Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T16:26:08.269Z Has data issue: false hasContentIssue false

22 - Inducible CRISPR-based Genome Editing for the Characterization of Cancer Genes

from Part V - Genome Editing in Disease Biology

Published online by Cambridge University Press:  30 July 2018

Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Genome Editing and Engineering
From TALENs, ZFNs and CRISPRs to Molecular Surgery
, pp. 337 - 357
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banaszynski, LA, Chen, LC, Maynard-Smith, LA, Ooi, AG, Wandless, TJ. 2006. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126(5): 9951004.CrossRefGoogle ScholarPubMed
Banaszynski, LA, Sellmyer, MA, Contag, CH, Wandless, TJ, Thorne, SH. 2008. Chemical control of protein stability and function in living mice. Nat Med 14(10): 11231127.CrossRefGoogle ScholarPubMed
Bell, JB, Podetz-Pedersen, KM, Aronovich, EL, et al. 2007. Preferential delivery of the Sleeping Beauty transposon system to livers of mice by hydrodynamic injection. Nat Protoc 2(12): 31533165.CrossRefGoogle ScholarPubMed
Boj, SF, Hwang, CI, Baker, LA, et al. 2015. Organoid models of human and mouse ductal pancreatic cancer. Cell 160(1–2): 324338.CrossRefGoogle ScholarPubMed
Bonger, KM, Chen, LC, Liu, CW, Wandless, TJ. 2011. Small-molecule displacement of a cryptic degron causes conditional protein degradation. Nat Chem Biol 7(8): 531537.CrossRefGoogle ScholarPubMed
Chavez, A, Scheiman, J, Vora, S, et al. 2015. Highly efficient Cas9-mediated transcriptional programming. Nat Methods 12(4): 326328.CrossRefGoogle ScholarPubMed
Clackson, T, Yang, W, Rozamus, LW, et al. 1998. Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proc Natl Acad Sci USA 95(18): 1043710442.CrossRefGoogle ScholarPubMed
Davis, KM, Pattanayak, V, Thompson, DB, Zuris, JA, Liu, DR. 2015. Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat Chem Biol 11(5): 316318.CrossRefGoogle ScholarPubMed
Doudna, JA, Charpentier, E. 2014. Genome editing: the new frontier of genome engineering with CRISPR-Cas9. Science 346(6213): 1258096.CrossRefGoogle ScholarPubMed
Doudna, JA, Sontheimer, EJ. 2014. Methods in enzymology. The use of CRISPR/Cas9, ZFNs, and TALENs in generating site-specific genome alterations. Preface. Methods Enzymol 546: xixxx.CrossRefGoogle ScholarPubMed
Dow, LE, Fisher, J, O’Rourke, KP, et al. 2015. Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol 33(4): 390394.CrossRefGoogle ScholarPubMed
Dow, LE, Lowe, SW. 2012.Life in the fast lane: mammalian disease models in the genomics era. Cell 148(6): 10991109.CrossRefGoogle ScholarPubMed
DuPage, M, Dooley, AL, Jacks, T. 2009. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc 4(7): 10641072.CrossRefGoogle ScholarPubMed
Dutta, A, Stillman, B. 1992. cdc2 family kinases phosphorylate a human cell DNA replication factor, RPA, and activate DNA replication. EMBO J 11(6): 21892199.CrossRefGoogle ScholarPubMed
Hanahan, D, Weinberg, RA. 2011. Hallmarks of cancer: the next generation. Cell 144(5): 646674.CrossRefGoogle ScholarPubMed
Iwamoto, M, Bjorklund, T, Lundberg, C, Kirik, D, Wandless, TJ. 2010. A general chemical method to regulate protein stability in the mammalian central nervous system. Chem Biol 17(9): 981988.CrossRefGoogle ScholarPubMed
Jinek, M, Chylinski, K, Fonfara, I, et al. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096): 816821.CrossRefGoogle ScholarPubMed
Konermann, S, Brigham, MD, Trevino, AE, et al. 2015. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517(7536): 583588.CrossRefGoogle ScholarPubMed
Maddalo, D, Manchado, E, Concepcion, CP, et al. 2014. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516(7531): 423427.CrossRefGoogle ScholarPubMed
McJunkin, K, Mazurek, A, Premsrirut, PK, et al. 2011. Reversible suppression of an essential gene in adult mice using transgenic RNA interference. Proc Natl Acad Sci USA 108(17): 71137118.CrossRefGoogle ScholarPubMed
Nihongaki, Y, Kawano, F, Nakajima, T, Sato, M. 2015. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat Biotechnol 33(7): 755760.CrossRefGoogle ScholarPubMed
Platt, RJ, Chen, S, Zhou, Y, et al. 2014. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159(2): 440455.CrossRefGoogle ScholarPubMed
Premsrirut, PK, Dow, LE, Kim, SY, et al. 2011. A rapid and scalable system for studying gene function in mice using conditional RNA interference. Cell 145(1): 145158.CrossRefGoogle ScholarPubMed
Senturk, S, Shirole, NH, Nowak, DG, et al. 2017. Rapid and tunable method to temporally control gene editing based on conditional Cas9 stabilization. Nat Commun 8: 14370.CrossRefGoogle ScholarPubMed
Shi, J, Wang, E, Milazzo, JP, et al. 2015. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol 33(6): 661667.CrossRefGoogle ScholarPubMed
Singh, P, Schimenti, JC, Bolcun-Filas, E. 2015. A mouse geneticist’s practical guide to CRISPR applications. Genetics 199(1): 115.CrossRefGoogle ScholarPubMed
Sternberg, SH, Redding, S, Jinek, M, Greene, EC, Doudna, JA. 2014. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507(7490): 6267.CrossRefGoogle ScholarPubMed
Swiech, L, Heidenreich, M, Banerjee, A, et al. 2015. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 33(1): 102106.CrossRefGoogle ScholarPubMed
Tyner, SD, Venkatachalam, S, Choi, J, et al. 2002. p53 mutant mice that display early ageing-associated phenotypes. Nature 415(6867): 4553.CrossRefGoogle ScholarPubMed
Utomo, AR, Nikitin, AY, Lee, WH. 1999. Temporal, spatial, and cell type-specific control of Cre-mediated DNA recombination in transgenic mice. Nat Biotechnol 17(11): 10911096.CrossRefGoogle ScholarPubMed
Ventura, A, Kirsch, DG, McLaughlin, ME, et al. 2007. Restoration of p53 function leads to tumour regression in vivo. Nature 445(7128): 661665.CrossRefGoogle ScholarPubMed
Wang, T, Birsoy, K, Hughes, NW, et al. 2015. Identification and characterization of essential genes in the human genome. Science 350(6264): 10961101.CrossRefGoogle ScholarPubMed
Wright, AV, Nunez, JK, Doudna, JA. 2016. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164(1–2): 2944.CrossRefGoogle Scholar
Wright, AV, Sternberg, SH, Taylor, DW, et al. 2015. Rational design of a split-Cas9 enzyme complex. Proc Natl Acad Sci USA 112(10): 29842989.CrossRefGoogle ScholarPubMed
Xue, W, Chen, S, Yin, H, et al. 2014. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514(7522): 380384.CrossRefGoogle ScholarPubMed
Yang, H, Wang, H, Jaenisch, R. 2014. Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat Protoc 9(8): 19561968.CrossRefGoogle ScholarPubMed
Yang, H, Wang, H, Shivalila, CS, et al. 2013. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154(6): 13701379.CrossRefGoogle ScholarPubMed
Yao, Z, Fenoglio, S, Gao, DC, et al. 2010. TGF-beta IL-6 axis mediates selective and adaptive mechanisms of resistance to molecular targeted therapy in lung cancer. Proc Natl Acad Sci USA 107(35): 1553515540.CrossRefGoogle ScholarPubMed
Zou, L, Elledge, SJ. 2003. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300(5625): 15421548.CrossRefGoogle ScholarPubMed
Zou, Y, Liu, Y, Wu, X, Shell, SM. 2006. Functions of human replication protein A (RPA): from DNA replication to DNA damage and stress responses. J Cell Physiol 208(2): 267273.CrossRefGoogle ScholarPubMed
Zuber, J, Shi, J, Wang, E, et al. 2011. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478(7370): 524528.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×