Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T04:06:55.444Z Has data issue: false hasContentIssue false

0 - Introduction

Published online by Cambridge University Press:  07 September 2010

Erik D. Demaine
Affiliation:
Massachusetts Institute of Technology
Joseph O'Rourke
Affiliation:
Smith College, Massachusetts
Get access

Summary

The topic of this book is the geometry of folding and unfolding, with a specific emphasis on algorithmic or computational aspects. We have partitioned the material into three parts, depending on what is being folded or unfolded: linkages (Part I, p. 7–164), paper (Part II, p. 165–296), and polyhedra (Part III, p. 297–441). Very crudely, one can view these parts as focusing on one-dimensional (1D) objects (linkages), 2D objects (paper), or 3D objects (polyhedra). The 1D–2D–3D view is neither strictly accurate nor strictly followed in the book, but it serves to place related material nearby.

One might classify according to the process. Folding starts with some unorganized generic state and ends with a more structured terminal “folded state.” Unfolding is the reverse process, but the distinction is not always so clear. Certainly we unfold polyhedra and we fold paper to create origami, but often it is more useful to view both processes as instances of “reconfiguration” between two states.

Another possible classification concentrates on the problems rather than the objects or the processes. A rough distinction may be drawn between design problems—given a specific folded state, design a way to fold to that state, and foldability questions—can this type of object fold to some general class of folded states. Although this classification is often a Procrustean bed, we follow it below to preview specific problem instances, providing two back-to-back minitours through the book's 1D–2D–3D organization.

Type
Chapter
Information
Geometric Folding Algorithms
Linkages, Origami, Polyhedra
, pp. 1 - 6
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Introduction
  • Erik D. Demaine, Massachusetts Institute of Technology, Joseph O'Rourke, Smith College, Massachusetts
  • Book: Geometric Folding Algorithms
  • Online publication: 07 September 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511735172.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Introduction
  • Erik D. Demaine, Massachusetts Institute of Technology, Joseph O'Rourke, Smith College, Massachusetts
  • Book: Geometric Folding Algorithms
  • Online publication: 07 September 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511735172.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Introduction
  • Erik D. Demaine, Massachusetts Institute of Technology, Joseph O'Rourke, Smith College, Massachusetts
  • Book: Geometric Folding Algorithms
  • Online publication: 07 September 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511735172.002
Available formats
×