Skip to main content Accessibility help
×
Home
  • Print publication year: 2019
  • Online publication date: August 2019

1 - Introduction to Geologic Structural Discontinuities

  • View HTML
    • Send chapter to Kindle

      To send this chapter to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Available formats
      ×

      Send chapter to Dropbox

      To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

      Available formats
      ×

      Send chapter to Google Drive

      To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

      Available formats
      ×

Summary

Planar breaks in rock are one of the most spectacular, fascinating, and important features in structural geology. Joints control the course of river systems, the extrusion of lava flows and fire fountains, and modulate groundwater flow. Joints and faults are associated with bending of rock strata to form spectacular folds as seen in orogenic belts from British Columbia to Iran, as well as seismogenic deformation of continental and oceanic lithospheres. Anticracks akin to stylolites accommodate significant volumetric strain in the fluid-saturated crust. Deformation bands are pervasive in soft sediments and in porous rocks such as sandstones and carbonates, providing nuclei for fault formation on the continents. Faults also form the boundaries of the large tectonic plates that produce earthquakes—and related phenomena such as mudslides in densely populated regions such as San Francisco, California—in response to tectonic forces and heat transport deep within the Earth. Faults, joints, and deformation bands have been recognized on other planets, satellites, and/or asteroids within our Solar System, attesting to their continuing intrigue and importance to planetary structural geology and tectonics.