Skip to main content Accessibility help
×
Home
  • Print publication year: 2015
  • Online publication date: September 2015

11 - Cell-array biosensors

from Part II - Biosensors

Summary

Introduction

The field of electrophysiology explores the mechanisms of electrical signal generation and propagation in living tissues. Contemporary electrophysiology has tended to focus on electrically excitable cells, for example observing action potentials propagating along a neuronal membrane. However, the birth of electrophysiology was concerned with a more global approach, looking at “bioelectricity” in the whole organism. Galvani, the father of “bioelectricity”, hooked up lightning rods to cut nerves in a frog’s leg and observed twitching of the leg muscles during a lightning storm. Matteucci, in 1831, was the first to measure the so-called “injury potentials” using a galvanometer in a cut nerve ending and demonstrated the existence of action potentials in nerves and muscles. His work was extended by Du Bois-Reymond, who in 1843 was able to directly measure the propagation of action potentials and also the injury potentials from cuts in his own finger. While rapid changes in membrane conductance of individual cells may be viewed as a somewhat “obvious” target that has been intensely studied, other, slower bioelectric phenomena such as those seen in wound healing have been somewhat neglected. The field of “bioelectricity” has seen a re-emergence in the past decade, thanks in part to new techniques in molecular physiology. In addition, the ensemble of electric phenomena in biology is rarely considered. Instead of solely focusing on action potentials in individual cells, it can be instructive to consider electrical characteristics in groups or arrays of cells. In this chapter we focus on the electrical measurement of arrays of cells or tissue layers. We attempt to widen the traditional definition of electrophysiology in a more general sense, as the electrical measurement of ion flow in biological systems. We review a subset of literature on methods for measuring ion flow in tissues in vitro in both electrically active and non-electrically active cells. We will particularly highlight dynamic methods for monitoring cell cultures, and the new trend of using transistors rather than simple electrodes with a special emphasis on the use of conducting polymers to do so.

References
McCaig, C. D., Rajnicek, A. M., Song, B. and Zhao, M., Physiol Rev, 2005, 85, 943–978.
Levin, M. and Stevenson, C. G., Annu Rev Biomed Eng, 2012, 14, 295–323.
Behrends, J. C., Chem Rev, 2012, 112, 6218–6226.
Dubyak, G. R., Adv Physiol Ed, 2004, 28, 143–154.
Bonazzi, M. and Cossart, P., J Cell Biol, 2011, 195, 349–358.
Goodenough, D. A. and Paul, D. L., Cold Spring Harbor Persp Biol, 2009, 1.
Miyoshi, J. and Takai, Y., Adv Drug Deliv Rev, 2005, 57, 815–855.
Guttman, J. A. and Finlay, B. B., Biochim Biophys Acta, 2009, 1788, 832–841.
Alexander, F., Price, D. and Bhansali, S., IEEE Rev Biomed Eng, 2012, 6, 63–76.
Abraham, W. T., Fisher, W. G., Smith, A. L., et al., New Engl J Med, 2002, 346, 1845–1853.
Clark, G. M., Phil Trans Roy Soc B: Biol Sci, 2006, 361, 791–810.
Pearce, T. M. and Williams, J. C., Lab Chip, 2007, 7, 30–40.
Lebedev, M. A. and Nicolelis, M. A. L., Trends Neurosci, 2006, 29, 536–546.
Buzsáki, G., Anastassiou, C. A. and Koch, C., Nat Rev Neurosci, 2012, 13, 407–420.
Fertig, N., Blick, R. H. and Behrends, J. C., Biophys J, 2002, 82, 3056–3062.
Milligan, C. J. and Moller, C., Methods Mol Biol, 2013, 998, 171–187.
Haarmann, C., Haythornthwaite, A., Brueggemann, A. et al., Faseb Journal, 2009, 23.
Stoelzle, S., Haythornthwaite, A. R., Farre, C. et al., J Physiol Sci, 2009, 59, 402–402.
Spira, M. E. and Hai, A., Nat Nano, 2013, 8, 83–94.
Ordonez, J., Schuettler, M., Boehler, C., Boretius, T. and Stieglitz, T., MRS Bull, 2012, 37, 590–598.
Thomas, C. A., Springer, P. A., Loeb, G. E., Berwald-Netter, Y. and Okun, L. M., Exp Cell Res, 1972, 74, 61–66.
Pine, J., J Neurosci Methods, 1980, 2, 19–31.
Borkholder, D. A., Bao, J., Maluf, N. I., Perl, E. R. and Kovacs, G. T. A., J Neurosci Methods, 1997, 77, 61–66.
Steidl, E.-M., Neveu, E., Bertrand, D. and Buisson, B., Brain Res, 2006, 1096, 70–84.
Spira, M. E. and Hai, A., Nat Nanotechnol, 2013, 8, 83–94.
Buzsaki, G., Nat Neurosci, 2004, 7, 446–451.
Franks, W., Schenker, I., Schmutz, P. and Hierlemann, A., IEEE Trans Biomed Eng, 2005, 52, 1295–1302.
Novak, J. L. and Wheeler, B. C., J Neurosci Methods, 1988, 23, 149–159.
Cogan, S. F., Annu Rev Biomed Eng, 2008, 10, 275–309.
Weiland, J. D., Anderson, D. J. and Humayun, M. S., IEEE Trans Biomed Eng, 2002, 49, 1574–1579.
Janders, M., Egert, U., Stelzle, M. and Nisch, W., 1996, Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine. Proc 18th Ann Int Conf IEEE245–247.
Sandison, M. E., Anicet, N., Glidle, A. and Cooper, J. M., Anal Chem, 2002, 74, 5717–5725.
Kotov, N. A., Winter, J. O., Clements, I. P. et al., Adv Mater, 2009, 21, 3970–4004.
Heim, M., Yvert, B. and Kuhn, A., J Physiol Paris, 2012, 106, 137–145.
Seker, E., Berdichevsky, Y., Begley, M. R. et al., Nanotechnology, 2010, 21.
Park, S., Song, Y. J., Boo, H. and Chung, T. D., J Phys Chem C, 2010, 114, 8721–8726.
Ju-Hyun, K., Gyumin, K., Yoonkey, N. and Yang-Kyu, C., Nanotechnology, 2010, 21, 085303.
Brüggemann, D., Wolfrum, B., Maybeck, V. et al., Nanotechnology, 2011, 22, 265104.
Gabay, T., Ben-David, M., Kalifa, I. et al., Nanotechnology, 2007, 18.
Hanein, Y. and Bareket-Keren, L., Frontiers Neur Circuits, 2013, 6.
Keefer, E. W., Botterman, B. R., Romero, M. I., Rossi, A. F. and Gross, G. W., Nat Nanotechnol, 2008, 3, 434–439.
Christopher, M. V. and Jan, P. S., J Neur Eng, 2011, 8, 011001.
Green, R. A., Lovell, N. H., Wallace, G. G. and Poole-Warren, L. A., Biomaterials, 2008, 29, 3393–3399.
Abidian, M. R., Corey, J. M., Kipke, D. R. and Martin, D. C., Small, 2010, 6, 421–429.
Cui, X., Lee, V. A., Raphael, Y. et al., J Biomed Mater Res, 2001, 56, 261–272.
Ludwig, K. A., Langhals, N. B., Joseph, M. D. et al., J Neur Eng, 2011, 8, 014001.
Moulton, S. E., Higgins, M. J., Kapsa, R. M. I. and Wallace, G. G., Adv. Funct. Mater, 2012, 22, 2003–2014.
Poole-Warren, L., Lovell, N., Baek, S. and Green, R., Expert Rev Med Devices, 2010, 7, 35–49.
Guimard, N. K., Gomez, N. and Schmidt, C. E., Progress Polym Sci, 2007, 32, 876–921.
Yamato, H., Ohwa, M. and Wernet, W., J Electroanal Chem, 1995, 397, 163–170.
Cui, X. and Martin, D. C., Sensors Actuators B: Chem, 2003, 89, 92–102.
Fabretto, M. V., Evans, D. R., Mueller, M. et al., Chem Mater, 2012, 24, 3998–4003.
Ludwig, K. A., Uram, J. D., Yang, J., Martin, D. C. and Kipke, D. R., J Neur Eng, 2006, 3, 59.
Nyberg, T., Shimada, A. and Torimitsu, K., J Neurosci Methods, 2007, 160, 16–25.
Shimada, A., Kasai, N., Furukawa, Y., Nyberg, T. and Torimitsu, K., Electrical Eng Japan, 2011, 177, 37–42.
Blau, A., Murr, A., Wolff, S. et al., Biomaterials, 2011, 32, 1778–1786.
Sessolo, M., Khodagholy, D., Rivnay, J. et al., Adv Mater, 2013, 25, 2135–2139.
Fromherz, P., Solid State Electron, 2008, 52, 1364–1373.
Hutzler, M. and Fromherz, P., Eur J Neurosci, 2004, 19, 2231–2238.
Tian, B., Cohen-Karni, T., Qing, Q. et al., Science, 2010, 329, 830–834.
Khodagholy, D., Doublet, T., Quilichini, P. et al., Nat Commun, 2013, 4, 1575.
Scott, C. W. and Peters, M. F., Drug Discovery Today, 2010, 15, 704–716.
Owens, R. M., Wang, C., You, J. A. et al., J Recept Signal Transduct Res, 2009, 29, 195–201.
Clarke, L. L., Am J Physiol Gastrointest Liver Physiol, 2009, 296, G1151-G1166.
Rotunno, C. A., Vilallonga, F. A., Fernandez, M. and Cereijido, M., J General Physiol, 1970, 55, 716–735.
Misfeldt, D. S., Hamamoto, S. T. and Pitelka, D. R., Proc Natl Acad Sci USA, 1976, 73, 1212–1216.
Cereijido, M., Robbins, E., Dolan, W., Rotunno, C. and Sabatini, D., J Cell Biology, 1978, 77, 853–880.
Giaever, I. and Keese, C. R., Proc Natl Acad Sci USA, 1984, 81, 3761–3764.
Giaever, I. and Keese, C. R., Nature, 1993, 366, 591–592.
Giaever, I. and Keese, C. R., Proc Natl Acad Sci USA, 1991, 88, 7896–7900.
Benson, K., Cramer, S. and Galla, H.-J., Fluids Barriers CNS, 2013, 10, 5.
Ehret, R., Baumann, W., Brischwein, M. et al. Biosens. Bioelectron., 1997, 12, 29–41.
Curtis, T. M., Widder, M. W., Brennan, L. M. et al. Lab Chip, 2009, 9, 2176–2183.
Wegener, J., Keese, C. R. and Giaever, I., Exp Cell Res, 2000, 259, 158–166.
Stolwijk, J. A., Hartmann, C., Balani, P. et al. Biosensors Bioelectron, 2011, 26, 4720–4727.
Keese, C. R., Bhawe, K., Wegener, J. and Giaever, I., BioTechniques, 2002, 33, 842–844, 846, 848–850.
Hidalgo, I. J., Raub, T. J. and Borchardt, R. T., Gastroenterology, 1989, 96, 736–749.
Bernards, D. A., Malliaras, G. G., Toombes, G. E. S. and Gruner, S. M., Appl Phys Lett, 2006, 89, 05305.
Hurst, R. D. and Fritz, I. B., J Cell Physiol, 1996, 167, 81–88.
Gunzel, D., Krug, S. M., Rosenthal, R. and Fromm, M., Curr Top Membr, 2010, 65, 39–78.
Prozialeck, W. C., Edwards, J. R., Lamar, P. C. and Smith, C. S., Toxicology in Vitro, 2006, 20, 942–953.
Ma, T. Y., Nguyen, D., Bui, V., Nguyen, H. and Hoa, N., Am J Physiol, 1999, 276, G965–974.
McLaughlin, J., Padfield, P. J., Burt, J. P. H. and O’Neill, C. A., Am J Physiol Cell Physiol, 2004, 287, C1412-C1417.
Van Itallie, C. M., Fanning, A. S., Holmes, J. and Anderson, J. M., J Cell Sci, 2010, 123, 2844–2852.
Boyle, E. C., Brown, N. F. and Finlay, B. B., Cell Microbiol, 2006, 8, 1946–1957.
Wegener, J., Abrams, D., Willenbrink, W., Galla, H. J. and Janshoff, A., BioTechniques, 2004, 37, 590, 592–594, 596–597.
Tria, S. A., Jimison, L. H., Hama, A., Bongo, M. and Owens, R. M., Biochim Biophys Acta, 2013, 1830, 4381–4390.
Kottra, G., Haase, W. and Fromter, E., Pflug Arch Eur J Phy, 1993, 425, 528–534.
Sun, T., Swindle, E. J., Collins, J. E. et al. Lab Chip, 2010, 10, 1611–1617.
Krug, S. M., Fromm, M. and Gunzel, D., Biophys J, 2009, 97, 2202–2211.
Frömter, E. and Diamond, J., Nat New Biol, 1972, 235, 9–13.
Mankertz, J., Amasheh, M., Krug, S. M. et al. Cell Tissue Res, 2009, 336, 67–77.
Fromm, M., Krug, S. M., Zeissig, S., et al. in Molecular Structure and Function of the Tight Junction: From Basic Mechanisms to Clinical Manifestations, Ann. NY Acad Sci, 2009, 1165, 74–81.
Troeger, H., Richter, J. F., Beutin, L. et al., Cell Microbiol, 2007, 9, 2530–2540.
Gitter, A. H., Bendfeldt, K., Schulzke, J. D. and Fromm, M., Faseb Journal, 2000, 14, 1749–1753.
Gitter, A. H., Victor, L., Bertog, M., et al. Intestinal Plasticity in Health and Disease, 1998, 859, 285–289.
Lin, P., Yan, F., Yu, J. J., Chan, H. L. W. and Yang, M., Adv Mater, 2010, 22, 3655.
Khodagholy, D., Doublet, T., Gurfinkel, M. et al., Adv Mater, 2011, 23, H268.
Shim, N. Y., Bernards, D. A., Macaya, D. J., et al. Sensors Basel, 2009, 9, 9896–9902.
Bernards, D. A. and Malliaras, G. G., Adv Funct Mater, 2007, 17, 3538–3544.
Tria, S., Jimison, L., Hama, A., Bongo, M. and Owens, R., Biosensors, 2013, 3, 44–57.
Artursson, P., J Pharm Sci, 1990, 79, 476–482.
Boulenc, X., Marti, E., Joyeux, H. et al. Biochem Pharmacol, 1993, 46, 1591–1600.