Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T09:51:15.383Z Has data issue: false hasContentIssue false

11 - On the Perceptual-Motor and Image-Schematic Infrastructure of Language

Published online by Cambridge University Press:  22 July 2009

Michael J. Spivey
Affiliation:
Cornell University, Ithaca, New York, USA
Daniel C. Richardson
Affiliation:
Stanford University, Stanford, California, USA
Monica Gonzalez-Marquez
Affiliation:
Cornell University, Ithaca, New York, USA
Diane Pecher
Affiliation:
Erasmus Universiteit Rotterdam
Rolf A. Zwaan
Affiliation:
Florida State University
Get access

Summary

Language is not a module. Well, at least, it is not a feedforward encapsulated domain-specific perceptual input system in the way that Fodor (1983) imagined. To be sure, there are regions of cortex that are conspicuously specialized for language-like processes (e.g., Gazzaniga, 2000; Kuperberg, Holcomb, Sitnikova, Greve, Dale, & Caplan, 2003; Ojemann, 1983), but when cognitive neuroscientists refer to these cortical areas as “modules,” they certainly do not imply solely feedforward synaptic projections or encapsulation from neighboring cortical areas. The vast and recurrent interconnectedness between anatomically and functionally segregated cortical areas (e.g., Douglas, Koch, Mahowald, Martin, & Suarez, 1995; Haxby, Gobbini, Furey, Ishai, Schouten, & Pietrini, 2001; Van Orden, Jansen op de Haar, & Bosman, 1997) unavoidably compromises any assumptions of information encapsulation, and can even wind up blurring the distinction between feedback and feedforward signals.

What this means is that we should expect language processes to function in concert with other perceptual, cognitive, and motor processes, not independently of them. For example, McGurk's famous and compelling demonstration of visual perception of mouth shape influencing the immediate percept of a spoken phoneme (McGurk & MacDonald, 1976) is emblematic of the intense degree to which speech perception and visual perception pay close attention to one another. More recently, visual perception has also been shown to play a strong role in spoken word recognition, syntactic processing, and reference resolution (Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995).

Type
Chapter
Information
Grounding Cognition
The Role of Perception and Action in Memory, Language, and Thinking
, pp. 246 - 281
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allopenna, P. D., Magnuson, J. S., & Tanenhaus, M. K. (1998). Tracking the time course of spoken word recognition using eye movements: Evidence for continuous mapping models. Journal of Memory and Language 38, 419–439CrossRefGoogle Scholar
Altmann, G., & Kamide, Y. (2004). Now you see it, now you don't: mediating the mapping between language and the visual world. In J. Henderson & F. Ferreira (Eds.), The Interaction of Vision, Language, and Action. Academic Press
Altmann, G., & Steedman, M. (1988). Interaction with context during human sentence processing. Cognition 30, 191–238CrossRefGoogle ScholarPubMed
Antrobus, J. S., Antrobus, J. S., & Singer, J. L. (1964). Eye movements accompanying daydreaming, visual imagery, and thought suppression. Journal of Abnormal and Social Psychology 69, 244–252CrossRefGoogle ScholarPubMed
Baddeley, A. D. (1986). Working memory. Oxford: Oxford University Press
Ballard, D. H., Hayhoe, M. M., Pook, P. K., & Rao, R. P. N. (1997). Deictic codes for the embodiment of cognition. Behavioral and Brain Sciences 20, 723–767Google ScholarPubMed
Barlow, H. (1972). Single units and sensation: A neuron doctrine for perceptual psychology. Perception 1, 371–394CrossRefGoogle ScholarPubMed
Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences 22, 577–660Google ScholarPubMed
Bergen, B., Narayan, S., & Feldman, J. (2003). Embodied verbal semantics: Evidence from an image-verb matching task. In R. Alterman & D. Kirsh (Eds.), Proceedings of the 25th Annual Conference of the Cognitive Science Society. Boston: Cognitive Science Society
Boroditsky, L. (2000). Metaphoric structuring: Understanding time through spatial metaphors. Cognition 75, 1–28Google ScholarPubMed
Boroditsky, L. (2001). Does language shape thought? Mandarin and English speakers' conceptions of time. Cognitive Psychology 43, 1–22Google Scholar
Brandt, S. A., & Stark, L. W. (1997). Spontaneous eye movements during visual imagery reflect the content of the visual scene. Journal of Cognitive Neuroscience 9, 27–38CrossRefGoogle ScholarPubMed
Carlson-Radvansky, L. A., Covey, E. S., & Lattanzi, K. M. (1999). What effects on “where”: Functional influences on spatial relations. Psychological Science 10 (6), 516–521CrossRefGoogle Scholar
Chafee, M. V., & Goldman-Rakic, P. S. (1998). Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. Journal of Neurophysiology 79, 2919–2940CrossRefGoogle ScholarPubMed
Chafee, M. V., & Goldman-Rakic, P. S. (2000). Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades. Journal of Neurophysiology 83, 1550–1566CrossRefGoogle ScholarPubMed
Chambers, C. G., Tanenhaus, M. K., Eberhard, K. M., Filip, H., & Carlson, G. N. (2002). Circumscribing referential domains during real-time language comprehension. Journal of Memory & Language 47, 30–49CrossRefGoogle Scholar
Chomsky, N. (1965). Aspects of the Theory of Syntax. Cambridge, MA: MIT Press
Chung, S., & Timberlake, A. (1985). Tense, aspect and mood. In T. Shopen (Ed.), Language, Typology and Syntactic Description. Volume 3: Grammatical Categories and the Lexicon (pp. 202–258). Cambridge: Cambridge University Press
Churchland, P. S., & Sejnowski, T. J. (1992) The Computational Brain. Cambridge, MA: MIT Press
Clark, H. (1992). Arenas of Language Use. Chicago: University of Chicago Press
Clausner, T. C., & Croft, W. (1999). Domains and image schemas. Cognitive Linguistics 10, 1–31Google Scholar
Coltheart, M. (1981). The MRC psycholinguistic database. Quarterly Journal of Experimental Psychology 33A, 497–505CrossRefGoogle Scholar
Coulson, S., & Matlock, T. (2001). Metaphor and the space structuring model. Metaphor and Symbol 16, 295–316CrossRefGoogle Scholar
Coulson, S. (2001). Semantic Leaps: Frame-Shifting and Conceptual Blending in Meaning Construction. New York: Cambridge University Press
Crain, S., & Steedman, M. (1985). On not being led up the garden path. In D. R. Dowty, L. Kartunnen, & A. M. Zwicky (Eds.), Natural Language Parsing. Cambridge: Cambridge University Press
Craver-Lemley, C., & Arterberry, M. E. (2001). Imagery-induced interference on a visual detection task. Spatial Vision 14, 101–119CrossRefGoogle ScholarPubMed
Craver-Lemley, C., & Reeves, A. (1992). How visual imagery interferes with vision. Psychological Review 89, 633–649CrossRefGoogle ScholarPubMed
Delbecque, N. (1997). The Spanish copulas SER and ESTAR. In M. Verspoor, K. D. Lee, & E. Sweetser (Eds.), Lexical and Syntactical Constructions and the Construction of Meaning (pp. 247–270). Amsterdam/Philadelphia: J. BenjaminsCrossRef
Demarais, A. M., & Cohen, B. H. (1998). Evidence for image scanning eye movements during transitive inference. Biological Psychology 49, 229–247CrossRefGoogle ScholarPubMed
Dietrich, E., & Markman, A. B. (2003). Discrete thoughts: Why cognition must use discrete representations. Mind and Language 18, 95–119CrossRefGoogle Scholar
Douglas, R. J., Koch, C., Mahowald, M., Martin, K. A., & Suarez, H. H. (1995). Recurrent excitation in neocortical circuits. Science 269, 981–985CrossRefGoogle ScholarPubMed
Duhamel, J., Colby, C., & Goldberg, M. (1992). The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255, 90–92CrossRefGoogle ScholarPubMed
Eberhard, K., Spivey-Knowlton, M., Sedivy, J., & Tanenhaus, M. (1995). Eye movements as a window into real-time spoken language comprehension in natural contexts. Journal of Psycholinguistic Research 24, 409–436CrossRefGoogle ScholarPubMed
Elman, J. L., & McClelland, J. L. (1988). Cognitive penetration of the mechanisms of perception: Compensation for coarticulation of lexically restored phonemes. Journal of Memory and Language 27, 143–165CrossRefGoogle Scholar
Farah, M. J. (1985). Psychophysical evidence for a shared representational medium for mental images and percepts. Journal of Experimental Psychology 114, 91–103CrossRefGoogle ScholarPubMed
Ferretti, T. R., McRae, K., & Hatherell, A. (2001). Integrating verbs, situation schemas, and thematic role concepts. Journal of Memory and Language 44, 516–547CrossRefGoogle Scholar
Fincher-Kiefer, R. (2001). Perceptual components of situation models. Memory and Cognition 29, 336–343CrossRefGoogle ScholarPubMed
Finke, R. A. (1985). Theories relating mental imagery to perception. Psychological Bulletin 98, 236–259CrossRefGoogle Scholar
Fodor, J. A. (1983). The Modularity of Mind. Cambridge, MA: MIT Press
Gazzaniga, M. (2000). Cerebral specialization and interhemispheric communication: Does the corpus callosum enable the human condition?Brain 123, 1293–1326CrossRefGoogle ScholarPubMed
Georgopoulos, A. P., Schwartz, A. B., & Kettner, R. E. (1986). Neuronal population coding of movement direction. Science 223, 1416–1419CrossRefGoogle ScholarPubMed
Gibbs, R. W. (1996). Why many concepts are metaphorical. Cognition 61, 309– 319CrossRefGoogle ScholarPubMed
Gibbs, R. W., & Colston, H. L. (1995). The cognitive psychological reality of image schemas and their transformations. Cognitive Linguistics 6, 347–378CrossRefGoogle Scholar
Gibbs, R. W., Ström, L. K., & Spivey-Knowlton, M. J. (1997). Conceptual metaphors in mental imagery for proverbs. Journal of Mental Imagery 21, 83–109Google Scholar
Glenberg, A., & Kaschak, M. (2002). Grounding language in action. Psychonomic Bulletin & Review 9, 558–565CrossRefGoogle ScholarPubMed
Gold, J. I., & Shadlen, M. N. (2000). Representation of a perceptual decision in developing oculomotor commands. Nature 404, 390–394CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S. (1993). Working memory and the mind. In Mind and brain: Readings from Scientific American magazine (pp. 67–77). New York: W. H. Freeman
Gonzalez-Marquez, M., & Spivey, M. J. (2004). Mapping from real to abstract locations: Experimental evidence from the Spanish verb ESTAR. Unpublished manuscript
Hale, S. M., & Simpson, H. M. (1970). Effects of eye movements on the rate of discovery and the vividness of visual images. Perception and Psychophysics 9, 242–246Google Scholar
Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430CrossRefGoogle ScholarPubMed
Hayward, W. G., & Tarr, M. J. (1995). Spatial language and spatial representation. Cognition 55, 39–84CrossRefGoogle ScholarPubMed
Hebb, D. O. (1968). Concerning imagery. Psychological Review 75, 466–477CrossRefGoogle ScholarPubMed
Hildebrandt, B., Moratz, R., Rickheit, G., & Sagerer, G. (1999). Cognitive modelling of vision and speech understanding. In G. Rickheit & C. Habel (Eds.), Mental Models in Discourse Processing and Reasoning. Advances in Psychology 128 (pp. 213–236). Amsterdam, The Netherlands: Elsevier Science Publishers
Horton, B. (1995). What Are Copula Verbs? In E. Casad (Ed.), Cognitive Linguistics in the Redwoods: The Expansion of a New Paradigm in Linguistics (pp. 319–346). Berlin, Germany: Walter de Gruyter & Co
Jackendoff, (2002). The Foundations of Language. Oxford/New York: Oxford University Press
Janda, L. (2004). A metaphor in search of a source domain: the categories of Slavic aspect. Unpublished manuscript
Kaden, S. E., Wapner, S., & Werner, H. (1955). Studies in physiognomic perception: II. Effect of directional dynamics of pictured objects and of words on the position of the apparent horizon. Journal of Psychology 39, 61–70CrossRefGoogle Scholar
Kako, E., Richardson, D., & Spivey, M. (2004). Effects of syntactic context on the spatial orientation of verb image schemas. Unpublished manuscript
Kan, I. P., Barsalou, L. W., Solomon, K. O., Minor, J. K., & Thompson-Schill, S. L. (2003). Role of mental imagery in a property verification task: fMRI evidence for perceptual representations of conceptual knowledge. Cognitive Neuropsychology 20, 525–540CrossRefGoogle Scholar
Keysar, B., Shen, Y., Glucksberg, S., & Horton, W. (2000). Conventional language: How metaphorical is it?Journal of Memory and Language 43, 576–593CrossRefGoogle Scholar
Knoeferle, P., Crocker, M., Scheepers, C., & Pickering, M. (2003). Actions and roles: Using depicted events for disambiguation and reinterpretation in German and English. In R. Alterman & D. Kirsh (Eds.), Proceedings of the 25th Annual Conference of the Cognitive Science Society. Boston: Cognitive Science Society
Kuelpe, O. (1902). Ueber die objectivirung und subjectivirung von sinneseindrucken [On objective and subjective sensory impressions]. Philosophische Studien 49, 508–556Google Scholar
Kuperberg, G. R., Holcomb, P. J., Sitnikova, T., Greve, D., Dale, A. M., & Caplan, D. (2003). Distinct patterns of neural modulation during the processing of conceptual and syntactic anomalies. Journal of Cognitive Neuroscience 15, 272–293CrossRefGoogle ScholarPubMed
Laeng, B., & Teodorescu, D. S. (2002). Eye scanpaths during visual imagery reenact those of perception of the same visual scene. Cognitive Science 26, 207–231CrossRefGoogle Scholar
Lakoff, G. (1987). Women, Fire, and Dangerous things: What Categories Reveal about the Mind. Chicago: University of Chicago Press
Lakoff, G., & Johnson, M. (1999). Philosophy in the Flesh: The Embodied Mind and Its Challenge to Western Thought. New York: Basic Books
Langacker, R. W. (1987). Foundations of Cognitive Grammar: Theoretical Prerequisites. Stanford, CA: Stanford University Press
Langacker, R. W. (1990) Foundations of Cognitive Grammar, Vol. 2: Descriptive Applications Prerequisites. Stanford, CA: Stanford University Press
Langacker, R. W. (1991). Concept, Image, Symbol: The Cognitive Basis of Grammar. Berlin-New York: Mouton de Gruyter
Lettvin, J. Y. (1995). J. Y. Lettvin on grandmother cells. In M. Gazzaniga (Ed.), The Cognitive Neurosciences (pp. 434–435). Cambridge, MA: MIT Press
Li, P., & Shirai, Y. (2000). The Acquisition of Lexical and Grammatical Aspect. Berlin: Mouton de Gruyter
Logan, G. D. (1994). Spatial attention and the apprehension of spatial relations. Journal of Experimental Psychology: Human Perception and Performance 20, 1015–1036Google ScholarPubMed
Magnuson, J. S., McMurray, B., Tanenhaus, M. K., & Aslin, R. N. (2003). Lexical effects on compensation for coarticulation: The ghost of Christmash past. Cognitive Science 27, 285–298CrossRefGoogle Scholar
Magnuson, J. S., Tanenhaus, M. K., Aslin, R. N., & Dahan, D. (2003). The time course of spoken word learning and recognition: Studies with artificial lexicons. Journal of Experimental Psychology: General 132, 202–227CrossRefGoogle ScholarPubMed
Mandler, J. M. (1992). How to build a baby: II. Conceptual primitives. Psychological Review 99, 587–604CrossRefGoogle ScholarPubMed
Marcus, G. F. (2001). The Algebraic Mind: Integrating Connectionism and Cognitive Science. Cambridge, MA: MIT Press
Marian, V., & Spivey, M. (2003). Bilingual and monolingual processing of competing lexical items. Applied Psycholinguistics 24, 173–193Google Scholar
Markman, A., & Dietrich, E. (2000). Extending the classical view of representation. Trends in Cognitive Science 4, 470–475CrossRefGoogle ScholarPubMed
Marslen-Wilson, W. (1987). Functional parallelism in word recognition. Cognition 25, 71–102CrossRefGoogle ScholarPubMed
Matlock, T. (in press). Fictive motion as cognitive simulation. Memory and Cognition
McClelland, J. L., & Elman, J. L. (1986). The TRACE model of speech perception. Cognitive Psychology 18, 1–86Google ScholarPubMed
McGurk, H., & MacDonald, J. W. (1976). Hearing lips and seeing voices. Nature 264, 746–748CrossRefGoogle ScholarPubMed
Murphy, G. (1996). On metaphoric representation. Cognition 60, 173–204CrossRefGoogle ScholarPubMed
Narayanan, S. (1997). Talking the talk is like walking the walk: A computational model of verbal aspect. In M. G. Shafto and P. Langley (Eds.), Proceedings of the 19th Annual Conference of the Cognitive Science Society. Mahwah, NJ: Erlbaum
Neisser, U. (1967). Cognitive psychology. Englewood Cliffs, NJ: Prentice Hall
Ojemann, (1983). Brain organization for language from the perspective of electrical stimulation mapping. Behavioral and Brain Sciences 6, 189–230CrossRefGoogle Scholar
Paivio, A., Yuille, J. C., & Smythe, P. C. (1966). Stimulus and response abstractness, imagery, and meaningfulness, and reported mediators in paired-associate learning. Canadian Journal of Psychology 20, 362–377CrossRefGoogle ScholarPubMed
Parrill, F. (2000). Hand To Mouth: Linking Spontaneous Gesture and Aspect. Unpublished B.A. Honors Thesis, Department of Linguistics, University of California, Berkeley. (http://mcneilllab.uchicago.edu/pdfs/parrill.pdf)
Perky, C. W. (1910). An experimental study of imagination. American Journal of Psychology 21, 422–452CrossRefGoogle Scholar
Pouget, A., Dayan, P., & Zemel, R. S. (2000). Inference and computation with population codes. Annual Review of Neuroscience 26, 381–410Google Scholar
Pulvermüller, F. (2002). The Neuroscience of Language: On Brain Circuits of Words and Serial Order. New York: Cambridge University Press
Pustet, R. (2003). Copulas: Universals in the Categorization of the Lexicon. Oxford: Oxford University Press
Pylyshyn, Z. W. (1989). The role of location indexes in spatial perception: A sketch of the FINST spatial index model. Cognition 32, 65–97CrossRefGoogle ScholarPubMed
Pylyshyn, Z. W. (2001). Visual indexes, preconceptual objects, and situated vision. Cognition 80, 127–158CrossRefGoogle ScholarPubMed
Rayner, K., Carlson, M., & Frazier, L. (1983). The interaction of syntax and semantics during sentence processing: Eye movements in the analysis of semantically biased sentences. Journal of Verbal Learning and Verbal Behavior 22, 358–374CrossRefGoogle Scholar
Regier, T. (1996). The Human Semantic Potential: Spatial Language and Constrained Connectionism. Cambridge, MA: MIT Press
Regier, T., & Carlson, L. A. (2001). Grounding spatial language in perception: An empirical and computational investigation. Journal of Experimental Psychology: General 130, 273–298CrossRefGoogle ScholarPubMed
Richardson, D. C., & Spivey, M. J. (2000). Representation, space and Hollywood Squares: Looking at things that aren't there anymore. Cognition 76, 269–295CrossRefGoogle ScholarPubMed
Richardson, D. C., Spivey, M. J., Barsalou, L. W., & McRae, K. (2003). Spatial representations activated during real-time comprehension of verbs. Cognitive Science 27, 767–780CrossRefGoogle Scholar
Richardson, D. C., Spivey, M. J., Edelman, S., & Naples, A. D. (2001). “Language is spatial”: Experimental evidence for image schemas of concrete and abstract verbs. Proceedings of the 23rd Annual Conference of the Cognitive Science Society (pp. 845–850) Mahwah, NJ: Erlbaum
Robertson, D. A., Gernsbacher, M. A., & Guidotti, S. J. (1999). FMRI investigation of the comprehension of written vs. picture narratives. Paper presented at the Cognitive Neuroscience Society Annual Meeting, Washington, DC
Rose, D. (1996). Some reflections on (or by?) grandmother cells. Perception 25, 881–886CrossRefGoogle ScholarPubMed
Roy, D., & Mukherjee, N. (in press). Visual context driven semantic priming of speech recognition and understanding. Computer Speech and Language
Ruggieri, V. (1999). The running horse stops: The hypothetical role of the eyes in imagery of movement. Perceptual and Motor Skills 89, 1088–1092CrossRefGoogle Scholar
Santa, J. L. (1977). Spatial transformations of words and pictures. Journal of Experimental Psychology: Human Learning and Memory 3, 418–427Google Scholar
Schall, J. D. (2000). Decision making: From sensory evidence to a motor command. Current Biology 10, R404–R406CrossRefGoogle ScholarPubMed
Scheerer, M., & Lyons, J. (1957). Line drawings and matching responses to words. Journal of Personality 25, 251–273CrossRefGoogle ScholarPubMed
Schober, M. F. (1995). Speakers, addressees, and frames of reference: whose effort is minimized in conversations about locations?Discourse Processes 20, 219–247CrossRefGoogle Scholar
Scripture, E. W. (1896). Measuring hallucinations. Science 3, 762–763Google ScholarPubMed
Sedivy, J. C., Tanenhaus, M. K., Chambers, C. G., & Carlson, G. N. (1999). Achieving incremental semantic interpretation through contextual representation. Cognition 71, 109–147CrossRefGoogle ScholarPubMed
Segal, S., & Gordon, P. E. (1969). The Perky Effect revisited: Blocking of visual signals by imagery. Perceptual and Motor Skills 28, 791–797CrossRefGoogle ScholarPubMed
Solomon, K. O., & Barsalou, L. W. (2001). Representing properties locally. Cognitive Psychology 43, 129–169CrossRefGoogle ScholarPubMed
Spivey, M. J., & Geng, J. J. (2001). Oculomotor mechanisms activated by imagery and memory: Eye movements to absent objects. Psychological Research 65, 235–241CrossRefGoogle ScholarPubMed
Spivey, M., & Marian, V. (1999). Cross talk between native and second languages: Partial activation of an irrelevant lexicon. Psychological Science 10, 281–284CrossRefGoogle Scholar
Spivey, M., Richardson, D., & Fitneva, S. (2004). Thinking outside the brain: Spatial indices to linguistic and visual information. In J. Henderson and F. Ferreira (Eds.), The Interaction of Vision Language and Action. San Diego, CA: Academic Press
Spivey, M., & Tanenhaus, M. (1998). Syntactic ambiguity resolution in discourse: Modeling the effects of referential context and lexical frequency. Journal of Experimental Psychology: Learning, Memory, and Cognition 24, 1521–1543Google ScholarPubMed
Spivey, M., Tanenhaus, M., Eberhard, K., & Sedivy, J. (2002). Eye movements and spoken language comprehension: Effects of visual context on syntactic ambiguity resolution. Cognitive Psychology 45, 447–481CrossRefGoogle ScholarPubMed
Spivey, M., Tyler, M., Eberhard, K., & Tanenhaus, M. (2001). Linguistically mediated visual search. Psychological Science 12, 282–286CrossRefGoogle ScholarPubMed
Spivey, M. J., Tyler, M. J., Richardson, D. C., & Young, E. E. (2000). Eye movements during comprehension of spoken scene descriptions. Proceedings of the 22nd Annual Conference of the Cognitive Science Society (pp. 487–492). Mahwah, NJ: Erlbaum
Spivey-Knowlton, M. (1996). Integration of visual and linguistic information: Human data and model simulations. Ph.D. dissertation, University of Rochester
Spivey-Knowlton, M., & Sedivy, J. (1995). Resolving attachment ambiguities with multiple constraints. Cognition 55, 227–267CrossRefGoogle ScholarPubMed
Spivey-Knowlton, M., Tanenhaus, M., Eberhard, K., & Sedivy, J. (1998). Integration of visuospatial and linguistic information in real-time and real-space. In P. Olivier & K. Gapp (Eds.), Representation and Processing of Spatial Expressions (pp. 201–214). Mahwah, NJ: Erlbaum
Stanfield, R. A., & Zwaan, R. A. (2001). The effect of implied orientation derived from verbal context on picture recognition. Psychological Science 12, 153–156CrossRefGoogle ScholarPubMed
Swindale, N. (2001). Cortical cartography: What's in a map?Current Biology 11, R764–R767CrossRefGoogle ScholarPubMed
Talmy, L. (1983). How language structures space. In H. L. Pick & L. P. Acredolo (Eds.), Spatial orientation: Theory, research and application. New York: Plenum PressCrossRef
Tanenhaus, M., Spivey Knowlton, M., Eberhard, K., & Sedivy, J. (1995). Integration of visual and linguistic information during spoken language comprehension. Science 268, 1632–1634CrossRefGoogle ScholarPubMed
Tyler, M., & Spivey, M. (2001). Spoken language comprehension improves the efficiency of visual search. Proceedings of the 23rd Annual Conference of the Cognitive Science Society (pp. 1060–1065). Mahwah, NJ: Erlbaum
Orden, G. C., Jansen op de Haar, M. A., & Bosman, A. M. T. (1997). Complex dynamic systems also predict dissociations, but they do not reduce to autonomous components. Cognitive Neuropsychology 14, 131–165CrossRefGoogle Scholar
Zwaan, R. A., Stanfield, R. A., & Yaxley, R. H. (2002). Do language comprehenders routinely represent the shapes of objects?Psychological Science 13, 168–171CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×