Skip to main content Accessibility help
  • Print publication year: 2019
  • Online publication date: October 2019

4 - Geomagnetic Field Sources

from Part II - Geomagnetic Field


The geomagnetic field extending outward beyond Earth’s solid surface encounters a strong, highly variable flow of hot ionized gas from the Sun called the solar wind. This compresses and shapes the dayside of Earth’s magnetic field. On the night (anti-sunward) side of the Earth, the magnetic field gets drawn out into a long, comet-like tail. Present evidence is that this magnetotail region extends to hundreds or thousands of Earth radii. Research over the past six decades has revealed much about the various current systems that shape the Earth’s "magnetosphere". This chapter is devoted to providing a broad overview of the individual current systems that, acting together, generate the complex and fascinating geomagnetic field.

Related content

Powered by UNSILO
Baker, D. N. (2000) Effects of the Sun on the Earth’s environment, J. Atmos. Sol. Terr. Phys., 62, 1669–81.
Baker, D. N., et al. (1996) The neutral line model of substorms: Past results and present view, J. Geophys. Rev., 101, 12,99513,010.
Birkeland, K. (1908) The Norwegian Aurora Polaris Expedition, 1902–1903, H. Aschehoug, Christania, Norvège.
Campbell, W. N. (2003) Introduction to Geomagnetic Fields, 2nd edn., Cambridge University Press, Cambridge.
Chapman, S. and Bartels, J. (1940) Geomagnetism, Oxford University Press, New York.
Chapman, S. and Ferraro, V. C. A. (1931) New theory of magnetic storms, Terr. Magn. Atm. Elec., 36, 77.
Cole, K. D. (1966) Magnetic storms and associated phenomena, Space Sci. Rev., 5, 699770.
Cowley, S. W. H. (1991) The structure and length of tail-associated phenomena in the solar wind downstream from the Earth, Planet. Space Sci., 39, 1039–43.
Dungey, J. W. (1961) Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6, 47.
Gauss, C. F. (1839) Allgemeine Theorie des Erdmagnetismus, in Resultate aus den Beobachtungen des magnetischen Vereins im Jahre 1838, Ed. Gauss, C. F. and Weber, W., 157, Weidmannsche Buchhandlung, Leipzig.
Glassmeier, K.-H. T. and Tsurutani, B. (2014). Carl Friedrich Gauss – General Theory of Terrestrial Magnetism – a revised translation of the German text. Hist. Geor. Space Sci., 5, 11-62. doi: 10.5194/hgss-5-11-2014.
Glatzmaier, G. A. and Roberts, P. H. (1995) A three-dimensional self-consistent computer simulation of a geomagnetic field reversal, Nature, 377, 203–9.
Hultqvist, B., Oieroset, M., Paschmann, G. and Treumann, R. (Eds.) (1999) Magnetospheric Plasma Sources and Losses, Space Science Series 6, Kluwer Academic, Dordrecht.
Iijima, T. and Potemra, T. A. (1978) Large scale characteristics of field-aligned currents associated with substorms, J. Geophys. Res., 83, 599615.
Jacobs, J. A. (Ed.) (1987) Geomagnetism, vols. 1 and 2, Academic Press, New York.
Jacobs, J. A. (Ed.) (1991) Geomagnetism, vol. 4, Academic Press, New York.
Sibeck, D. G. and Lin, R.-Q. (2014) Size and shape of the distant magnetotail, J. Geophys. Res., 119, 1028–43.
Tsyganenko, N. A. (1989) Magnetospheric magnetic field with a warped tail current sheet. Planet. Space Sci., 73, 5.
Tsyganenko, N. A. and Stern, D. P. (1996) Modeling the global magnetic field of the large scale Birkeland current system, J. Geophys. Res., 101, 187–98.