2005. 51(12): p. 2415–18.
RayBio Human CRP ELISA Kit, I. RayBiotech, 2012.
MSD Technology Platform, Mesoscale Discovery, .
Kramer, A., Identification of barley CK2a targets by using the protein microarray technology. Phytochemistry, 2004. 65: p. 1777–1784.
Stillman, B.A. and Tonkinson, J.L., FAST slides: a novel surface for microarrays. Biotechniques, 2000. 29(3): p. 630–5.
MacBeath, G. and Schreiber, S.L., Printing proteins as microarrays for high-throughput function determination. Science, 2000. 289(5485): p. 1760–3.
Kusnezow, W., Jacob, A., Walijew, A., Diehl, F., and Hoheisel, J.D.. Antibody microarrays: an evaluation of production parameters. Proteomics, 2003. 3(3): p. 254–64.
Hall, D.A., Ptacek, J., and Snyder, M., Protein microarray technology. Mech Ageing Dev, 2007. 128(1): p. 161–7.
Bertone, P. and Snyder, M., Advances in functional protein microarray technology. FEBS J, 2005. 272(21): p. 5400–11.
Zhu, H., Bilgin, M., Bangham, R. et al., Global analysis of protein activities using proteome chips. Science, 2001. 293(5537): p. 2101–5.
Speer, R., Wulfkuhle, JDLiotta, LA, and Petricoin, E.F.Reverse-phase protein microarrays for tissue-based analysis. Curr Opin Mol Ther, 2005. 7(3): p. 240–5.
ProtoArray® Human Protein Microarrays, Invitrogen, 2009.
Cederquist, K.B. and Kelley, S.O., Nanostructured biomolecular detectors: pushing performance at the nanoscale. Curr Opin Chem Biol, 2012. 16(3–4): p. 415–21.
Frómeta, N.R., Cantilever biosensors. Biotecnol Aplic, 2006. 23: p. 321–3.
Kurita, R., Yokota, Y., Sato, Y. et al., On-chip enzyme immunoassay of a cardiac marker using a microfluidic device combined with a portable surface plasmon resonance system. Anal Chem, 2006. 78(15): p. 5525–31.
Cooper, M.A., Optical biosensors in drug discovery. Nat Rev Drug Discov, 2002. 1(7): p. 515–28.
Merwe, P.A.v.d., Surface plasmon resonance, inProtein–Ligand Interactions: Hydrodynamics and Calorimetry, Harding, S.E. and Chowdry, B., Eds., Oxford Univ. Press, 2001. p. 137–70.
Ladd, J., et al., Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging. Anal Bioanal Chem, 2009. 393(4): p. 1157–1163.
O’Sullivan, C.K. and Guilbault, G.G., Commercial quartz crystal microbalances – Theory and applications. Biosens Bioelectron, 1999. 14(8–9): p. 663–670.
Liss, M., Petersen, B., Wolf, H., and Prohaska, E., An aptamer-based quartz crystal protein biosensor. Anal Chem, 2002. 74(17): p. 4488–95.
Minunni, M., Tombelli, S., Gullotto, A., Luzi, E., and Mascini, M., Development of biosensors with aptamers as bio-recognition element: the case of HIV-1 Tat protein. Biosens Bioelectron, 2004. 20(6): p. 1149–56.
Luo, Y., Chen, M., Wen, Q. et al., Rapid and simultaneous quantification of 4 urinary proteins by piezoelectric quartz crystal microbalance immunosensor array. Clin Chem, 2006. 52(12): p. 2273–80.
Zhang, B., Mao, Q., Zhang, X. et al., A novel piezoelectric quartz micro-array immunosensor based on self-assembled monolayer for determination of human chorionic gonadotropin. Biosens Bioelectron, 2004. 19(7): p. 711–20.
Braun, T., Ghatsekar, M.K., Backmann, N. et al., Quantitative time-resolved measurement of membrane protein–ligand interactions using microcantilever array sensors. Nature Nanotechnol 2009. 4(3): p. 179–85.
Ziegler, C., Cantilever-based biosensors. Anal Bioanal Chem, 2004. 379(7–8): p. 946–59.
Marie, R., Jensenius, H., Thaysen, J. et al., Adsorption kinetics and mechanical properties of thiol-modified DNA-oligos on gold investigated by microcantilever sensors. Ultramicroscopy, 2002. 91(1–4): p. 29–36.
Raiteri, R., Grattarola, M., Butt, H-J., and Skladal, P., Micromechanical cantilever-based biosensors. Sens Actuators B, 2001. 79: p. 115–126.
Wu, G., Datar, R.H., Hansen, K.M. et al., Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nature Biotechnol, 2001. 19: p. 856–860.
Breitenstein, M., Holzel, R., and Bier, F.F., Immobilization of different biomolecules by atomic force microscopy. J Nanobiotechnol, 2010. 8: p. 10.
Fritz, J, Baller, M.K., Lang, H.P. et al., Translating biomolecular recognition into nanomechanics. Science, 2000. 288: p. 316–318.
Ono, M., Lange, D., Brand, O. et al., A complementary-metal-oxide-semiconductor field effect transistor compatible atomic force microscopy tip fabrication process and integrated atomic force microscopy cantilevers fabricated with this process. Ultramicroscopy, 2002. 91(1–4): p. 9–20.
Frank, W., Lange, D., Lee, S. et al., Nanochemical surface analyzer in CMOS technology. Ultramicroscopy, 2002. 91(1–4): p. 21–7.
Takahashi, H., Ando, K., and Shirakawabe, Y., Self-sensing piezoresistive cantilever and its magnetic force microscopy applications. Ultramicroscopy, 2002. 91(1–4): p. 63–72.
Hoummady, M. and Fujita, H., Micromachines for nanoscale science and technology. Nanotechnology, 1999. 10(1): p. 29–33.
Zhang, X., Guo, Q., and Cui, D., Recent advances in nanotechnology applied to biosensors. Sensors (Basel), 2009. 9(2): p. 1033–53.
Lange, D., Hagleitner, C., Hierlemann, A. et al., Complementary metal oxide semiconductor cantilever arrays on a single chip: mass-sensitive detection of volatile organic compounds. Anal Chem, 2002. 74(13): p. 3084–95.
Hagleitner, C., Hierlemann, A., Lange, D., et al., Smart single-chip gas sensor microsystem. Nature, 2001. 414(6861): p. 293–6.
Huang, C.-W., Hsueh, H.T., Huang, Y.J., et al., A fully integrated wireless CMOS microcantilever lab chip for detection of DNA from Hepatitis B virus (HBV). Sens Actuators B. 2013. 181: p. 867–73.
Huang, Y.-J., Huang, C.-W., Lin, T.-H. et al., A fully-integrated cantilever-based DNA detection SoC in a CMOS bio-MEMS process, in 2011 Symposium on VLSI Circuits (VLSIC), 2011. p. 50–51.
Bergveld, P., Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng, 1970. 17(1): p. 70–1.
Bergveld, P., Thirty years of ISFETOLOGY – What happened in the past 30 years and what may happen in the next 30 years. Sens Actuators B, 2003. 88(1): p. 1–20.
Lee, C.S., Kim, S.K., and Kim, M., Ion-sensitive field-effect transistor for biological sensing. Sensors (Basel), 2009. 9(9): p. 7111–31.
Olthuis, W., Chemical and physical FET-based sensors or variations on an equation. Sens Actuators B, 2005. 105(1): p. 96–103.
Ishige, Y., Shimoda, M., and Kamahori, M., Extended-gate FET-based enzyme sensor with ferrocenyl-alkanethiol modified gold sensing electrode. Biosens Bioelectron, 2009. 24(5): p. 1096–102.
Uslu, F., Ingebrandt, S., Mayer, D. et al., Labelfree fully electronic nucleic acid detection system based on a field-effect transistor device. Biosens Bioelectron, 2004. 19(12): p. 1723–31.
Dzyadevych, S.V., Soldatkin, A.P., Elskaya, A.V. et al., Enzyme biosensors based on ion-selective field-effect transistors. Anal Chim Acta, 2006. 568(1–2): p. 248–58.
Caras, S. and Janata, J., Field effect transistors sensitive to penicillin. Anal Chem, 1980. 52(12): p. 1935–7.
Meyburg, S., Moers, G.M., Ingebrandt, S. et al., N-Channel field-effect transistors with floating gates for extracellular recordings. Biosens Bioelectron, 2006. 21(7): p. 1037–44.
Stagni, C., Guidicci, C., Benini, L. et al., A fully electronic label-free DNA sensor chip. IEEE Sensors J, 2007. 7(3–4): p. 577–85.
Prakash, S.B. and Abshire, P., Tracking cancer cell proliferation on a CMOS capacitance sensor chip. Biosens Bioelectron, 2008. 23(10): p. 1449–57.
Levine, P.M., Gong, P., Levicky, R., and Shepard, K.L., Real-time, multiplexed electrochemical DNA detection using an active complementary metal-oxide-semiconductor biosensor array with integrated sensor electronics. Biosens Bioelectron, 2009. 24(7): p. 1995–2001.
Bausells, J., Carrabina, J., Errachid, A., and Merlos, A., Ion-sensitive field-effect transistors fabricated in a commercial CMOS technology. Sens Actuators B, 1999. 57(1–3): p. 56–62.
Chung, W.Y., Lin, Y.T., Pijanowska, D.G. et al., New ISFET interface circuit design with temperature compensation. Microelectron J, 2006. 37(10): p. 1105–14.
Bergveld, P., The operation of an ISFET as an electronic device. Sens Actuators, 1981. 1(1): p. 17–29.
Nakazato, K., An integrated ISFET sensor array. Sensors (Basel), 2009. 9(11): p. 8831–51.
Olthuis, W., Faber, E.J., Krommenhoek, E.E., and van den Arden, A., Sensing with FETs – once, now and future. In 8th Dresdner Sensor-Symposium, 10–12 Dec 2007, Dresden, 2007, p. 37–44.
Patolsky, F. and Lieber, C.M., Nanowire nanosensors. Mater Today, 2005. 8(5): p. 20.
He, B., Morrow, T.J., and Keating, C.D., Nanowire sensors for multiplexed detection of biomolecules. Curr Opin Chem Biol, 2008. 12(5): p. 522–8.
Patolsky, F., Zheng, G., Hayden, O. et al., Electrical detection of single viruses. Proc Natl Acad Sci USA, 2004. 101(39): p. 14017–22.
Patolsky, F., et al., Nanowire-based nanoelectronic devices in the life sciences. MRS Bull, 2007. 32(2): p. 142–149.
Zheng, G.F., Gao, X.P.A., and Lieber, C.M., Frequency domain detection of biomolecules using silicon nanowire biosensors. Nano Lett, 2010. 10(8): p. 3179–3183.
Chen, K.I., Li, B.R., and Chen, Y.T., Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today, 2011. 6(2): p. 131–154.
Huang, C.-W., Huang, Y.J., Yen, P.-W., et al., A fully integrated hepatitis B virus DNA detection SoC based on monolithic polysilicon nanowire CMOS process, in Symposia on VLSI Technology and Circuits 2012: Hawaii, IEEE, p. 124–5.
Huang, C.-W., Huang, Y.J., Yen, P.-W., et al., The implementation of polysilicon nanowire based biomolecular sensor System-on-Chip, in 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2012: Okinawa, Japan.