Skip to main content Accessibility help
×
Home
  • Print publication year: 2015
  • Online publication date: September 2015

24 - The Bionic Eye: a review of multielectrode arrays

from Part V - Bionics

Summary

Introduction

The notion of creating artificial vision using visual prostheses has been well represented though science fiction literature and films. When we think of retinal prostheses, we immediately think of fictional characters like The Terminator scanning across a bar to assess patrons for appropriately fitting clothing, or Star Trek’s Geordi La Forge with his VISOR, a visual instrument and sensory organ replacement placed across his eyes and attached into his temples to provide him with vision. Such devices are no longer farfetched. In the past 20 years, significant research has been undertaken across the globe in the race for a “Bionic Eye”. Advances in Bionic Eye research have come from improvements in the design and fabrication of multielectrode arrays (MEAs) for medical applications. MEAs are already commonplace in medicine with use in applications such as the cochlear device, cardiac pacemakers, and deep brain stimulators where interfacing with neuronal cell populations is required.

The use of MEAs for vision prostheses is currently of significant interest. For the most part, retinal prostheses have dominated the research landscape owing to the ease of access and direct contact to the retinal ganglion nerve cells. However, MEAs are also in use for direct stimulation into the optic nerve [1]. Retinal prostheses bypass the damaged photoreceptor cells within the retina and instead replace the degenerate retina with electrical stimulation to the nerve cells. Using electrical stimulation, stimulated retinal ganglion cells have been shown to elicit a percept in the form of a phosphene in blind patients [2–6]. Accordingly, the two diseases commonly linked to the justification for Bionic Eye research are age-related macular degeneration (AMD) and retinitis pigmentosa (RP), diseases which lead to progressive loss of photoreceptor cells and diseases where the patient has had previous vision and thus exhibits prior visual-brain pathways. At present, there has been no reliable cure for any of the retinal diseases that target the photoreceptor cells, and thus the development of prosthetic devices is a viable clinical treatment option [7–9].

References
Dobelle, W. H., Mladejovsky, M. G., and Girvin, J. P., “Artificial vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis,” Science, vol. 183, pp. 440–444, 1974.
Humayun, M. S., de Juan, E. Jr, Dagnelie, G. et al., “Visual perception elicited by electrical stimulation of retina in blind humans,” Arch. Ophthalmol., vol. 114, no. 1, pp. 40–46, 1996.
Humayun, M. S., Dorn, J. D., da Cruz, L. et al., “Interim results from the international trial of Second Sight’s visual prosthesis,” Ophthalmology, vol. 119, no. 4, pp. 779–788, 2012.
Zrenner, E., Benav, H., Bruckmann, A. et al., “Electronic implants provide continuous stable percepts in blind volunteers only if the image receiver is directly linked to eye movement,” ARVO Meeting Abstr., vol. 51, no. 5, pp. 4319, 2010.
Zrenner, E., Bartz-Schmidt, K. U., Gekeler, F. et al., “Seeing with subretinal electronic implants: study in ten patients with wireless implant Alpha-IMS,” ARVO Meeting Abstr., vol. 53, no. 6, pp. 6948, 2012.
Zrenner, E., Bartz-Schmidt, K. U., Benav, H. et al., “Subretinal electronic chips allow blind patients to read letters and combine them to words,” Proc. Biol. Sci. Roy. Soc., vol. 278, no. 1711, pp. 1489–1497, 2011.
Kusnyerik, A., Karacs, K., and Zarandy, A., “Vision restoration and vision chip technologies,” Proc. Computer Sci., vol. 7, pp. 121–124, 2011.
Smith, A. J., Bainbridge, J. W., and Ali, R. R., “Prospects for retinal gene replacement therapy,” Trends Genet., vol. 25, no. 4, pp. 156–165, 2009.
Menzel-Severing, J., “Emerging techniques to treat corneal neovascularisation,” Eye, vol. 26, no. 1, pp. 2–12, 2012.
Veraart, C., Wanet-Defalque, M.-C., Gérard, B., Vanlierde, A., and Delbeke, J. J., “Pattern recognition with the optic nerve visual prosthesis,” Artif. Organs, vol. 27, no. 11, pp. 996–1004, 2003.
Normann, R. A., “Toward the development of a cortically based visual neuroprosthesis,” J. Neural Eng., vol. 6, no. 3, pp. 035001, 2009.
Stieglitz, T., “Development of a micromachined epiretinal vision prosthesis,” J. Neural Eng., vol. 6, no. 6, pp. 065005, 2009.
Caspi, A., Dorn, J. D., McClure, K. H. et al., “Feasibility study of a retinal prosthesis: spatial vision with a 16-electrode implant,” Arch. Ophthalmol., vol. 127, no. 4, pp. 398–401, 2009.
Keserue, M., Post, N., Hornig, R. et al., “Long term tolerability of the first wireless implant for electrical epiretinal stimulation,” ARVO Meeting Abstr., vol. 50, no. 5, pp. 4226, 2009.
Klauke, S., Goertz, M., Rein, S. et al., “Stimulation with a wireless intraocular epiretinal implant elicits visual percepts in blind humans: results from stimulation tests during the EPIRET3 prospective clinical trial,” Invest. Ophthalmol. Vis. Sci., vol. 52, no. 1, pp. 449–455, 2011.
Richard, G., Keserue, M., Hornig, R. et al., “Long-term stability of stimulation thresholds obtained from a human patient with a prototype of an epiretinal retina prosthesis,” ARVO Meeting Abstr., vol. 50, no. 5, pp. 4580, 2009.
Vugler, A., Lawrence, J., Walsh, J. et al., “Embryonic stem cells and retinal repair,” Mech. Dev., vol. 124, pp. 807–829, 2007.
Donoghue, J. P., “Connecting cortex to machines: recent advances in brain interfaces,” Nature Neurosci., vol. 5, pp. 1085–1088, 2002.
Chen, S. C., Suaning, G. J., Morley, J. W. et al., “Simulating prosthetic vision: I. Visual models of phosphenes,” Vision Res. vol. 49, pp. 1493–1506, 2009.
Perez Fornos, A., Sommerhalder, J., da Cruz, L. et al., “Temporal properties of visual perception on electrical stimulation of the retina,” Invest. Ophthalmol. Vis. Sci., vol. 53, no. 6, pp. 2720–2731, May, 2012.
Wilke, R. G., Greppmaier, U., Stingl, K. et al., “Fading of perception in retinal implants is a function of time and space between sites of stimulation,” ARVO Meeting Abstr., vol. 52, no. 6, pp. 458, April 22, 2011.
Koch, F. H., Nolten, U, Gortz, M, Mokwa, W, “Fabrication and assemble techniques for a 3rd generation wireless epiretinal prosthesis.,” in Proc. of MME 2008, 19th Workshop on Micromachining, Micromechanics and Microsystems, Aachen, Germany, 2008, pp. 365–368.
Feucht, M., Laube, T., Bornfeld, N. et al., “[Development of an epiretinal prosthesis for stimulation of the human retina],” Ophthalmologe, vol. 102, no. 7, pp. 688–691, Jul, 2005.
Kelly, S. K., Shire, D. B., Chen, J. et al., “A hermetic wireless subretinal neurostimulator for vision prostheses,” IEEE Trans. Biomed. Eng., vol. 58, no. 22, pp. 3197–3205, 2011.
Lorach, H., Marre, O., Sahel, J.-A. et al., “Neural stimulation for visual rehabilitation: Advances and challenges,” J. Physiol. Paris, , 2012.
Hudak, E. M., Mortimer, J. T., and Martin, H. B., “Platinum for neural stimulation: voltammetry considerations,” J. Neural Eng., vol. 7, pp. 026005, 2010.
Agnew, W. F., Yuen, T. G. H., Pudenz, R. H. et al., “Neuropathological effects of intracerebral platinum salt injections,” J. Neuropathol. Exp. Neurol., vol. 36, no. 3, pp. 533–546, 1977.
Brummer, S. B., Robblee, L. S., and Hambrecht, F. T., “Criteria for selecting electrodes for electrical-stimulation – theoretical and practical considerations,” Ann. New York Acad. Sci., vol. 405, pp. 159–171, 1983.
Brummer, S. B., and Turner, M. J., “Electrochemical considerations for safe electrical-stimulation of nervous-system with platinum-electrodes,” IEEE Trans. Biomed. Eng., vol. 24, no. 1, pp. 59–63, 1977.
McHardy, J., Robblee, L. S., Marston, J. M. et al., “Electrical-stimulation with Pt electrodes: 4 factors influencing Pt dissolution in inorganic saline,” Biomaterials, vol. 1, no. 3, pp. 129–134, 1980.
Cogan, S. F., “Neural stimulation and recording electrodes,” Annu. Rev. Biomed. Eng., vol. 10, pp. 275–309, 2008.
Cogan, S. F., Guzelian, A. A., Agnew, W. F. et al., “Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation,” J. Neurosci. Meth., vol. 137, no. 2, pp. 141–150, 2004.
Cogan, S. F., Troyk, P. R., Ehrlich, J. et al., “In vitro comparison of the charge-injection limits of activated iridium oxide (AIROF) and platinum-iridium microelectrodes,” IEEE Trans. Biomed. Eng., vol. 52, no. 9, pp. 1612–1614, 2005.
Cogan, S. F., Ehrlich, J., Plante, T. D. et al., “Sputtered iridium oxide films for neural stimulation electrodes,” J. Biomed. Mater. Res. B Appl. Biomater., vol. 89B, no. 2, pp. 353–361, 2009.
Rose, T. L., and Robblee, L. S., “Electrical-stimulation with Pt electrodes: 8 electrolytically safe charge injection limits with 0.2 ms pulses,” IEEE Trans. Biomed. Eng., vol. 37, no. 11, pp. 1118–1120, 1990.
Beebe, X., and Rose, T. L., “Charge injection limits of activated iridium oxide electrodes with 0.2ms pulses in bicarbonate buffered saline,” IEEE Trans. Biomed. Eng., vol. 35, no. 6, pp. 494–495, 1988.
Cogan, S. F., Troyk, P. R., Ehrlich, J. et al., “Potential-biased, asymmetric waveforms for charge-injection with activated iridium oxide (AIROF) neural stimulation electrodes,” IEEE Trans. Biomed. Eng., vol. 53, no. 2, pp. 327–332, 2006.
Robblee, L. S., Manguadis, M. J., Lasinky, E. D. et al., “Charge injection properties of thermally-prepared iridium oxide films,” Mat. Res. Soc. Symp. Proc., vol. 55, pp. 303–310, 1986.
Cogan, S. F., Plante, T. D., Ehrlich, J. et al., “Sputtered iridium oxide films (SIROFs) for low-impedance neural stimulation and recording electrodes,” Proc. 26th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., pp. 4153–4156, 2004.
Schmidt, E. M., Hambrecht, F. T., and McIntosh, J. S., “Intra-cortical capacitor electrodes – preliminary evaluation,” J. Neurosci. Meth., vol. 5, no. 1–2, pp. 33–39, 1982.
Weiland, J. D., Anderson, D. J., and Humayun, M. S., “In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes,” IEEE Trans. Biomed. Eng., vol. 49, no. 12, pp. 1574–1579, 2002.
Ganske, G., Slavcheva, E., van Ooyen, A. et al., “Sputtered platinum-iridium layers as electrode material for functional electrostimulation,” Thin Solid Films, vol. 519, no. 11, pp. 3965–3970, 2011.
Garrett, D. J., Ganesan, K., Stacey, A. et al., “Ultra-nanocrystalline diamond electrodes: optimization towards neural stimulation applications,” J. Neural Eng., vol. 9, no. 1, pp. 016002, 2011.
Hadjinicolaou, A. E., Leung, R. T., Garrett, D. J. et al., “Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis,” Biomaterials, vol. 33, no. 24, pp. 5812–5820, 2012.
Ganesan, K., Garrett, D. J., Ahnood, A. et al., “An all-diamond, hermetic electrical feedthrough array for a retinal prosthesis,” Biomaterials, vol. 35, no. 3, pp. 908–915, 2014.
Green, R. A., Hassarati, R. T., Bouchinet, L. et al., “Substrate dependent stability of conducting polymer coatings on medical electrodes,” Biomaterials, vol. 33, no. 25, pp. 5875–5886, 2012.
Green, R. A., Devillaine, F., Dodds, C. et al., “Conducting polymer electrodes for visual prostheses,” in Proc. 32nd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Argentina, 2010.
de. Balthasar, C., Patel, S., Roy, A. et al., “Factors affecting perceptual thresholds in epiretinal prostheses,” Investig. Ophthalmol. Visual Sci., vol. 49, no. 6, pp. 2303–2314, 2008.
Mahadevappa, M., Weiland, J. D., Yanai, D. et al., “Perceptual thresholds and electrode impedance in three retinal prosthesis subjects,” IEEE Trans. Neural Systems Rehab. Eng., vol. 13, no. 2, pp. 201–206, 2005.
Yanai, D., Weiland, J. D., Mahadevappa, M. et al., “Visual performance using a retinal prosthesis in three subjects with retinitis pigmentosa,” Am. J. Ophthalmo.l, vol. 143, no. 5, pp. 820–827, 2007.
Dorn, J. D., Ahuja, A. K., Caspi, A. et al., “The detection of motion by blind subjects with the epiretinal 60-electrode (Argus II) retinal prosthesis,” Arch. Ophthalmol., pp. 1–7, 2012.
Humayun, M. S., Dorn, J. D., Cruz, L. d. et al., “Interim results from the international trial of second sight’s visual prosthesis,” Ophthalmology, no. 119, pp. 779–788, 2012.
Fernandes, R, Diniz, B, Ribeiro, R et al., “Artificial vision through neuronal stimulation,” Neurosci. Lett., vol. 519, no. 2, pp. 22–128, 2012.
Hornig, R., Laube, T., Walter, P. et al., “A method and technical equipment for an acute human trial to evaluate retinal implant technology,” J. Neural Eng., vol. 2, no. 1, pp. S129–134, 2005.
Gekeler, F., Szurman, P., Grisanti, S. et al., “Compound subretinal prostheses with extra-ocular parts designed for human trials: successful long-term implantation in pigs,” Graefe’s Archive Clin. Exp. Ophthalmol., vol. 245, no. 2, pp. 230–241, 2006.
Albrecht Rothermel, L. L., Aryan, N. P., Fisher, M. et al., “A CMOS chip with active pixel array and specific test features for subretinal implantation,” IEEE J. Solid-State Circuits, vol. 44, no. 1, pp. 290–300, 2009.
Gekeler, F., Kopp, A., Sachs, H. et al., “Visualisation of active subretinal implants with external connections by high-resolution CT,” Br. J. Ophthalmol., vol. 94, no. 7, pp. 843–847, 2010.
Chader, G. J., Weiland, J. D., and Humayun, M. S., “Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis,” Progress in Brain Research, Verhaagen, J., ed. Elsevier, 2009.
Schwarz, M., Ewe, L., Hausschild, R et al., “Single chip CMOS imagers and flexible microelectronic stimulators for a retinal implant system,” Sensors Actuators, no. 83, pp. 40–46, 2000.
Weiland, J D, Cho, A. K., and Humayun, M., “Retinal prostheses: current clinical results and future needs,” Opthalmology, vol. 118, no. 11, pp. 2227–2237, 2011.
Klauke, S., Goertz, M., Rein, S. et al., “Stimulation with a wireless intraocular epiretinal implant elicits visual percepts in blind humans,” Invest. Ophthalmol. Vis. Sci., vol. 52, no. 1, pp. 449–455, 2010.
Fujikado, T., Kamei, M., Sakaguchi, H. et al., “Testing of semichronically implanted retinal prosthesis by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci., vol. 52, no. 7, pp. 4726–4733, 2011.
Ohta, J., Tokuda, T., Kagawa, K. et al., “Laboratory investigation of microelectronics-based stimulators for large-scale suprachoroidal transretinal stimulation (STS),” J. Neural Eng., vol. 4, no. 1, pp. S85–91, 2007.
Tokuda, T., Asano, R., Sugitani, S. et al., “In vivo stimulation on rabbit retina using CMOS LSI-based multi-chip flexible stimulator for retinal prosthesis,” Proc. 29th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., pp. 5791–5794, 2007.
Rizzo, J. F., Wyatt, J., Loewenstein, J. et al., “Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays,” Invest. Ophthalmol. Vis. Sci., vol. 44, no. 12, pp. 5355–5361, 2003.
Rizzo, J. F., Wyatt, J., Loewenstein, J. et al., “Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials,” Invest. Ophthalmol. Vis. Sci., vol. 44, no. 12, pp. 5362–5369, 2003.
Kelly, S. K., Shire, D. B., Chen, J. et al., “Communication and control system for a 15-channel hermetic retinal prosthesis,” Biomed. Signal Processing Control, vol. 6, no. 4, pp. 356–363, 2011.
Kelly, S. K., Shire, D. B., Chen, J. et al., “Realization of a 15-channel hermetically-encased wireless subretinal prosthesis for the blind,” in Proc. 31st Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., pp. 200–203, 2009.
Shire, D. B., Kelly, S. K., Chen, J. et al., “Development and implantation of a minimally invasive wireless subretinal neurostimulator,” IEEE Trans. Biomed. Eng., vol. 56, no. 10, pp. 2502–2511, 2009.
Bionic Vision Australia, “All of a sudden I could see a little flash of light. It was amazing.” [30 August, 2012].
Cicione, R., Shivdasani, M. N., Fallon, J. B. et al., “Visual cortex responses to suprachoroidal electrical stimulation of the retina: effects of electrode return configuration,” J. Neural Eng., vol. 9, no. 3, pp. 036009, 2012.
Shivdasani, M. N., Luu, C. D., Cicione, R. et al., “Evaluation of stimulus parameters and electrode geometry for an effective suprachoroidal retinal prosthesis,” J. Neural Eng., vol. 7, no. 3, pp. 036008, 2010.
Villalobos, J., Allen, P. J., McCombe, M. F. et al., “Development of a surgical approach for a wide-view suprachoroidal retinal prosthesis: evaluation of implantation trauma,” Graefe’s Archive Clin. Exp. Ophthalmol., vol. 250, no. 3, pp. 399–407, 2011.
Villalobos, J., Nayagam, D. A. X., Allen, P. J. et al., “A wide-field suprachoroidal retinal prosthesis is stable and well tolerated following chronic implantation,” Invest. Ophthalmol. Vis. Sci. vol. 54, no. 5, pp. 3751–3762, 2013.
Chow, A. Y., Chow, V. Y., Packo, K. H. et al., “The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa,” Arch. Ophthalmol., vol. 122, no. 4, pp. 460–469, 2004.
Seo, J.-M., Kim, S. J., Chung, H. et al., “Biocompatibility of polyimide microelectrode array for retinal stimulation,” Mater. Sci. Eng. C, vol. 24, no. 1–2, pp. 185–189, 2004.
Zhou, J. A., Woo, S. J., Park, S. I. et al., “A suprachoroidal electrical retinal stimulator design for long-term animal experiments and in vivo assessment of its feasibility and biocompatibility in rabbits,” J. Biomed. Biotechnol., 547428, 2008.
Lee, S. W., Seo, J.-M., Ha, S. et al., “Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers,” Invest. Ophthalmol. Vis. Sci., vol. 50, no. 12, pp. 5859–5866, 2009.
Kim, E. T., Kim, C., Lee, S. W. et al., “Feasibility of microelectrode array (MEA) based on silicone-polyimide hybrid for retina prosthesis,” Invest. Ophthalmol. Vis. Sci., vol. 50, no. 9, pp. 4337–4341, 2009.
Schuettler, M., Stiess, S., King, B. V. et al., “Fabrication of implantable microelectrode arrays by laser cutting of silicone rubber and platinum foil,” J. Neural Eng., vol. 2, no. 1, pp. S121–8, 2005.
Ganesan, K., Stacey, A., Meffin, H. et al., “Diamond penetrating electrode array for epi-retinal prosthesis,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., pp. 6757–6760, 2010.
Weiland, J. D., Liu, W, and Humayun, M. S., “Retinal prosthesis,” Annu. Rev. Biomed. Eng., vol. 7, pp. 361–401, 2005.
Stieglitz, T., Haberer, W., Lau, C. et al., “Development of an inductively coupled epiretinal visual prosthesis,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., pp. 4178–4181, 2004.
Bokkon, I., “Phosphene phenomenon: A new concept,” BioSystems, vol. 92, pp. 168–174, 2008.
Walker, J., “The amateur scientist: about phosphenes: patterns that appear when the eyes are closed,” Scient. Am., vol. 244, pp. 142–152, 1981.
Nanduri, D., Fine, I., Horsager, A. et al., “Frequency and amplitude modulation have different effects on the percepts elicited by retinal stimulation,” Invest. Ophthalmol. Vis. Sci., vol. 53, no. 1, pp. 205–214, Jan, 2012.
Humayun, M. S., de Juan, Jr. E., Weiland, J. D. et al., “Pattern electrical stimulation of the human retina,” Vision Res., vol. 39, no. 15, pp. 2569–2576, Jul, 1999.
McMahon, M. J., Dorn, J. D., Ahuja, A. K. et al., “The Argus II retinal prosthesis enables blind subjects to localize objects,” ARVO Meeting Abstr., vol. 50, no. 5, pp. 4589, 2009.
Ahuja, A. K., Dorn, J. D., Caspi, A. et al., “The Argus II retinal prosthesis enables blind subjects to identify the direction of motion,” ARVO Meeting Abstr., vol. 50, no. 5, pp. 4590, 2009.
Ahuja, A. K., Dorn, J. D., Caspi, A. et al., “Subjects implanted with the ArgusTM II retinal prosthesis are able to improve performance in a spatial-motor task,” ARVO Meeting Abstr., vol. 51, no. 5, pp. 4322, 2010.
Mohand-Said, S., Caspi, A., Merlini, F. et al., “Comparison of ETDRS, Landolt C, and grating visual acuity tests between sighted volunteers using a pixelized image simulator and blind subjects implanted with the ArgusTm II retinal prosthesis,” ARVO Meeting Abstr., vol. 52, no. 6, pp. 4931, 2011.
Arsiero, M., da Cruz, L., Merlini, F. et al., “Subjects blinded by outer retinal dystrophies are able to recognize shapes using the Argus II retinal prosthesis system,” ARVO Meeting Abstr., vol. 52, no. 6, pp. 4951, 2011.
daCruz, L., Merlini, F., Arsiero, M. et al., “Subjects blinded by outer retinal dystrophies are able to recognize outlined shapes using the Argus(R) II retinal prosthesis system: a comparison with the full shapes recognition task,” ARVO Meeting Abstr., vol. 53, no. 6, pp. 5507, 2012.
Sahel, J. A., da Cruz, L., Hafezi, F. et al., “Subjects blind from outer retinal dystrophies are able to consistently read short sentences using the ArgusTM II retinal prosthesis system,” ARVO Meeting Abstr., vol. 52, no. 6, pp. 3420, 2011.
Dorn, J. D., Ahuja, A. K., Arsiero, M. et al., “The ArgusTM II retinal prosthesis provides complex form vision for a subject blinded by retinitis pigmentosa,” ARVO Meeting Abstr., vol. 51, no. 5, pp. 3020, 2010.
Stanga, P. E., Hafezi, F., Sahel, J. A. et al., “Patients blinded by outer retinal dystrophies are able to perceive color using the Argus™ II retinal prosthesis system,” ARVO Meeting Abstr., vol. 52, no. 6, pp. 4949, 2011.
Stanga, P. E., Sahel, J. A., daCruz, L. et al., “Patients blinded by outer retinal dystrophies are able to perceive simultaneous colors using the Argus(R) II retinal prosthesis system,” Arvo Meeting Abstr., vol. 53, no. 6, pp. 6952, 2012.
Nanduri, D., Dorn, J. D., Humayun, M. S. et al., “Percept properties of single electrode stimulation in retinal prosthesis subjects,” ARVO Meeting Abstr., vol. 52, no. 6, pp. 442, 2011.
Richard, G., Keserue, M., Feucht, M. et al., “Visual perception after long-term implantation of a retinal implant,” ARVO Meeting Abstr., vol. 49, no. 5, pp. 1786, 2008.
Richard, G., Hornig, R., Keseru, M. et al., “Chronic epiretinal chip implant in blind patients with retinitis pigmentosa: long-term clinical results,” ARVO Meeting Abstr., vol. 48, no. 5, pp. 666, 2007.
Keseru, M., Feucht, M., Bornfeld, N. et al., “Acute electrical stimulation of the human retina with an epiretinal electrode array,” Acta Ophthalmol, vol. 90, no. 1, pp. e1–8, 2012.
Hornig, R., Zehnder, T., Velikay-Parel, M. et al., “The IMI retinal implant system,” in Artificial Sight: Basic Research, Biomedical Engineering, and Clinical Advances. Humayun, M., Weiland, J., Chader, G., Greenbaum, E, ed., pp. 111–128, New York: Springer, 2008.
Wilke, R., Gabel, V. P., Sachs, H. et al., “Spatial resolution and perception of patterns mediated by a subretinal 16-electrode array in patients blinded by hereditary retinal dystrophies,” Invest. Ophthalmol. Vis. Sci., vol. 52, no. 8, pp. 5995–6003, 2011.
Wilke, R., Greppmaier, U., Harscher, A. et al., “Factors affecting perceptual thersholds of subretinal electric stimulation in blind volunteers,” ARVO Meeting Abstr., vol. 51, no. 5, pp. 2026, 2010.
Mokwa, W., Goertz, M., Koch, C. et al., “Intraocular epiretinal prosthesis to restore vision in blind humans,” Conf. Proc. IEEE. Eng. Med. Biol. Soc., vol. 2008, pp. 5790–5793, 2008.
Roessler, G., Laube, T., Brockmann, C. et al., “Implantation and explantation of a wireless epiretinal retina implant device: observations during the EPIRET3 prospective clinical trial,” Invest. Ophthalmol. Vis. Sci., vol. 50, no. 6, pp. 3003–3008, 2009.
Kanda, H., Morimoto, T., Fujikado, T. et al., “Electrophysiological studies of the feasibility of suprachoroidal-transretinal stimulation for artificial vision in normal and RCS rats,” Invest. Ophthalmol. Vis. Sci., vol. 45, no. 2, pp. 560–566, 2004.
Fujikado, T., Morimoto, T., Kanda, H. et al., “Evaluation of phosphenes elicited by extraocular stimulation in normals and by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa,” Graefe’s Archive Clin. Exp. Ophthalmol., vol. 245, no. 10, pp. 1411–1419, 2007.
Shivdasani, M. N., Fallon, J. B., Luu, C. D. et al., “Visual cortex responses to single- and simultaneous multiple-electrode stimulation of the retina: implications for retinal prostheses,” Invest. Ophthalmol. Vis. Sci., vol. 53, no. 10, pp. 6291–6300, 2012.
Zhou, J. A., Woo, S. J., Park, S. I. et al., “A suprachoroidal electrical retinal stimulator design for long-term animal experiments and in vivo assessment of its feasibility and biocompatibility in rabbits,” J. Biomed. Biotechnol., vol. 2008, pp. 547428, 2008.
Terasawa, Y., Osawa, K., Ozawa, M. et al., “Large-surface-area electrodes based on bulk micromachining,” ARVO Meeting Abstr., vol. 49, no. 5, pp. 3020, 2008.
Terasawa, Y., Tashiro, H., Osawa, K. et al., “Characterization of electrochemically-treated platinum bulk electrodes,” ARVO Meeting Abstr., vol. 51, no. 5, pp. 3033, 2010.
Rizzo, 3rd J. F., “Update on retinal prosthetic research: the Boston Retinal Implant Project,” J. Neuro-ophthalmol. Official J. North Am. Neuro-Ophthalmol. Soc., vol. 31, no. 2, pp. 160–168, 2011.
Rizzo, 3rd J. F., Wyatt, J., Loewenstein, J. et al., “Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials,” Invest. Ophthalmol. Vis. Sci., vol. 44, no. 12, pp. 5362–5369, 2003.
Rizzo, J. F., Wyatt, J., Loewenstein, J. et al., “Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays,” Invest. Ophthalmol. Vis. Sci., vol. 44, no. 12, pp. 5355–5361, 2003.
Rizzo, J. F., Chen, J., Shire, D. B. et al., “Overview of progress on the 256+ channel Boston retinal prosthesis,” ARVO Meeting Abstr., vol. 53, no. 6, pp. 1313, 2012.
Ayton, L. N., Bigney, P. J., Guync, L. H. et al. “First human trial of a novel suprachoroidal retinal prosthesis,” PLoS One vol. 9, e115239, 2014.