Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-04-30T14:59:57.002Z Has data issue: false hasContentIssue false

4 - The Challenge to Distinguish Soft-Sediment Deformation Structures (SSDS) Formed by Glaciotectonic, Periglacial and Seismic Processes in a Formerly Glaciated Area

A Review and Synthesis

from Part II - Methods and Techniques for Fault Identification and Dating

Published online by Cambridge University Press:  02 December 2021

Holger Steffen
Affiliation:
Lantmäteriet, Sweden
Odleiv Olesen
Affiliation:
Geological Survey of Norway
Raimo Sutinen
Affiliation:
Geological Survey of Finland
Get access

Summary

This chapter gives an overview of the use of soft-sediment deformation structures (SSDS) as palaeoearthquake indicators in formerly glaciated and periglacial areas. We review the most important processes of soft-sediment deformation and the different nomenclature used in the scientific communities.

So-called seismites are beds with SSDS that formed because of seismic shaking. However, in regions that were affected by glacial and periglacial processes, the use of SSDS as palaeoearthquake indicator is challenging and interpretation must be done with care. Earthquakes are only one trigger process of many that can cause liquefaction and/or fluidization of sediments, leading to the formation of SSDS. Ice-sheet loading, glaciotectonism and freeze and thaw processes in glacial and periglacial environments are also potential trigger processes that can cause the formation of similar types of SSDS, which can be easily mistaken for seismites. Therefore, we provide clear criteria to recognize seismites in the field. The combination of deformation bands that occur in the vicinity of basement faults with carefully evaluated SSDS is a robust indicator for palaeoearthquakes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aber, J. S. and Ber, A. (2007). Glaciotectonism. Developments in Quaternary Science, Vol. 6. Elsevier, Amsterdam.Google Scholar
Alfaro, P., Delgado, J., Estévez, A. et al. (2002). Liquefaction and fluidization structures in Messinian storm deposits (Bajo Segura Basin, Betic Cordillera, southern Spain). International Journal of Earth Sciences, 91, 505513, doi.org/10.1007/s00531-001-0241-z.Google Scholar
Åmark, M. (1986). Clastic dikes formed beneath an active glacier. Geologiska Foereningen i Stockholm Förhandlingar, 108, 1320, doi.org/10.1080/11035898609453740.Google Scholar
Atkinson, G. M., Finn, W. L. and Charlwood, R. G. (1984). Simple computation of liquefaction probability for seismic hazard applications. Earthquake Spectra, 1, 107123, doi.org/10.1193/1.1585259.CrossRefGoogle Scholar
Ballas, G., Fossen, H. and Soliva, R. (2015). Factors controlling permeability of cataclastic deformation bands and faults in porous sandstone reservoirs. Journal of Structural Geology, 76, 121, doi.org/10.1016/j.jsg.2015.03.013.CrossRefGoogle Scholar
Belzyt, S., Nartišs, M., Pisarska-Jamroży, M., Woronko, B. and Bitinas, A. (2018). Large-scale glaciotectonically-deformed Pleistocene sediments with deformed layers sandwiched between undeformed layers, Baltmuiža site, Western Latvia. In Pisarska-Jamroży, M. and Bitinas, A., eds., Soft-Sediment Deformation Structures and Palaeoseismic Phenomena in the South-Eastern Baltic Region. Excursion Guide of International Palaeoseismological Field Workshop, 17–21st September 2018, Vilnius, Lithuania. Lithuanian Geological Survey, Lithuanian Geological Society, pp. 38–42.Google Scholar
Belzyt, S., Pisarska-Jamroży, M., Bitinas, A. et al. (2021). Repetitive Late Pleistocene soft-sediment deformation by seismicity-induced liquefaction in north-western Lithuania. Sedimentology, doi.org/10.1111/sed.12883.CrossRefGoogle Scholar
Benn, D. I. and Evans, D. J. A. (2013). Glaciers and Glaciation, 2nd ed. Routledge, New York.Google Scholar
Bennett, M. R., Huddart, D., Waller, R. I. et al. (2004). Styles of ice-marginal deformation at Hagafellsjökull–Eystri, Iceland during the 1998/99 winter-spring surge. Boreas, 33, 97107, doi.org/10.1111/j.1502-3885.2004.tb01132.x.Google Scholar
Bertran, P. (1993). Deformation‐induced microstructures in soils affected by mass movements. Earth Surface Processes and Landforms, 18, 645660, doi.org/10.1002/esp.3290180707.CrossRefGoogle Scholar
Bertran, P., Font, M., Giret, A., Manchuel, K. and Sicilia, D. (2019a). Experimental soft-sediment deformation caused by fluidization and intrusive ice melt in sand. Sedimentology, 66(3), 11021117, doi.org/10.1111/sed.12537.Google Scholar
Bertran, P., Manchuel, K. and Sicilia, D. (2019b). Discussion on ‘Palaeoseismic structures in Quaternary sediments, related to an assumed fault zone north of the Permian Peissen–Gnutz salt structure (NW Germany) – neotectonic activity and earthquakes from the Saalian to the Holocene’ (Grube, 2019). Geomorphology, 365, 106704, doi.org/10.1016/j.geomorph.2019.03.010.Google Scholar
Bockheim, J. G. and Tarnocai, C. (1998). Recognition of cryoturbation for classifying permafrost-affected soils. Geoderma, 81, 281293, doi.org/10.1016/S0016-7061(97)00115-8.CrossRefGoogle Scholar
Boulton, G. S. and Caban, P. (1995). Groundwater flow beneath ice sheets: part II – its impact on glacier tectonic structures and moraine formation. Quaternary Science Reviews, 14, 563587, doi.org/10.1016/0277-3791(95)00058-W.Google Scholar
Brandes, C. and Le Heron, D. P. (2010). The glaciotectonic deformation of Quaternary sediments by fault-propagation folding. Proceedings of the Geologists’ Association, 121, 270280, doi.org/10.1016/j.pgeola.2010.03.001.Google Scholar
Brandes, C. and Tanner, D. C. (2012). Three-dimensional geometry and fabric of shear deformation-bands in unconsolidated Pleistocene sediments. Tectonophysics, 518 –521, 8492, doi.org/10.1016/j.tecto.2011.11.012.CrossRefGoogle Scholar
Brandes, C. and Winsemann, J. (2013). Soft-sediment deformation structures in NW Germany caused by Late Pleistocene seismicity. International Journal of Earth Sciences, 102, 22552274, doi.org/10.1007/s00531-013-0914-4.CrossRefGoogle Scholar
Brandes, C., Winsemann, J., Roskosch, J. et al. (2012). Activity along the Osning Thrust in Central Europe during the Lateglacial: ice-sheet and lithosphere interactions. Quaternary Science Reviews, 38, 4962, doi.org/10.1016/j.quascirev.2012.01.021.CrossRefGoogle Scholar
Brandes, C., Steffen, H., Sandersen, P. B. E., Wu, P. and Winsemann, J. (2018a). Glacially induced faulting along the NW segment of the Sorgenfrei-Tornquist Zone, northern Denmark: implications for neotectonics and Lateglacial fault-bound basin formation. Quaternary Science Reviews, 189, 149168, doi.org/10.1016/j.quascirev.2018.03.036.CrossRefGoogle Scholar
Brandes, C., Igel, J., Loewer, M. et al. (2018b). Visualisation and analysis of shear-deformation bands in unconsolidated Pleistocene sand using ground-penetrating radar: implications for paleoseismological studies. Sedimentary Geology, 367, 135145, doi.org/10.1016/j.sedgeo.2018.02.005.Google Scholar
Brooks, G. R. (2018). Deglacial record of palaeoearthquakes interpreted from mass transport deposits at three lakes near Rouyn–Noranda, north-western Quebec, Canada. Sedimentology, 65, 24392467, doi.org/10.1111/sed.12473.Google Scholar
Buldovicz, S. N., Khilimonyuk, V. Z., Bychkov, A. Y. et al. (2018). Cryovolcanism on the Earth: origin of a spectacular crater in the Yamal Peninsula (Russia). Scientific Reports, 8, 13534, doi.org/10.1038/s41598-018-31858-9.Google Scholar
Cashman, S. M., Baldwin, J. N., Cashman, K. V., Swanson, K. and Crawford, R. (2007). Microstructures developed by coseismic and aseismic faulting in near-surface sediments, San Andreas Fault, California. Geology, 35, 611614, doi.org/10.1130/G23545A.1.Google Scholar
Chamley, H. (1990). Sedimentology. Springer, Berlin/Heidelberg.Google Scholar
Chen, J. and Lee, H. S. (2013). Soft-sediment deformation structures in Cambrian siliciclastic and carbonate storm deposits (Shandong Province, China): differential liquefaction and fluidization triggered by storm-wave loading. Sedimentary Geology, 288, 8194, doi.org/10.1016/j.sedgeo.2013.02.001.Google Scholar
Collinson, J. D., Mountney, N. P. and Thompson, D. B. (2006). Sedimentary Structures, 3rd ed., Terra Publishing, England.Google Scholar
Davenport, C. A., Ringrose, P. S., Becker, A., Hancock, P. and Fenton, C. (1989). Geological investigations of late and post glacial earthquake activity in Scotland. In Gregersen, S. and Basham, P. W., eds., Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound. NATO ASI Series 266. Springer, Dordrecht, pp. 175194.CrossRefGoogle Scholar
Deynoux, M., Proust, J. N., Durand, J. and Merino, E. (1990). Water-transfer cylindrical structures in the Late Proterozoic eolian sandstones in the Taoudeni Basin, West Africa. Sedimentary Geology, 66, 227242, doi.org/10.1016/0037-0738(90)90061-W.Google Scholar
Dobiński, W. (2011). Permafrost. Earth-Science Reviews, 108, 158169, doi.org/10.1016/j.earscirev.2011.06.007.Google Scholar
Druzhinina, O., Bitinas, A., Molodkov, A. and Kolesnik, T. (2017). Palaeoseismic deformations in the Eastern Baltic region (Kaliningrad District of Russia). Estonian Journal of Earth Sciences, 66, 119129, doi.org/10.3176/earth.2017.09.Google Scholar
Eden, D. J. and Eyles, N. (2001). Description and numerical model of Pleistocene iceberg scours and ice-keel turbated facies at Toronto, Canada. Sedimentology, 48, 10791102, doi.org/10.1046/j.1365-3091.2001.00409.x.CrossRefGoogle Scholar
Fossen, H. (2010). Deformation bands formed during soft-sediment deformation: observations from SE Utah. Marine and Petroleum Geology, 27, 215222, doi.org/10.1016/j.marpetgeo.2009.06.005.Google Scholar
French, H. M. (2017). The Periglacial Environment, 4th ed., John Wiley and Sons, Chichester.Google Scholar
Frey, S. E., Gingras, M. K. and Dashtgard, S. E. (2009). Experimental studies of gas-escape and water-escape structures: mechanisms and morphologies. Journal of Sedimentological Research, 79(11), 808816, doi.org/10.2110/jsr.2009.087.Google Scholar
Galli, P. (2000). New empirical relationships between magnitude and distance for liquefaction. Tectonophysics, 324, 169187, doi.org/10.1016/S0040–1951(00)00118-9.Google Scholar
Gehrmann, A. and Harding, C. (2018). Geomorphological mapping and spatial analyses of an Upper Weichselian glacitectonic complex based on LiDAR data, Jasmund Peninsula (NE Rügen), Germany. Geosciences, 8(6), 208, doi.org/10.3390/geosciences8060208.Google Scholar
Giona Bucci, M., Almond, P., Villamor, P. et al. (2017). When the earth blisters: exploring recurrent liquefaction features in the coastal system of Christchurch, New Zealand. Terra Nova, 29, 162172, doi.org/10.1111/ter.12259.Google Scholar
Giona Bucci, M., Smith, C. M., Almond, P. C., Villamor, P. and Tuttle, M. P. (2019). Micromorphological analysis of liquefaction features in alluvial and coastal environments of Christchurch, New Zealand. Sedimentology, 66, 963982, doi.org/10.1111/sed.12526.CrossRefGoogle Scholar
Grube, A. (2019a). Palaeoseismic structures in Quaternary sediments of Hamburg (NW Germany), earthquakes evidence during the younger Weichselian and Holocene. International Journal of Earth Sciences, 108, 845861, doi.org/10.1007/s00531-019-01681-2.Google Scholar
Grube, A. (2019b). Palaeoseismic structures in Quaternary sediments, related to an assumed fault zone north of the Permian Peissen-Gnutz salt structure (NW Germany) – neotectonic activity and earthquakes from the Saalian to the Holocene. Geomorphology, 328, 1527, doi.org/10.1016/j.geomorph.2018.12.004.CrossRefGoogle Scholar
Gruszka, B. and van Loon, A. J. (2011). Genesis of a giant gravity-induced depression (gravifossum) in the Enköping esker, S. Sweden. Sedimentary Geology, 235, 304313, doi.org/10.1016/j.sedgeo.2010.10.004.Google Scholar
Harry, D. G. (1988). Ground ice and permafrost. In M. J. Clark, ed., Advances in Periglacial Geomorphology, Wiley, Chichester, pp. 113149.Google Scholar
Hart, J. K. and Boulton, G. S. (1991). The interrelation of glaciotectonic and glacio-depositional processes within the glacial environment. Quaternary Science Reviews, 10, 335350, doi.org/10.1016/0277-3791(91)90035-S.Google Scholar
Hoffmann, G. and Reicherter, K. (2012). Soft-sediment deformation of Late Pleistocene sediments along the southwestern coast of the Baltic Sea (NE Germany). International Journal of Earth Sciences, 101, 351363, doi.org/10.1007/s00531-010-0633-z.Google Scholar
Houtgast, R. F., van Balen, R. T. and Kasse, C. (2005). Late Quaternary evolution of the Feldbiss Fault (Roer Valley Rift System, the Netherlands) based on trenching, and its potential relation to glacial unloading. Quaternary Science Reviews, 24, 489508, doi.org/10.1016/j.quascirev.2004.01.012.Google Scholar
Hungr, O., Leroueil, S. and Picarelli, L. (2014). The Varnes classification of landslide types, an update. Landslides, 11, 167194, doi.org/10.1007/s10346-013-0436-y.Google Scholar
Hurst, A. and Cartwright, J. (2007). Relevance of sand injectites to hydrocarbon exploration and production. In Hurst, A. and Cartwright, J., eds., Sand Injectites: Implications for Hydrocarbon Exploration and Production, AAPG Memoir 87, Tulsa, pp. 119, doi.org/10.1306/1209846M871546.CrossRefGoogle Scholar
Hurst, A., Cartwright, J. and Duranti, D. (2003). Fluidization structures produced by upward injection of sand through a sealing lithology. In P. Van Rensbergen, R. R. Hillis, A. J. Maltman and C. K. Morley, eds., Subsurface Sediment Mobilization. Geological Society, London, Special Publication, Vol. 216, pp. 123138, doi.org/10.1144/GSL.SP.2003.216.01.09.Google Scholar
Hurst, A., Scott, A. and Vigorito, M. (2011). Physical characteristics of sand injectites. Earth-Science Reviews, 106, 215246, doi.org/10.1016/j.earscirev.2011.02.004.Google Scholar
Kenzler, M., Obst, K., Hüneke, H. and Schütze, K. (2010). Glazitektonische Deformation der kretazischen und pleistozänen Sedimente an der Steilküste von Jasmund nördlich des Königsstuhls (Rügen) [Glaciotectonic deformation of the Cretaceous and Pleistocene sediments on the steep coast of Jasmund north of the Königsstuhl (Rügen Island)]. Brandenburger Geowissenschaftliche Beiträge, 17, 107122.Google Scholar
Kowalski, A., Makoś, M. and Pitura, M. (2018). New insights into the glacial history of southwestern Poland based on large-scale glaciotectonic deformations – a case study from the Czaple II Gravel Pit (Western Sudetes). Annales Societatis Geologorum Poloniae, 88, 341359, doi.org/10.14241/asgp.2018.022.Google Scholar
Lee, J. R. and Phillips, E. R. (2008). Progressive soft sediment deformation within a subglacial shear zone – a hybrid mosaic-pervasive deformation model for Middle Pleistocene glaciotectonised sediments from eastern England. Quaternary Science Reviews, 27, 13501362, doi.org/10.1016/j.quascirev.2008.03.009.Google Scholar
Li, Y., Craven, J., Schweig, E. S. and Obermeier, S. F. (1996). Sand boils induced by the 1993 Mississippi River flood: could they one day be misinterpreted as earthquake-induced liquefaction? Geology, 24, 171174, doi.org/10.1130/0091-7613(1996)024<0171:SBIBTM>2.3.CO;2.Google Scholar
Longva, O. and Bakkejord, K. J. (1990). Iceberg deformation and erosion in soft sediments, southeast Norway. Marine Geology, 92, 87104, doi.org/10.1016/0025-3227(90)90028 I.Google Scholar
Lowe, D. R. (1975). Water escape structures in coarse-grained sediments. Sedimentology, 22, 157204, doi.org/10.1111/j.1365-3091.1975.tb00290.x.CrossRefGoogle Scholar
Maizels, J. K. (1992). Boulder ring structures produced during jökulhaups flows: origin and hydraulic significance. Geografiska Annaler, 74A, 2133, doi.org/10.1080/04353676.1992.11880346.Google Scholar
Matsuoka, N. (2001). Solifluction rates, processes and landforms: a global review. Earth-Science Reviews, 55, 107134, doi.org/10.1016/S0012-8252(01)00057-5.CrossRefGoogle Scholar
Meinsen, J., Winsemann, J., Roskosch, J. et al. (2014). Climate control on the evolution of Late Pleistocene alluvial‐fan and aeolian sand‐sheet systems in NW Germany. Boreas, 43, 4266, doi.org/10.1111/bor.12021.CrossRefGoogle Scholar
Molina, J. M., Alfaro, P., Moretti, M. and Soria, J. M. (1998). Soft-sediment deformation structures induced by cyclic stress of storm waves in tempestites (Miocene, Guadalquivir Basin, Spain). Terra Nova, 10, 145150, doi.org/10.1046/j.1365-3121.1998.00183.x.Google Scholar
Monecke, K., Anselmetti, F. S., Becker, A. et al. (2006). Earthquake-induced deformation structures in lake deposits: a Late Pleistocene to Holocene paleoseismic record for Central Switzerland. Eclogae Geologicae Helvetiae, 99, 343362, doi.org/10.1007/s00015-006-1193-x.Google Scholar
Montenat, C., Barrier, P., d’Estevou, P. O. and Hibsch, C. (2007). Seismites: an attempt at critical analysis and classification. Sedimentary Geology, 196, 530, doi.org/10.1016/j.sedgeo.2006.08.004.Google Scholar
Moretti, M. and Sabato, L. (2007). Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the SantʻArcangelo Basin (Southern Italy): seismic shock vs. overloading. Sedimentary Geology, 196, 3145, doi.org/10.1016/j.sedgeo.2006.05.012.Google Scholar
Moretti, M., Miguel, J., Alfaro, P. and Walsh, N. (2001). Asymmetrical soft-sediment deformation structures triggered by rapid sedimentation in turbiditic deposits (Late Miocene, Guadix Basin, Southern Spain). Facies, 44, 283294, doi.org/10.1007/BF02668179.Google Scholar
Moretti, M., Alfaro, P. and Owen, G. (2016). The environmental significance of soft-sediment deformation structures: key signatures for sedimentary and tectonic processes. Sedimentary Geology, 344, 14, doi.org/10.1016/j.sedgeo.2016.10.002.Google Scholar
Morsilli, M., Giona Bucci, M., Gliozzi, E., Lisco, S. and Moretti, M. (2020). Sedimentary features influencing the occurrence and spatial variability of seismites (late Messinian, Gargano Promontory, southern Italy). Sedimentary Geology, 401, 105628, doi.org/10.1016/j.sedgeo.2020.105628.Google Scholar
Mörz, T., Karlik, E. A., Kreiter, S. and Kopf, A. (2007). An experiment setup for fluid venting in unconsolidated sediments: new insights to fluid mechanics and structures. Sedimentary Geology, 196, 251267, doi.org/10.1016/j.sedgeo.2006.07.006.Google Scholar
Naik, S. P., Mohanty, A., Porfido, S. et al. (2020). Intensity estimation for the 2001 Bhuj earthquake, India on ESI-07 scale and comparison with historical 16th June 1819 Allah Bund earthquake: a test of ESI-07 application for intraplate earthquakes. Quaternary International, 536, 127143, doi.org/10.1016/j.quaint.2019.12.024.Google Scholar
Nichols, R. J., Sparks, R. S. J. and Wilson, C. J. N. (1994). Experimental studies of fluidization of layered sediments and the formation of fluid escape structures. Sedimentology, 41, 233253, doi.org/10.1111/j.1365-3091.1994.tb01403.x.Google Scholar
Obermeier, S. F. (2009) Using liquefaction-induced and other soft-sediment features for paleoseismic analysis. In McCalpin, J. P., ed., Paleoseismology, Vol. 95. International Geophysics Series, Elsevier, Amsterdam, pp. 497564, doi.org/10.1016/S0074-6142(09)95007-0.Google Scholar
Obermeier, S. F., Olson, S. M. and Green, R. A. (2005). Field occurrences of liquefaction-induced features: a primer for engineering geologic analysis of paleoseismic shaking. Engineering Geology, 76, 209234, doi.org/10.1016/j.enggeo.2004.07.009.Google Scholar
Ogino, Y. and Matsuoka, N. (2007). Involutions resulting from annual freeze – thaw cycles: a laboratory simulation based on observations in northeastern Japan. Permafrost and Periglacial Processes, 18, 323335, doi.org/10.1002/ppp.597.Google Scholar
Ojala, A. E. K., Mattila, J., Virtasalo, J., Kuva, J. and Luoto, T. P. (2018). Seismic deformation of varved sediments in southern Fennoscandia at 7400 cal BP. Tectonophysics, 744, 5871, doi.org/10.1016/j.tecto.2018.06.015.Google Scholar
Oliveira, C. M. M, Hodgson, D. M. and Flint, S. S. (2009). Aseismic controls on in situ soft-sediment deformation processes and products in submarine slope deposits of the Karoo Basin, South Africa. Sedimentology, 56, 12011225, doi.org/10.1111/j.1365-3091.2008.01029.x.Google Scholar
Owen, L. A. (1991). Mass movement deposits in the Karakoram Mountains: their sedimentary characteristics, recognition and role in Karakoram landform evolution. Zeitschrift für Geomorphologie, 35, 401424.Google Scholar
Owen, G. (2003). Load structures: gravity-driven sediment mobilization in the shallow subsurface. In Van Rensbergen, F., Hillis, R. R., Maltman, A. J. and Morley, C. K., eds., Subsurface Sediment Mobilization. Geological Society, London, Special Publication, Vol. 216, pp. 2134, doi.org/10.1144/GSL.SP.2003.216.01.03.Google Scholar
Owen, G. and Moretti, M. (2008). Determining the origin of soft‐sediment deformation structures: a case study from Upper Carboniferous delta deposits in south‐west Wales, UK. Terra Nova, 20, 237245, doi.org/10.1111/j.1365-3121.2008.00807.x.Google Scholar
Owen, G. and Moretti, M. (2011). Identifying triggers for liquefaction-induced soft-sediment deformation in sands. Sedimentary Geology, 235(3–4), 141147, doi.org/10.1016/j.sedgeo.2010.10.003.Google Scholar
Pedersen, S. A. S. (2014). Architecture of glaciotectonic complexes. Geosciences, 4(4), 269296, doi.org/10.3390/geosciences4040269.Google Scholar
Perucca, L. P., Godoy, E. and Pantano, A. (2014). Late Pleistocene–Holocene earthquake-induced slumps and soft-sediment deformation structures in the Acequion River Valley, Central Precordillera, Argentina. Geologos, 20(2), 147156, doi.org/10.2478/logos-2014-0007.Google Scholar
Phillips, E., Lee, J. R. and Burke, H. (2008). Progressive proglacial to subglacial deformation and syntectonic sedimentation at the margins of the Mid-Pleistocene British Ice Sheet: evidence from north Norfolk, UK. Quaternary Science Reviews, 27, 18481871, doi.org/10.1016/j.quascirev.2008.06.011.Google Scholar
Piotrowski, J. A., Larsen, N. K. and Junge, F. W. (2004). Reflections on soft subglacial beds as a mosaic of deforming and stable spots. Quaternary Science Reviews, 23, 9931000, doi.org/10.1016/j.quascirev.2004.01.006.CrossRefGoogle Scholar
Pisarska-Jamroży, M. (2013). Varves and megavarves in the Eberswalde Valley (NE Germany) – a key for the interpretation of glaciolimnic processes. Sedimentary Geology, 291, 8496, doi.org/10.1016/j.sedgeo.2013.03.018.Google Scholar
Pisarska-Jamroży, M. and Woźniak, P. P. (2019). Debris-flow and glacio isostatic-induced soft-sediment deformation structures in a Pleistocene glaciolacustrine fan: the southern Baltic Sea coast, Poland. Geomorphology, 326, 225238, doi.org/10.1016/j.geomorph.2018.01.015.Google Scholar
Pisarska-Jamroży, M. and Zieliński, T. (2012). Specific erosional and depositional processes in a Pleistocene subglacial tunnel in the Wielkopolska region, Poland. Geografiska Annaler, 94A, 429443, doi.org/10.1111/j.1468-0459.2012.00466.x.Google Scholar
Pisarska-Jamroży, M., Belzyt, S., Börner, A. et al. (2018). Evidence from seismites for glacio-isostatically induced crustal faulting in front of an advancing land-ice mass (Rügen Island, SW Baltic Sea). Tectonophysics, 745, 338348, doi.org/10.1016/j.tecto.2018.08.004.CrossRefGoogle Scholar
Pisarska-Jamroży, M., Belzyt, S., Bitinas, A., Jusienė, A. and Woronko, B. (2019a). Seismic shocks, periglacial conditions and glaciotectonics as causes of the deformation of a Pleistocene meandering river succession in central Lithuania. Baltica, 32, 6377, doi.org/10.5200/baltica.2019.1.6.Google Scholar
Pisarska-Jamroży, M., Belzyt, S, Börner, A. et al. (2019b). The sea cliff at Dwasieden: soft-sediment deformation structures triggered by glacial isostatic adjustment in front of the advancing Scandinavian Ice Sheet. DEUQUA Special Publications, 2, 6167, doi.org/10.5194/deuquasp-2-61-2019.Google Scholar
Pisarska-Jamroży, M. and Weckwerth, P. (2013). Soft‐sediment deformation structures in a Pleistocene glaciolacustrine delta and their implications for the recognition of sub-environments in delta deposits. Sedimentology, 60, 637665, doi.org/10.1111/j.1365-3091.2012.01354.x.Google Scholar
Rijsdijk, K. F. (2001). Density-driven deformation structures in glacigenic consolidated diamicts: examples from Traeth Y Mwnt, Cardiganshire, Wales, UK. Journal of Sedimentary Research, 71, 122135, doi.org/10.1306/042900710122.Google Scholar
Ringrose, P. S. (1989). Palaeoseismic (?) liquefaction event in late Quaternary lake sediment at Glen Roy, Scotland. Terra Nova, 1, 5762, doi.org/10.1111/j.1365-3121.1989.tb00326.x.CrossRefGoogle Scholar
Rodrígues, N., Cobbold, P. R. and Løseth, H. (2009). Physical modeling of sand injectites. Tectonophysics, 474, 610632, doi.org/10.1016/j.tecto.2009.04.032.Google Scholar
Rodríguez-Pascua, M. A., Calvo, J. P., De Vicente, G. and Gómez-Gras, D. (2000). Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators of earthquake magnitudes during the Late Miocene. Sedimentary Geology, 135, 117135, doi.org/10.1016/S0037-0738(00)00067-1.Google Scholar
Ross, J. A., Peakall, J. and Keevil, G. M. (2011). An integrated model of extrusive sand injectites in cohesionless sediments. Sedimentology, 58, 16931715, doi.org/10.1111/j.1365-3091.2011.01230.x.Google Scholar
Rydelek, P. A. and Tuttle, M. (2004). Explosive craters and soil liquefaction. Nature, 427, 115116, doi.org/10.1038/427115a.Google Scholar
Seilacher, A. (1969). Fault-graded beds interpreted as seismites. Sedimentology, 13, 155159, doi.org/10.1111/j.1365-3091.1969.tb01125.x.Google Scholar
Shanmugam, G. (2016a). The seismite problem. Journal of Palaeogeography, 5, 318362, doi.org/10.1016/j.jop.2016.06.002.Google Scholar
Shanmugam, G. (2016b). Submarine fans: A critical retrospective (1950–2015). Journal of Palaeogeography, 5, 110184, doi.org/10.1016/j.jop.2015.08.011.Google Scholar
Shipton, Z. K., Meghraoui, M. and Monro, L. (2017). Seismic slip on the west flank of the Upper Rhine Graben (France–Germany): evidence from tectonic morphology and cataclastic deformation bands. In Landgraf, A., Kuebler, S., Hintersberger, E. and Stein, S., eds., Seismicity, Fault Rupture and Earthquake Hazards in Slowly Deforming Regions. Geological Society, London, Special Publication, Vol. 432, pp. 147161, doi.org/10.1144/SP432.12.Google Scholar
Strasser, M., Anselmetti, F. S., Fäh, D., Giardini, D. and Schnellmann, M. (2006). Magnitudes and source areas of large prehistoric northern Alpine earthquakes revealed by slope failures in lakes. Geology, 34, 10051008, doi.org/10.1130/G22784A.1.Google Scholar
Suter, F., Martínez, J. I. and Vélez, M. I. (2011). Holocene soft-sediment deformation of the Santa Fe–Sopetrán Basin, northern Colombian Andes: evidence for pre-Hispanic seismic activity? Sedimentary Geology, 235, 188199, doi.org/10.1016/j.sedgeo.2010.09.018.Google Scholar
Sutinen, R., Andreani, L. and Middleton, M. (2019a). Post-Younger Dryas fault instability and deformations on ice lineations in Finnish Lapland. Geomorphology, 326, 202212 doi.org/10.1016/j.geomorph.2018.08.034.Google Scholar
Sutinen, R., Hyvönen, E., Liwata-Kenttälä, P. et al. (2019b). Electrical-sedimentary anisotropy of landforms adjacent to postglacial faults in Lapland. Geomorphology, 326, 213224, doi.org/10.1016/j.geomorph.2018.01.008.Google Scholar
Szuman, I., Ewertowski, M. and Kasprzak, L. (2013). Thermo-mechanical facies representative of fast and slow flowing ice sheets: the Weichselian ice sheet, a central west Poland case study. Proceedings of the Geologists’ Association, 124, 818833, doi.org/10.1016/j.pgeola.2012.09.003.Google Scholar
Tuttle, M. P., Hartleb, R., Wolf, L. and Mayne, P. W. (2019). Paleoliquefaction studies and the evaluation of seismic hazard. Geosciences, 9, 311, doi.org/10.3390/geosciences9070311.Google Scholar
van Balen, R. T., Bakker, M. A. J., Kasse, C., Wallinga, J. and Woolderink, H. A. G. (2019). A Late Glacial surface rupturing earthquake at the Peel Boundary fault zone, Roer Valley Rift System, the Netherlands. Quaternary Science Reviews, 218, 254266, doi.org/10.1016/j.quascirev.2019.06.033.Google Scholar
Van der Wateren, F. M., Kluiving, S. J. and Bartek, L. R. (2000). Kinematic indicators of subglacial shearing. In Maltman, A. J., Hubbard, B. and Hambrey, M. J., eds., Deformation of Glacial Materials. Geological Society, London, Special Publication, Vol. 176, pp. 259278, doi.org/10.1144/GSL.SP.2000.176.01.20.Google Scholar
van Loon, A. J. T. (2009). Soft-sediment deformation structures in siliciclastic sediments: an overview. Geologos, 15, 355.Google Scholar
van Loon, A. J. T. and Pisarska-Jamroży, M. (2014). Sedimentological evidence of Pleistocene earthquakes in NW Poland induced by glacio-isostatic rebound. Sedimentary Geology, 300, 110, doi.org/10.1016/j.sedgeo.2013.11.006.Google Scholar
van Loon, A. J. T., Pisarska-Jamroży, M., Nartišs, M., Krievāns, M. and Soms, J. (2016). Seismites resulting from high-frequency, high-magnitude earthquakes in Latvia caused by Late Glacial glacio-isostatic uplift. Journal of Palaeogeography, 5, 363380, doi.org/10.1016/j.jop.2016.05.002.Google Scholar
van Loon, A. J. T., Soms, J., Nartišs, M., Krievāns, M. and Pisarska-Jamroży, M. (2019). Sedimentological traces of ice-raft grounding in a Weichselian glacial lake near Dukuli (NE Latvia). Baltica, 32, 170181, doi.org/10.5200/baltica.2019.2.4.Google Scholar
van Loon, A. J. T., Pisarska-Jamroży, M. and Woronko, B. (2020). Sedimentological distinction in glacigenic sediments between load casts induced by periglacial processes from those induced by seismic shocks. Geological Quarterly, 64, 626640, doi.org/10.7306/gq.1546.Google Scholar
Van Vliet-Lanoë, B., Magyar, I. A. and Meilliez, F. (2004). Distinguishing between tectonic and periglacial deformations of quaternary continental deposits in Europe. Global and Planetary Change, 43, 103127, doi.org/10.1016/j.gloplacha.2004.03.003.CrossRefGoogle Scholar
Vandenberghe, J. (2013). Cryoturbation structures. In Elias, S. A. and Mock, C. J., eds., The Encyclopedia of Quaternary Science, 2nd ed., Elsevier, Amsterdam, pp. 430435, doi.org/10.1016/B978-0-444-53643-3.00096-0.Google Scholar
Vandekerkhove, E., Van Daele, M., Praet, N. et al. (2020). Flood‐triggered versus earthquake‐triggered turbidites: a sedimentological study in clastic lake sediments (Eklutna Lake, Alaska). Sedimentology, 67(1), 364–389, doi.org/10.1111/sed.12646.Google Scholar
Vanneste, K., Meghraoui, M. and Camelbeeck, T. (1999). Late Quaternary earthquake-related soft-sediment deformation along the Belgian portion of the Feldbiss Fault, Lower Rhine Graben system. Tectonophysics, 309, 5779, doi.org/10.1016/S0040-1951(99)00132-8.Google Scholar
Vanneste, K., Camelbeeck, T., Verbeeck, K. and Demoulin, A. (2018). Morphotectonics and past large earthquakes in Eastern Belgium. In Demoulin, A., ed., Landscapes and Landforms of Belgium and Luxembourg, World Geomorphological Landscapes. Springer, Cham, pp. 215236, doi.org/10.1007/978-3-319-58239-9_13.Google Scholar
Wheeler, R. L. (2002). Distinguishing seismic from nonseismic soft-sediment structures: criteria from seismic-hazard analysis. In F. R. Ettensohn, N. Rast and C. E. Brett, eds., Ancient Seismites. Geological Society of America, Special Paper 359, pp. 1–11, doi.org/10.1130/0-8137-2359-0.1.Google Scholar
Weise, O. R. (1983). Das Periglazial. Geomorphologie und Klima in gletscherfreien, kalten Regionen [The Periglacial. Geomorphology and Climate in Glacier-Free, Cold Regions], Gebrüder Borntraeger, Stuttgart.Google Scholar
Winsemann, J., Asprion, U., Meyer, T., Schultz, H. and Victor, P. (2003). Evidence of iceberg ploughing in a subaqueous ice-contact fan, glacial Lake Rinteln, NW Germany. Boreas, 32, 386398, doi.org/10.1111/j.1502-3885.2003.tb01092.x.Google Scholar
Winsemann, J, Alho, P., Laamanen, L. et al. (2016). Flow dynamics, sedimentation and erosion of glacial lake outburst floods along the Middle Pleistocene Scandinavian ice sheet (northern Central Europe). Boreas, 45, 260283, doi.org/10.1111/bor.12146.Google Scholar
Winsemann, J., Koopmann, H., Tanner, D. et al. (2020). Seismic interpretation and structural restoration of the Heligoland glaciotectonic thrust-fault complex: implications for multiple deformation during (pre-)Elsterian to Warthian ice advances into the southern North Sea Basin. Quaternary Science Reviews, 227, 106068, doi.org/10.1016/j.quascirev.2019.106068.Google Scholar
Woronko, B., Belzyt, S., Bujak, Ł. and Pisarska-Jamroży, M. (2018). Glaciotectonically deformed glaciofluvial sediments with ruptured pebbles (the Koczery study site, E Poland). Bulletin of the Geological Society of Finland, 90, 145159.Google Scholar
Worsley, P. (2014). Ice-wedge growth and casting in a Late Pleistocene periglacial, fluvial succession at Baston, Lincolnshire. Mercian Geologist, 18, 159170.Google Scholar
Woźniak, P. P. and Pisarska-Jamroży, M. (2018). Debris flows with soft-sediment clasts in a Pleistocene glaciolacustrine fan (Gdańsk Bay, Poland). Catena, 165, 178191, doi.org/10.1016/j.catena.2018.01.022.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×