Skip to main content Accessibility help
  • Print publication year: 2019
  • Online publication date: October 2019

2 - Why Study the Geomagnetic Field?

from Part I - Introduction


In this chapter we provide an introduction to different fields of geomagnetism studies rather than to this book as a whole. The aim is to present the wide, temporaly variable and spatialy heterogeneous subjects covered by geomagnetism studies. Individual parts of this chapter address subjects extending from geodynamo through historical records of the geomagnetic field, its present dynamics, its interaction with solar wind and coronal mass ejections, its influence on the electrodynamics of plasma in near-Earth space,hazards of space weather, and finally to the importance of the geomagnetic field for the biosphere. Individual parts, written by top experts in these fields, are different in both style and length; and in view of the vast range of topics covered, some of the subjects introduced here are not presented in greater details in the whole volume. We believe that this chapter shows the many facets of the role of the geomagnetic field and associated physical phenomena, taking place in our natural environment, some of which may have significant effects on human lives and the technology that we use today. The chapter demonstrates the attractiveness and usefulness of geomagnetism and aeronomy studies in a form suitable for both experts and non-specialists.

Related content

Powered by UNSILO
Banks, R. J. (1969) Geomagnetic variations and the electrical conductivity of the upper mantle. Geophys. J. R. Astron. Soc., 17, 457–87.
Constable, S. (2015) Geomagnetic induction studies. In: Schubert, G. (Ed.), Treatise on Geophysics, 2nd edn., Elsevier, Oxford, 219–54.
Constable, S. C., Parker, R. L. and Constable, C. G. (1987) Occam’s Inversion: a practical algorithm for generating smooth models from EM sounding data. Geophysics, 52, 289300.
Dong, S.-W., Li, T.-D., Lu, Q.-T., Gao, R., Yang, J.-S., Chen, X.-H., Wei, W.-B. and Zhou, Q. (2013) Progress in deep lithospheric exploration of the continental China: a review of the SinoProbe. Tectonophysics, 606, 113.
Egbert, G. D. (1997) Robust multiple-station magnetotelluric data processing. Geophys. J. Int., 130, 475–96.
Kelbert, A., Meqbel, N., Egbert, G. D. and Tandon, K. (2014) ModEM: a modular system for inversion of electromagnetic geophysical data. Comput. Geosci., 66, 4053.
Key, K., Constable, S., Liu, L. and Pommier, A. (2013) Electrical image of passive mantle upwelling beneath the northern East Pacific Rise. Nature, 495, 499502.
Meqbel, N. M., Egbert, G. D., Wannamaker, P. E., Kelbert, A. and Schultz, A. (2014) Deep electrical resistivity structure of the northwestern US derived from 3-D inversion of USArray magnetotelluric data. Earth Planet. Sci. Lett., 402, 290304.
Naif, S., Key, K., Constable, S. and Evans, R. L. (2013) Meltrich channel observed at the lithosphere-asthenosphere boundary. Nature, 495, 356–9.
Pommier, A. (2014) Interpretation of magnetotelluric results using laboratory measurements. Surv. Geophys., 35, 4184.
Puethe, C., Kuvshinov, A., Khan, A. and Olsen, N. (2015) A new model of Earth’s radial conductivity structure derived from over 10 yr of satellite and observatory magnetic data. Geophys. J. Int., 203, 1864–72.
Puethe, C. and Kuvshinov, A. (2013) Determination of the 3-D distribution of electrical conductivity in Earth’s mantle from Swarm satellite data: frequency domain approach based on inversion of induced coefficients. Earth Planets Space, 65, 1247–56.
Robertson, K., Heinson, G. and Thiel, S. (2016) Lithospheric reworking at the Proterozoic-Phanerozoic transition of Australia imaged using AusLAMP Magnetotelluric data. Earth Planet. Sci. Lett., 452, 2735.
Wannamaker, P. E., Evans, R. L., Bedrosian, P. A., Unsworth, M. J., Maris, V. and McGary, R. S. (2014) Segmentation of plate coupling, fate of subduction fluids, and modes of arc magmatism in Cascadia, inferred from magnetotelluric resistivity. Geochem. Geophys. Geosyst., 15, 4230–53.
Abrajevitch, A. V., Van der Voo, R., Levashova, N. M. and Bazhenov, M. L. (2007) Paleomagnetism of the mid-Devonian Kurgasholak Formation, Southern Kazakhstan: constraints on the Devonian paleogeography and oroclinal bending of the Kazakhstan volcanic arc. Tectonophysics, 441, 6784.
Bourquin, S., Bercovici, A., López-Gómez, J., Diez, J. B., Broutin, J., Ronchi, A., Durand, M., Arché, A., Linol, B. and Amour, F. (2011) The Permian–Triassic transition and the onset of Mesozoic sedimentation at the northwestern peri-Tethyan domain scale: palaeogeographic maps and geodynamic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol, 299, 265–80.
Burke, K. and Torsvik, T. H. (2004) Derivation of large igneous provinces of the past 200 million years from long-term heterogeneities in the deep mantle. Earth Planet Sci. Lett., 227, 531–8.
Carey, S. W. (1958) The orocline concept in geotectonics, part 1, Papers and Proceedings of the Royal Society of Tasmania, 89, 255–88.
Chen, D., Zhou, X. Q. and Yong, F. (2015) New U–Pb zircon ages of the Ediacaran–Cambrian boundary strata in South China. Terra Nova, 27, 6268. doi: 10.1111/ter.12134.
Creer, K. M. (1968) Paleozoic paleomagnetism. Nature, 219, 246–50.
Deenen, M. H. L., Langereis, C. G., van Hinsbergen, D. J. J. and Biggin, A. J. (2011) Geomagnetic secular variation and the statistics of palaeomagnetic directions. Geophys. J. Int., 186, 509–20.
Domeier, M., Van der Voo, R. and Torsvik, T. H. (2012) Paleomagnetism and Pangea: the road to reconciliation. Tectonophysics, 514–17, 1443.
Domeier, M. and Torsvik, T. H. (2014) Focus review paper: plate kinematics of the Late Paleozoic. Geosci. Frontiers, 5, 303–50.
Dominguez, A. and Van der Voo, R. (2014) Secular variation of the middle and late Miocene geomagnetic field recorded by the Columbia River Basalt Group in Oregon, Idaho, and Washington, USA. Geophys. J. Int., 197, 12991320.
Doubrovine, P. V., Steinberger, B. and Torsvik, T. H. (2012) Absolute plate motions in a reference frame defined by moving hotspots in the Pacific, Atlantic and Indian oceans. J. Geophys. Res., 117, B09101. doi: 10.1029/2011JB009072.
Evans, D. A. D. (2013) Reconstructing pre-Pangean supercontinents. Geol. Soc. Am. Bull., 125, 1735–51.
Fitz-Diaz, E. and van der Pluijm, B. A. (2013) Fold dating: a new Ar/Ar illite dating application to constrain the age of deformation in shallow crustal rocks. J. Struct. Geol., 54, 174–9. doi: 10.1016/j.jsg.2013.05.011.
Fitz-Diaz, E., Hall, C. M., and van der Pluijm, B.A. (2016). XRD-based 40Ae/39Arage correction for fine-grained illite with application to folded carbonates in the Monterrey Salient (northern Mexico). Geochim. Cosmochim. Acta, 181, 201216, doi: 10.1016/j.gca.2016.02.004.
Gordon, R. G., Cox, A. and O’Hare, S. (1984) Paleomagnetic Euler poles and the apparent polar wander and absolute motion of North America since the Carboniferous. Tectonics, 3, 499537. doi: 10.1029/TC003i005p00499.
Graham, J. W. (1949) The stability and significance of magnetism in sedimentary rocks. J. Geophys. Res., 54, 131–67.
Irving, E. (2004) The case for Pangea B, and the Intra-Pangean Megashear: timescales of the paleomagnetic field. Geophys. Monogr., 145, 1327.
Johnston, S. T. (2001) The Great Alaskan Terrane Wreck: reconciliation of paleomagnetic and geological data in the northern Cordillera. Earth Planet. Sci. Lett., 193, 259–72.
Kodama, K. P. (2012) Paleomagnetism of Sedimentary Rocks: Process and Interpretation. Wiley-Blackwell, London.
Linder, J. M. and Gilder, S. A. (2012) Latitude dependency of the geomagnetic secular variation S parameter: A mathematical artifact. Geophys. Res. Lett., 39, L02308. doi: 10.1029/2011GL050330.
McElhinny, M. W. and Opdyke, N. D. (1973) Remagnetization hypothesis discounted: a paleomagnetic study of the Trenton Limestone, New York State. Bull. Geol. Soc. Amer., 84, 36973708. doi: 10.1130/0016/7606(1973)84<3697:rhdaps>2.0.CO;2.
Meert, J. G. (2012) What’s in a name? The Columbia (Palaeopangea/Nuna) Supercontinent, Gondwana Res., 21, 987–93.
Nemkin, S. R., Fitz-Diaz, E., van der Pluijm, B. A. and Van der Voo, R. (2015). Dating syn-folding remagnetization: approach and field application (central Sierra Madre Oriental, Mexico). Geosphere, 11, 112. doi: 10.1130/GES01187.1.
Nemkin, S. R., Lageson, D., van der Pluijm, B. A. and Van der Voo, R. (2016) Remagnetization and folding in the frontal Montana Rocky Mountains. Lithosphere, 8, 716–28. doi: 10.1130/L579.1.
Tauxe, L. (2010) Essentials of Paleomagnetism. University of California Press, Berkeley.
Tauxe, L. and Kodama, K. P. (2009). Paleosecular variation models for ancient times: clues from Keweenawan lava flows. Phys. Earth Planet. Inter., 177, 3145.
Torsvik, T. H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P. V., van Hinsbergen, D. J. J., Domeier, M., Gaina, C., Tovher, E., Meert, J. G., McCausland, P. J. and Cocks, L. R. M. (2012) Phanerozoic polar wander, paleogeography and dynamics. Earth Sci. Rev., 114, 325–68.
Torsvik, T. H., Van der Voo, R., Doubrovine, P. V., Burke, K., Steinberger, B., Ashwal, L. D., Trønnes, R., Webb, S. J. and Bull, A. L. (2014a) Deep mantle structure as a reference frame for movements in and on the Earth. PNAS, 111, 24, 8735–40.
Torsvik, T. H., Doubrovine, P. V. and Domeier, M. (2014b) Continental drift (paleomagnetism). In: Encyclopedia of Scientific Dating Methods. Springer Science, Berlin. doi: 10.1007/978-94-007-6326-5_107-1.
Torsvik, T. H. and Cocks, L. R. M. (2017) Earth History and Palaeogeography. Cambridge University Press, Cambridge.
van der Meer, D., Spakman, W., van Hinsbergen, D. J. J., Amaru, M. L. and Torsvik, T. H. (2010) Absolute plate motions since the Permian interred from lower mantle slab remnants. Nature Geosci., 3, 3640. doi: 10.1038/NGEO708.
Van der Voo, R. (1990) Phanerozoic paleomagnetic poles from Europe and North America and comparisons with continental reconstructions. Rev. Geophys., 28, 167206.
Van der Voo, R. (2004) Paleomagnetism, oroclines, and growth of the continental crust. GSA Today, 14. doi: 10.1130/1052-5173(2004)014<4:poagot>2.0.C0;2.
Wegener, A. (1912) Die Entstehung der Kontinente. Petermann’s Mittelungen aus Justus Perthes’ Geographischer Anstalt, 58, 185–95, 253–6, 305–9.
Weil, A. B. and Van der Voo, R. (2002) Insights into the mechanism for orogen-related carbonate remagnetization from growth of authigenic Feoxide: a scanning electron microscopy and rock magnetic study of Devonian carbonates from northern Spain. J. Geophys. Res., 107(B4), 2063. doi: 10.1029/2001JB000200.
Catanzariti, G., McIntosh, G., Soares, A. M. M., Díaz-Martínez, E., Kresten, P. and Osete, M. L. (2008) Archaeomagnetic dating of a vitrified wall at the Late Bronze Age settlement of Misericordia (Serpa, Portugal). J. Archaeol. Sci., 35, 13991407.
Cochran, K. A. and Elmore, R. D. (1987) Paleomagnetic dating of Liesegang bands. J. Sedim. Res., 57, 701–8.
Constable, C., Korte, M. and Panovska, S. (2016) Persistent high paleosecular variation activity in southern hemisphere for at least 10 000 years. Earth Planet. Sci. Lett., 453, 7886.
Fang, X., Zhang, W., Meng, Q., Gao, J., Wang, X., King, J., Song, C., Dai, S. and Miao, Y. (2007) High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth Planet. Sci. Lett., 258, 293306.
Hagstrum, J. T. and Champion, D. E. (2002) A Holocene paleosecular variation record from 14C‐dated volcanic rocks in western North America. J. Geophys. Res. Solid Earth, 107(B1), 2025. doi: 10.1029/2001JB000524.
Henry, B., Rouvier, H., Le Goff, M., Leach, D., Macquar, J. C., Thibieroz, J. and Lewchuk, M. T. (2001) Palaeomagnetic dating of widespread remagnetization on the southeastern border of the French Massif Central and implications for fluid flow and Mississippi Valley-type mineralization. Geophys. J. Int., 145, 368–80.
Herries, A. I. and Shaw, J. (2011) Palaeomagnetic analysis of the Sterkfontein palaeocave deposits: Implications for the age of the hominin fossils and stone tool industries. J. Human Evol., 60, 523–39.
Hilgen, F. J., Krijgsman, W., Langereis, C. G., Lourens, L. J., Santarelli, A. and Zachariasse, W. J. (1995) Extending the astronomical (polarity) time scale into the Miocene. Earth Planet. Sci. Lett., 136, 495510.
Hospers, J. (1954) Magnetic correlation in volcanic districts. Geol. Mag., 91, 352–60.
Jackson, A., Jonkers, A. R. and Walker, M. R. (2000) Four centuries of geomagnetic secular variation from historical records. Philos. Trans. R. Soc. London A, 358, 957–90.
Kent, D. V. and Irving, E. (2010) Influence of inclination error in sedimentary rocks on the Triassic and Jurassic apparent pole wander path for North America and implications for Cordilleran tectonics. J. Geophys. Res. Solid Earth, 115, B10103. doi: 10.1029/2009JB007205.
Korte, M., Constable, C., Donadini, F. and Holme, R. (2011) Reconstructing the Holocene geomagnetic field. Earth Planet. Sci. Lett., 312, 497505.
Kovacheva, M., Kostadinova-Avramova, M., Jordanova, N., Lanos, P. and Boyadzhiev, Y. (2014) Extended and revised archaeomagnetic database and secular variation curves from Bulgaria for the last eight millennia. Phys. Earth Planet. Inter., 236, 7994.
Langereis, C. G., Krijgsman, W., Muttoni, G. and Menning, M. (2010) Magnetostratigraphy – concepts, definitions, and applications. Newsl. Stratigr., 43(3), 207–33.
Lenhardt, N., Böhnel, H., Wemmer, K., Torres-Alvarado, I. S., Hornung, J. and Hinderer, M. (2010) Petrology, magnetostratigraphy and geochronology of the Miocene volcaniclastic Tepoztlán Formation: implications for the initiation of the Transmexican Volcanic Belt (Central Mexico). Bull. Volcanol., 72, 817–32.
Mahgoub, A. N., Reyes-Guzmán, N., Böhnel, H., Siebe, C., Pereira, G. and Dorison, A. (2018) Paleomagnetic constraints on the ages of the Holocene Malpaís de Zacapu lava flow eruptions, Michoacán (México): implications for archeology and volcanic hazards. Holocene, 28, 229–45.
McDougall, I., Allsopp, H. L. and Chamalaun, F. H. (1966) Isotopic dating of the Newer Volcanics of Victoria, Australia, and geomagnetic polarity epochs. J. Geophys. Res. Soild Earth, 71, 6107–18.
McDougall, I. and Harrison, T. M. (1999) Geochronology and Thermochronology by the 40Ar/39Ar Method. Oxford University Press, New York.
Nilsson, A., Holme, R., Korte, M., Suttie, N. and Hill, M. (2014) Reconstructing Holocene geomagnetic field variation: new methods, models and implications. Geophys. J. Int., 198, 229–48.
Nowaczyk, N. R., Frederichs, T. W., Eisenhauer, A. and Gard, G. (1994) Magnetostratigraphic data from late Quaternary sediments from the Yermak Plateau, Arctic Ocean: evidence for four geomagnetic polarity events within the last 170 Ka of the Brunhes Chron. Geophys. J. Int., 117, 453–71.
Ogg, J. G. (2012) Geomagnetic polarity time scale. In: Gradstein, F. M., Ogg, J. C., Schmitz, M. D. and Ogg, G. M. (Eds), The Geologic Time Scale 2012. Elsevier, Amsterdam, 85113.
Opdyke, N. D. (1972) Paleomagnetism of deep‐sea cores. Rev. Geophys., 10, 213–49.
Pavón-Carrasco, F. J., Rodríguez-González, J., Osete, M. L. and Torta, J. M. (2011) A Matlab tool for archaeomagnetic dating. J. Archaeol. Sci., 38, 408–19.
Pavón-Carrasco, F. J., Osete, M. L., Torta, J. M. and De Santis, A. (2014) A geomagnetic field model for the Holocene based on archaeomagnetic and lava flow data. Earth Planet. Sci. Lett., 388, 98109.
Roche, A. (1953) Sur l’origine des inversions d’aimantation constatés dans les roches d’Auvergne. C. R. Acad. Sci. Paris, 236, 107–9.
Singer, B. S. (2014) A Quaternary geomagnetic instability time scale. Quat. Geochronol., 21, 2952.
Singer, B. S., Hoffman, K. A., Chauvin, A., Coe, R. S. and Pringle, M. S. (1999) Dating transitionally magnetized lavas of the late Matuyama Chron: toward a new 40Ar/39Ar timescale of reversals and events. J. Geophys. Res. Solid Earth, 104, 679–93.
Speranza, F., Pompilio, M., D’Ajello Caracciolo, F. and Sagnotti, L. (2008) Holocene eruptive history of the Stromboli volcano: constraints from paleomagnetic dating. J. Geophys. Res. Solid Earth, 113, B09101. doi: 10.1029/2007JB005139.
Torsvik, T. H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P. V., van Hinsbergen, D. J., Domeier, M., Gaina, C., Tohver, E. and Meert, J. G. (2012) Phanerozoic polar wander, palaeogeography and dynamics. Earth Sci. Rev., 114, 325–68.
Vine, F. J. and Matthews, D. H. (1963) Magnetic anomalies over oceanic ridges. Nature, 199, 947–9.
Watkins, N. D. and Walker, G. P. L. (1977) Magnetostratigraphy of eastern Iceland. Am. J. Sci., 277, 513–84.
Chave, A. D. and Jones, A. G. (2012) The Magnetotelluric Method: Theory and Practice. Cambridge University Press, New York.
Cox, A., Doell, R., Brent, R. and Dalrymple, G. (1964) Reversals of the Earth’s magnetic field. Science, 144, 1537–43.
Gialanella, P. R., Incoronato, A., Russo, F. and Nigro, G. (1993) Magnetic stratigraphy of Vesuvius products. I. 1631 lavas. J. Volcanol. Geotherm. Res., 58, 211–15, doi: 10.1016/0377-0273(93)90109-5.
Ishido, T. and Mizutani, H. (1981) Experimental and theoretical basis of electrokinetic phenomena in rock-water systems and its applications to geophysics. J. Geophys. Res.-Sloid Earth, 86, 1763–75.
Johnston, M. J. S. and Mueller, R. J. (1987) Seismomagnetic observations during the 8 July 1986, magnitude 5.9 North Palm Springs, California, earthquake. Science, 237, 1201–3.
Johnston, M. J. S. (1997) Review of electric and magnetic fields accompanying seismic and volcanic activity. Surv. Geophys., 18, 441–76.
Johnston, M. J. S. (2002) Electromagnetic Fields Generated by Earthquakes. In: International Handbook of Earthquake and Engineering Seismology, vol. 81A, Academic Press, New York, 621–35.
Johnston, M. J. S. (2007) Seismo-electromagnetic effects. In: Encyclopedia of Geomagnetism and Paleomagnetism, Springer, The Netherlands, 908–10.
Kanda, W., Utsugi, M., Tanaka, Y., Hashimoto, T., Fujii, I., Hasenaka, T. and Shigeno, N. (2010) A heating process of Kuchi-erabu-jima volcano, Japan, as inferred from geomagnetic field variations and electrical structure. J. Volcanol. Geotherm. Res., 189, 158–71. doi: 10.1016/j.jvolgeores.2009.11.002.
Love, J. J. (2008) Magnetic monitoring of Earth and space. Physics Today, Feb., 31–6.
Park, S. K., Johnston, M. J. S., Madden, T., Morgan, R., Dale, F. and Morrison, H. F. (1993) Electromagnetic precursors to earthquakes in the ULF band: a review of observations and mechanisms. Rev. Geophys., 31, 117–32. doi: 10.1029/93RG00820.
Parrot, M., Berthelier, J. J., Lebreton, J. P., Sauvaud, J. A., Santolík, O. and Blecki, J. (2006) Examples of unusual ionospheric observations made by the DEMETER satellite over seismic regions. Phys. Chem. Earth, 31, 486–95.
Piša, D., Němec, F., Santolík, O. R., Parrot, M. and Rycroft, M. (2013) Additional attenuation of natural VLF electromagnetic waves observed by the DEMETER spacecraft resulting from preseismic activity. J. Geophys. Res. Space Phys., 118, 5286–95. doi: 10.1002/jgra.50469.
Reitz, J. R., Milford, F. J. and Christy, R. W. (2008) Foundations of Electromagnetic Theory. 4th edn. Addison-Wesley, New York.
Sasai, Y., Uyeshima, M., Zlotnicki, J., Utada, H., Kagiyama, T., Hashimoto, T. and Takahashi, Y. (2002) Magnetic and electric field observations during the 2000 activity of Miyake-jima volcano, Central Japan. Earth Planet. Sci. Lett., 203, 769–77. doi: 10.1016/S0012-821X(02)00857-9.
Stacey, F. D. and Johnston, M. J. S. (1972) Theory of the piezomagnetic effect in titanomagnetite-bearing rocks. Pure Appl. Geophys., 97, 146–55.
Tyler, R. H., Maus, S. and Lühr, H. (2003) Satellite observations of magnetic fields due to ocean tidal flow. Science, 299, 239–41. doi: 10.1126/science.1078074.
Uyeda, S., Hayakawa, M., Nagao, T., Molchanov, O., Hattori, K., Orihara, Y., Gotoh, K., Akinaga, Y. and Tanaka, H. (2002) Electric and magnetic phenomena observed before the volcano-seismic activity in 2000 in the Izu Island Region, Japan. Proc. Natl. Acad. Sci. USA, 99, 7352–5. doi: 10.1073_pnas.072208499.
Uyeda, S., Nagao, T. and Kamogawa, M. (2009) Short-term earthquake prediction: current status of seismo-electromagnetics. Tectonophysics, 470, 205–13.
Varotsos, P., Sarlis, N. V. and Skordas, E. S. (2011) Natural Time Analysis: The New View of Time: Precursory Seismic Electric Signals, Earthquakes and Other Complex Time Series. Springer, New York. doi: 10.1007/978-3-642-16449-1.
Wawrzyniak, P., Zlotnicki, J., Sailhac, P. and Marquis, G. (2017) Resistivity variations related to the large March 9, 1998 eruption at La Fournaise volcano inferred by continuous MT monitoring. J. Volcanol. Geotherm. Res., 347, 185206, doi: 10.1016/j.jvolgeores.2017.09.011.
Yukutake, T. (1990) An overview of the eruptions of Oshima Volcano, Izu, 1986–1987 from the 1149 geomagnetic and geoelectric standpoints. J. Geomagn. Geoelectr., 42, 141–50.
Zlotnicki, J., Li, F. and Parrot, M. (2013) Ionospheric disturbances detected by DEMETER satellite over active volcanoes: August 2004 to December 2010. Geophys. J. Int., 183, 1332–47. doi: 10.1155/2013/530865.
Zlotnicki, J., Sasai, Y., Johnston, M., Fauquet, F., Villacorte, E. and Cordon, J. M. Jr (2018) The 2010 seismovolcanic crisis at Taal Volcano (Philippines). Earth Planets Space, 70, Article 159. doi: 10.1186/s40623-018-0925-2.
Abdu, M. A. (1997) Major phenomena of the equatorial ionosphere-thermosphere system under disturbed conditions. J. Atmos. Sol. Ter. Phys., 59, 1505–19.
Blanc, M. and Richmond, A. D. (1980) The ionospheric disturbance dynamo. J. Geophys. Res. Space Phys., 85, 1669–86. doi: 10.1029/JA085iA04p01669.
Dungey, J. W. (1961) Interplanetary magnetic fields and the auroral zones. Phys. Rev. Letts., 6, 47–8.
Fejer, B. G. (2011) Low latitude ionospheric electrodynamics. Space Sci. Rev., 158, 145–66. doi: 10.1007/s11214-010-9690-7.
Forbes, J. F. (2000) Wave coupling between the lower and upper atmosphere: case study of an ultra-fast Kelvin Wave. J. Atmos. Sol. Terr. Phys., 62, 1603–21.
Gonzalez, W. D., Joselyn, J. A. Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T. and Vasyliunas, V. M. (1994) What is a geomagnetic storm. J. Geophys. Res. Space Phys., 99, 5771–92.
Gopalaswamy, N. (2016) History and development of coronal mass ejections as a key player in solar–terrestrial relationship. Geosci. Lett., 3, UNSP 8. doi: 10.1186/s40562-016-0039-2.
Hansen, R. T., Garcia, C. J., Grognard, R. J. M. and Sheridan, K. V. (1971) A coronal disturbance observed simultaneously with a white-light corona-meter and the 80 MHz Culgoora radio heliograph. Proc. Astron. Soc. Austr., 2, 5760.
Ijima, T. and Potemra, T. A. (1978) Large-scale characteristics of field-aligned currents associated with substorms. J. Geophys. Res. Space Phys., 83, 599615.
Kamide, Y. (1974) Association of DP and DR fields with the interplanetary magnetic field variation. J. Geophys. Res. Space Phys., 79, 4955. doi: 10.1029/JA079i001p00049.
Kelley, M. C. (1989) The Earth’s Ionosphere, Plasma Physics and Electrodynamics. Academic Press, New York.
Kelley, M. C., Fejer, B. G. and Gonzales, C. A. (1979) An explanation for anomalous equatorial ionospheric electric fields associated with a northward turning of the interplanetary magnetic field. Geophys. Res. Letts., 6, 301–4.
Kikuchi, T., Hashimoto, K. K. and Nozaki, K. (2008) Penetration of magnetospheric electric fields to the equator during a geomagnetic storm. J. Geophys. Res. Space Phys., 113, A06214. doi: 10.1029/2007JA012628.
Kivelson, M. G. and Russell, C. (Eds) (1995) Introduction to Space Physics. Cambridge University Press, Cambridge.
Luhr, H., Xiaong, C., Olsen, N. and Le, G. (2017) Near-Earth magnetic field effects of large-scale magnetospheric currents. Space Sci. Rev., 206, 521–45. doi: 10.1007/s11214-016-0267-y.
Mannucci, A. J., Tsurutani, B. T., Iijima, B. A., Komjathy, A., Saito, A., Gonzalez, W. D., Guarnieri, F. L., Kozyra, J. U. and Skoug, R. (2005) Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 ‘Halloween storms’. Geophys. Res. Lett., 32, L12S02.
Nishida, A. (1968) Geomagnetic DP-2 fluctuations and associated magnetospheric phenomena. J. Geophys. Res. Space Phys., 73, 17951803.
Rastogi, R. G. and Patel, V. L. (1975) Effect of interplanetary magnetic field on the ionosphere over the magnetic equator. Proc. Indian Acad. Sci. A, 82, 121–41.
Richmond, A. D., Peymirat, C. and Roble, R. G. (2003) Long-lasting disturbances in the equatorial ionospheric electric field simulated with a coupled magnetosphere–ionosphere–thermosphere model. J. Geophys. Res. Space Phys., 108, 1118. doi: 10.1029/2002JA009758.
Southwood, D., Stanley, W. H., Cowley, F. R. S. and Simon, M. (Eds) (2015) Magnetospheric Plasma Physics: The Impact of Jim Dungey’s Research. Springer, Berlin. doi: 10.1007/978-3-319-18359-6.
Tsurutani, B. T., Gonzalez, W. D., Tang, F., Akasofu, S.-I. and Smith, E. J. (1988) Origin of interplanetary southward magnetic fields responsible for major magnetic storm near solar maximum (1978–1979). J. Geophys. Res. Space Phys., 93, 8519–31.
Van Allen, J. A. and Frank, L. A. (1959) Radiation around the Earth to a radial distance of 107,400 km. Nature, 183, 430–34.
Yamazaki, Y. and Maute, A. (2017) Sq and EEJ – a review on the daily variation of the geomagnetic field caused by ionospheric dynamo currents. Space Sci. Rev., 206, 299405.
Zmuda, A. J., Martin, J. H. and Heuring, F. T. (1966) Transverse magnetic disturbances at 1100 kilometers in the auroral region. J. Geophys. Res., 71, 5033–45.
Boteler, D. H. (2006) The super storms of August/September 1859 and their effects on the telegraph system. Adv. Space Res., 38, 159–72.
Guillon, S., Toner, P., Gibson, L. and Boteler, D. (2016) A colorful blackout. IEEE Power Energy Mag., 14, 5971.
Prescott, G. B. (1866) History, Theory, and Practice of the Electric Telegraph. Ticnor and Fields, Boston.
Sabine, E. (1852) On periodical laws discoverable in the mean effects of the larger magnetic disturbances – No. II. Philos. Trans. R. Soc. London, 142, 103–24.
Turner, G. (2011) North Pole, South Pole: The Epic Quest to Solve the Great Mystery of Earth’s Magnetism. The Experiment, New York.
Courtillot, V. (1994) Mass extinctions in the last 300 million years: one impact and seven flood basalts. Isr. J. Earth Sci., 43, 255–66.
Crutzen, P. J., Isaksen, I. S. and Reid, G. C. (1975) Solar proton events: Stratospheric sources of nitric oxide. Science, 189, 457–9.
Fuller, M. (2006) Geomagnetic field intensity, excursions, reversals and the 41,000-yr obliquity signal. Earth Planet. Sci. Lett., 245, 605–15.
Glassmeier, K. H., Othmer, C., Cramm, R., Stellmacher, M. and Engebretson, M. (1999) Magnetospheric field line resonances: a comparative planetology approach. Surv. Geophys., 20, 61109.
Glassmeier, K. H. and Vogt, J. (2010) Magnetic polarity transitions and biospheric effects. Space Sci. Rev., 155, 387410.
Jackman, R. J., Floyd, T. M., Ghodssi, R., Schmidt, M. A. and Jensen, K. F. (2001) Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy. J. Micromech. Microeng., 11, 263–9.
Kent, D. V. and Carlut, J. (2001) A negative test of orbital control of geomagnetic reversals and excursions. Geophys. Res. Lett., 28, 3561–4.
Meert, J. G., Levashova, N. M., Bazhenov, M. L. and Landing, E. (2016) Rapid changes of magnetic field polarity in the late Ediacaran: linking the Cambrian evolutionary radiation and increased UV-B radiation. Gondwana Res., 34, 149–57.
Mussard, M., Le Hir, G., Fluteau, F., Lefebvre, V. and Goddéris, Y. (2014). Modeling the carbon-sulfate interplays in climate changes related to the emplacement of continental flood basalts. Geol. Soc. Am. Spec. Pap., 505, 339–52.
Thouveny, N., Bourlès, D. L., Saracco, G., Carcaillet, J. T. and Bassinot, F. (2008) Paleoclimatic context of geomagnetic dipole lows and excursions in the Brunhes, clue for an orbital influence on the geodynamo? Earth Planet. Sci. Lett., 275, 269–84.
Tilgner, A. (2007) Kinematic dynamos with precession driven flow in a sphere. Geophys. Astrophys. Fluid Dyn., 101, 19.
Valet, J. P. and Valladas, L. (2010) The Laschamp-Mono lake geomagnetic events and the extinction of Neanderthal: a causal link or a coincidence? Quat. Sci. Rev., 29, 3887–93.
Van Allen, J. A. and Frank, L. A. (1959) Radiation around the Earth to a radial distance of 107,400 km. Nature, 183, 430–34.
Wei, Y., Pu, Z., Zong, Q., Wan, W., Ren, Z., Fraenz, M. and Hong, M. (2014) Oxygen escape from the Earth during geomagnetic reversals: implications to mass extinction. Earth Planet. Sci. Lett., 394, 94–8.
Worm, H. U. (1997) A link between geomagnetic reversals and events and glaciations. Earth Planet. Sci. Lett., 147, 5567.
Wu, C. C. and Roberts, P. H. (2008) A precessionally-driven dynamo in a plane layer. Geophys. Astrophys. Fluid. Dyn., 102, 119.