Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T05:48:06.082Z Has data issue: false hasContentIssue false

6 - Pharmacogenomics and Infectious Diseases in Africa

An Evolutionary Perspective

Published online by Cambridge University Press:  02 December 2019

Muntaser E. Ibrahim
Affiliation:
University of Khartoum
Charles N. Rotimi
Affiliation:
National Human Genome Research Institute/NIH
Get access

Summary

Modern humans evolved in Africa approximately 200,000 years ago (Campbell and Tishkoff 2010). As groups migrated out of Africa they underwent bottlenecks leading to sharp reductions in population size and genetic diversity (Amos and Hoffman 2010; Harpending and Rogers 2000; Ramachandran et al. 2005). To this day, African populations retain the most genetic diversity globally (Auton et al. 2015). In order to survive both within and out of Africa, early human populations had to adapt to their novel environments, including new food resources, colder climates, higher altitudes, and, especially, infectious diseases (Balaresque et al. 2007; Fumagalli et al. 2011). These adaptive requirements, facilitated by natural selection, led to an increased frequency of alleles that were beneficial in that environment. Due to the fact that these adaptive requirements were driven by local environmental pressures, some of these evolutionarily advantageous alleles display geographic and ancestral specificity, as observed in the genomes of present-day humans (Fumagalli et al. 2011).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abayomi, A, Christoffels, A, Grewal, R, et al. (2013). Challenges of biobanking in South Africa to facilitate indigenous research in an environment burdened with human immunodeficiency virus, tuberculosis, and emerging noncommunicable diseases. Biopreserv Biobanking 11(6): 347354.Google Scholar
Abel, L and Demenais, F (1988). Detection of major genes for susceptibility to leprosy and its subtypes in a Caribbean island: Desirade island. Am J Hum Genet 42(2): 256266.Google Scholar
Abel, L, Demenais, F, Prata, A, et al. (1991). Evidence for the segregation of a major gene in human susceptibility/resistance to infection by Schistosoma mansoni. Am J Hum Genet 48(5): 959970.Google Scholar
Abel, L, Cot, M, Mulder, L, et al. (1992). Segregation analysis detects a major gene controlling blood infection levels in human malaria. Am J Hum Genet 50(6): 13081317.Google Scholar
Abel, L, Vu, DL, Oberti, J, et al. (1995). Complex segregation analysis of leprosy in Southern Vietnam. Genet Epidemiol 12(1): 6382.CrossRefGoogle ScholarPubMed
Aceti, A, Gianserra, L, Lambiase, L, et al. (2015). Pharmacogenetics as a tool to tailor antiretroviral therapy: a review. World J Virol 4(43): 198208.Google Scholar
Adeyemo, A and Rotimi, C (2009). Genetic variants associated with complex human diseases show wide variation across multiple populations. Public Health Genomics 13(2): 7279.Google Scholar
Adeyemo, A and Rotimi, C (2014). What does genomic medicine mean for diverse populations? Mol Genet Genomic Med 2(1): 36.CrossRefGoogle ScholarPubMed
Adeyemo, AA, Tekola-Ayele, F, Doumatey, AP, et al. (2015). Evaluation of genome wide association study associated type 2 diabetes susceptibility loci in Sub Saharan Africans. Front Genet 6(355). DOI: 10.3389/fgene.2015.00335.Google Scholar
Adoga, MP, Fatumo, S, and Agwale, SM (2014). H3Africa: a tipping point for a revolution in bioinformatics, genomics and health research in Africa. Source Code Biol Med 9(1): 10.Google Scholar
Aidoo, M, Terlouw, DJ, Kolczak, MS, et al. (2002). Protective effects of the sickle cell gene against malaria morbidity and mortality. The Lancet 359: 13111312.Google Scholar
Aklillu, E, Persson, I, Bertilsson, L, et al. (1996). Frequent distribution of ultrarapid metabolizers of debrisoquine in an Ethiopian population carrying duplicated and multiduplicated functional CYP2D6 alleles. J Pharmacol Exp Ther 278(1): 441446.Google Scholar
Alcaïs, A, Abel, L, David, C, et al. (1997). Evidence for a major gene controlling susceptibility to tegumentary leishmaniasis in a recently exposed Bolivian population. Am J Hum Genet 61(4): 968979.Google Scholar
Alcais, A, Alter, A, Antoni, G, et al. (2007). Stepwise replication identifies a low-producing lymphotoxin-alpha allele as a major risk factor for early-onset leprosy. Nat Genet 39(4): 517522.Google Scholar
Allison, AC (1954). Protection afforded by sickle-cell trait against subtertian malarial infection. BMJ 1: 290294.Google Scholar
Alving, AS, Carson, PE, Flanagan, CL, and Ickes, CE (1956). Enzymatic deficiency in primaquine-sensitive erythrocytes. Science 124(3220): 484485.Google ScholarPubMed
Amos, W and Hoffman, JI (2010). Evidence that two main bottleneck events shaped modern human genetic diversity. Proc Roy Soc B Biol Sci 277(1678): 131137.Google Scholar
Anberbir, Y (2015). Ethiopia: authority issues red alert on codeine drug. Available at: http://allafrica.com/stories/201511241318.html.Google Scholar
Andersen, KG, Shylakhter, I, Tabrizi, S, et al. (2012). Genome-wide scans provide evidence for positive selection of genes implicated in Lassa fever. Philos Trans R Soc London, Ser B 367(1590): 868877.Google Scholar
Arimany-Nardi, C, Koepsell, H, and Pastor-Anglada, M (2015). Role of SLC22A1 polymorphic variants in drug disposition, therapeutic responses, and drug–drug interactions. Pharmacogenomics J 15(6): 473487.Google Scholar
Atkin, S, Anaraki, S, Gothard, P, et al. (2009). The first case of Lassa fever imported from Mali to the United Kingdom, February 2009. Euro Surveillance: Bulletin Europeen sur les maladies transmissibles 14(10): 1214.Google Scholar
Auton, A, Brooks, LD, Durbin, RM, et al. (2015). A global reference for human genetic variation. Nature 526(7571): 6874.Google Scholar
Baghdadi, JE, Orlova, M, Alter, A, et al. (2006). An autosomal dominant major gene confers predisposition to pulmonary tuberculosis in adults. J Exp Med 203(7): 16791684.CrossRefGoogle ScholarPubMed
Bains, RK (2013). African variation at cytochrome P450 genes: evolutionary aspects and the implications for the treatment of infectious diseases. Evol Med Pub Health 2013(1): 118134.Google Scholar
Balaresque, PL, Ballereau, SJ, and Jobling, MA (2007). Challenges in human genetic diversity: demographic history and adaptation. Hum Mol Genet 16(R2): 134139.Google Scholar
Barchi, F, Matlhagela, K, Jones, N, et al. (2015). “The keeping is the problem”: a qualitative study of IRB-member perspectives in Botswana on the collection, use, and storage of human biological samples for research. BMC Medical Ethics 16(1): 54.Google Scholar
Behar, D, Kedem, E, Rosset, S, et al. (2011). Absence of APOL1 risk variants protects against HIV-associated nephropathy in the Ethiopian population. Am J Nephrol 34(5): 452459.CrossRefGoogle ScholarPubMed
Bekker, LG, Venter, F, Cohen, K-G, et al. (2014). Provision of antiretroviral therapy in South Africa: the nuts and bolts. Antiviral Therapy 19(Suppl. 3): 105116.Google Scholar
Bellamy, R, Beyers, N, McAdam, KP, et al. (2000). Genetic susceptibility to tuberculosis in Africans: a genome-wide scan. PNAS 97(14): 80058009.Google Scholar
Bernal, ML, Sinues, B, Johansson, I, et al. (1999). Ten percent of North Spanish individuals carry duplicated or triplicated CYP2D6 genes associated with ultrarapid metabolism of debrisoquine. Pharmacogenet Genomics 9(5): 657660.Google Scholar
Bharti, D, Kumar, A, Mahla, RS, et al. (2015). Low prevalence of CCR5-Delta32, CCR2-64I and SDF1-3′A alleles in the Baiga and Gond tribes of Central India. Springerplus 4: 451.Google Scholar
Bienzle, U, Ayeni, O, Lucas, AO, et al. (1972). Glucose-6-phosphate dehydrogenase and malaria. The Lancet 299(7742): 107110.Google Scholar
Bowen, MD, Rollin, PE, Ksiazek, TG, et al. (2000). Genetic diversity among Lassa virus strains. J Virol 74(15): 69927004.Google Scholar
Bradford, LD (2002). CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 3(2): 229243.Google Scholar
Buckley, SM and Casals, J (1970). Lassa fever, a new virus disease of man from West Africa. Am J Trop Med Hyg 19(4): 680691.Google Scholar
Burchard, EG, Oh, SS, Foreman, MG, Celedón, JC, et al. (2015). Moving toward true inclusion of racial/ethnic minorities in federally funded studies: a key step for achieving respiratory health equality in the United States. Am J Resp Crit Care Med 191(5): 514521.Google Scholar
Butterweck, V and Derendorf, H (2008). Potential of pharmacokinetic profiling for detecting herbal interactions with drugs. Clin Pharmacokinet 47(6): 383397.Google Scholar
Campbell, MC and Tishkoff, SA (2010). The evolution of human genetic and phenotypic variation in Africa. Curr Biol 20(4): R166R173.Google Scholar
Cao, W, Henry, MD, Borrow, P, et al. (1998). Identification of alpha-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science 282(5396): 20792081.Google Scholar
Capewell, P, Veitch, NJ, Turner, CM, et al. (2011). Differences between Trypanosoma brucei gambiense groups 1 and 2 in their resistance to killing by trypanolytic factor 1. PLoS Negl Trop Dis 5(9). DOI: 10.1371/journal.pntd.0001287.Google Scholar
Capewell, P, Cooper, A, Clucas, C, et al. (2015). A co-evolutionary arms race: trypanosomes shaping the human genome, humans shaping the trypanosome genome. Parasitology 142: 108119.Google Scholar
Carlson, CS, Matise, TC, North, KE, et al. (2013). Generalization and dilution of association results from European GWAS in populations of non-European ancestry: the PAGE Study. PLoS Biology 11(9). DOI: 10.1371/journal.pbio.1001661.Google Scholar
Casanova, J-L (2015). Human genetic basis of interindividual variability in the course of infection. PNAS 112(51): E7118E7127.CrossRefGoogle ScholarPubMed
Cashdan, E (2001). Ethnic diversity and its environmental determinants: effects of climate, pathogens, and habitat diversity. Amer Anthrop 103(4): 968991.Google Scholar
Cavasini, CE, Mattos, LC, Couto, AA, et al. (2007). Plasmodium vivax infection among Duffy antigen-negative individuals from the Brazilian Amazon region: an exception? Trans Roy Soc Trop Med Hyg 101(10): 10421044.Google Scholar
Chanda-Kapata, P, Kapata, N, Moraes, AN, et al. (2015). Genomic research in Zambia: confronting the ethics, policy and regulatory frontiers in the 21st century. Health Res Policy Syst 13(1): 60.Google Scholar
Chapman, SJ and Hill, AV (2012). Human genetic susceptibility to infectious disease. Nat Rev Genet 13(3): 175188.CrossRefGoogle ScholarPubMed
Checchi, F, Filipe, JA, Haydon, DT, et al. (2008). Estimates of the duration of the early and late stage of gambiense sleeping sickness. BMC Infectious Diseases 8(1): 16.Google Scholar
Checchi, F, Funk, S, Chandramohan, D, et al. (2015). Updated estimate of the duration of the meningo-encephalitic stage in gambiense human African trypanosomiasis. BMC Res Notes 8(1): 292.Google Scholar
Chen, H and Pang, T (2015). A call for global governance of biobanks. Bull WHO 93(2): 113117.Google Scholar
Chen, MS Jr, Lara, PN, Dang, JH, et al. (2014). Twenty years post-NIH Revitalization Act: renewing the case for enhancing minority participation in cancer clinical trials. Cancer 120(7): 10911096.CrossRefGoogle ScholarPubMed
Chen, R, Corona, E, Sikora, M, et al. (2012). Type 2 diabetes risk alleles demonstrate extreme directional differentiation among human populations, compared to other diseases. PLoS Genet 8(4). DOI: 10.1371/journal.pgen.1002621.CrossRefGoogle ScholarPubMed
Cheung, KH, Osier, MV, Kidd, JR, et al. (2000). ALFRED: an allele frequency database for diverse populations and DNA polymorphisms. Nucleic Acids Res 28(1): 361363.Google Scholar
Chigutsa, E, Visser, ME, Swart, EC, et al. (2011). The SLCO1B1 rs4149032 polymorphism is highly prevalent in South Africans and is associated with reduced rifampin concentrations: dosing implications. Antimicrob Agents Chemother 55(9): 41224127.Google Scholar
Cobat, A, Gallant, CJ, Simkin, L, et al. (2009). Two loci control tuberculin skin test reactivity in an area hyperendemic for tuberculosis. J Exp Med 206(12): 25832591.CrossRefGoogle Scholar
Crocker, PR, Paulson, JC, and Varki, A (2007). Siglecs and their roles in the immune system. Nat Rev Immunol 7(4): 255266.Google Scholar
Dandara, C, Masimirembwa, CM, Magimba, A, et al. (2003). Arylamine N-acetyltransferase (NAT2) genotypes in Africans: the identification of a new allele with nucleotide changes 481C>T and 590G>A. Pharmacogenetics 13(1): 5558.Google Scholar
Dandara, C, Swart, M, Mpeta, B, et al. (2014a). Cytochrome P450 pharmacogenetics in African populations: implications for public health. Expert Opin Drug Metab Toxicol 10(6): 769785.CrossRefGoogle ScholarPubMed
Dandara, C, Huzair, F, Borda-Rodriguez, A, et al. (2014b). H3Africa and the African life sciences ecosystem: building sustainable innovation. OMICS 18(12): 733739.Google Scholar
Dessein, AJ, Hillaire, D, Elwali, NE, et al. (1999). Severe hepatic fibrosis in Schistosoma mansoni infection is controlled by a major locus that is closely linked to the interferon-gamma receptor gene. Am J Hum Genet 65(3): 709721.Google Scholar
Domingo, GJ, Satyagraha, AW, Anvikar, A, et al. (2013). G6PD testing in support of treatment and elimination of malaria: recommendations for evaluation of G6PD tests. Malar J 12(391): 112.Google Scholar
Dubaniewicz, A, Lewko, B, Moszkowska, G, et al. (2000). Molecular subtypes of the HLA-DR antigens in pulmonary tuberculosis. Int J Infect Dis 4(3): 129133.CrossRefGoogle ScholarPubMed
Eugen-Olsen, J, Iversen, AK, Garred, P, et al. (1997). Heterozygosity for a deletion in the CKR-5 gene leads to prolonged AIDS-free survival and slower CD4 T-cell decline in a cohort of HIV-seropositive individuals. AIDS 11: 305310.Google Scholar
Evans, DA, Manley, KA, and McKusick, VA (1960). Genetic control of isoniazid metabolism in man. BMJ 2(5197): 485491.Google Scholar
Faucher, JF, Aubouy, A, Adeothy, A, et al. (2009). Comparison of sulfadoxine-pyrimethamine, unsupervised artemether-lumefantrine, and unsupervised artesunate-amodiaquine fixed-dose formulation for uncomplicated Plasmodium falciparum malaria in Benin: a randomized effectiveness noninferiority trial. J Infect Dis 200(1): 5765.Google Scholar
FDA (2013). FDA drug safety communication. Safety announcement. Available at: www.fda.gov/Drugs/DrugSafety/ucm376389.htm.Google Scholar
Fichet-Calvet, E and Rogers, DJ (2009). Risk maps of Lassa fever in West Africa. PLoS NeglTrop Dis 3(3). DOI: 10.1371/journal.pntd.0000388.Google Scholar
Frame, JD, Baldwin, JM Jr, Gocke, DJ, et al. (1970). Lassa fever, a new virus disease of man from West Africa. Am J Trop Med Hyg 19(4): 670676.Google Scholar
Franco, JR, Simarro, PP, Diarra, A, et al. (2014). Epidemiology of human African trypanosomiasis. Clin Epidemiol 6(1): 257275.Google Scholar
Freedman, BI, Langefeld, CD, Andringa, KK, et al. (2014). End-stage renal disease in African Americans with lupus nephritis is associated with APOL1. Arthritis Rheumatol 66(2): 390396.Google Scholar
Fumagalli, M, Cagliani, R, Pozzoli, U, et al. (2009). Widespread balancing selection and pathogen-driven selection at blood group antigen genes. Genome Res 19(2): 199212.Google Scholar
Fumagalli, M, Cagliani, R, Riva, S, et al. (2010a). Population genetics of IFIH1: ancient population structure, local selection, and implications for susceptibility to type 1 diabetes. Mol Biol Evol 27(11): 25552566.CrossRefGoogle ScholarPubMed
Fumagalli, M, Pozzoli, U, Cagliani, R, et al. (2010b). Genome-wide identification of susceptibility alleles for viral infections through a population genetics approach. PLoS Genet 6(2). DOI: 10.1371/journal.pgen.1000849.Google Scholar
Fumagalli, M, Sironi, M, Pozzoli, U, et al. (2011). Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution. PLoS Genet 7(11): e1002355.Google Scholar
Galvani, AP and Slatkin, M (2003). Evaluating plague and smallpox as historical selective pressures for the CCR5-Delta 32 HIV-resistance allele. PNAS 100(25): 1527615279.Google Scholar
Ge, D, Fellay, J, Thompson, AJ, et al. (2009). Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461(7262): 399401.CrossRefGoogle ScholarPubMed
Genovese, G, Friedman, DJ, Ross, MD, et al. (2010). Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329(5993): 841845.Google Scholar
Gething, PW, Elyazar, IR, Moyes, CL, et al. (2012). A long neglected world malaria map: Plasmodium vivax endemicity in 2010. PLoS Negl Trop Dis 6(9). DOI: 10.1371/journal.pntd.0001814.Google Scholar
Ginsburg, GS and Willard, HF (2009). Genomic and personalized medicine: foundations and applications. Translational Res 154(6): 277287.CrossRefGoogle ScholarPubMed
Gonzalez, E, Bamshad, M, Sato, N, et al. (1999). Race-specific HIV-1 disease-modifying effects associated with CCR5 haplotypes. PNAS 96(21): 1200412009.CrossRefGoogle ScholarPubMed
Gorboulev, V, Ulzheimer, JC, Akhoundova, A, et al. (1997). Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol 16(7): 871881.Google Scholar
Griese, EU, Asante-Poku, S, Ofori-Adjei, D, et al. (1999). Analysis of the CYP2D6 gene mutations and their consequences for enzyme function in a West African population. Pharmacogenetics 9(6): 715723.Google Scholar
Guerra, CA, Gikandi, PW, Tatem, AJ, et al. (2008). The limits and intensity of Plasmodium falciparum transmission: implications for malaria control and elimination worldwide. PLoS Medicine 5(2): 300311.CrossRefGoogle Scholar
Günther, S, Emmerich, P, Laue, T, et al. (2000). Imported Lassa fever in Germany: molecular characterization of a new Lassa virus strain. Emerg Infect Dis 6(5): 466476.Google Scholar
Gurdasani, D, Carstensen, T, Tekola-Ayele, F, et al. (2015). The African Genome Variation Project shapes medical genetics in Africa. Nature 517(7534): 327332.Google Scholar
Habtewold, A, Amogne, W, Makonnen, E, et al. (2011). Long-term effect of efavirenz autoinduction on plasma/peripheral blood mononuclear cell drug exposure and CD4 count is influenced by UGT2B7 and CYP2B6 genotypes among HIV patients. J Antimicrob Chemother 66(10): 23502361.Google Scholar
Harpending, H and Rogers, A (2000). Genetic perspectives on human origins and differentiation. Annu Rev Genomics Hum Genet 1: 361385.Google Scholar
Hattori, M (2004). International Human Genome Sequencing Consortium: finishing the euchromatic sequence of the human genome. Nature 431(7011): 931945.Google Scholar
Hetherington, S, Hughes, AR, Mosteller, M, et al. (2002). Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet 359(9312): 11211122.Google Scholar
Hill, AV, Allsopp, CE, Kwiatkowski, D, et al. (1991). Common west African HLA antigens are associated with protection from severe malaria. Nature 352(6336): 595600.Google Scholar
Hill, CM and Littman, DR (1996). Natural resistance to HIV? Nature 382(6593): 668669.Google Scholar
Hindorff, LA, Sethupathy, P, Junkins, HA, et al. (2009). Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. PNAS 106(23): 93629367.Google Scholar
Howes, RE, Patil, AP, Piel, FB, et al. (2011). The global distribution of the Duffy blood group. Nature Comm 2: 266.Google Scholar
Howes, RE, Piel, FB, Patil, AP, et al. (2012). G6PD deficiency prevalence and estimates of affected populations in malaria endemic countries: a geostatistical model-based map. PLoS Medicine 9(11). DOI: 10.1371/journal.pmed.1001339.Google Scholar
Howes, RE, Battle, KE, Satyagraha, AW, et al. (2013). G6PD deficiency: global distribution, genetic variants and primaquine therapy. Adv Parasitol. DOI: 10.1016/B978-0-12-407826-0.00004-7.Google Scholar
Howes, RE, Reiner, RC Jr, Battle, KE, et al. (2015). Plasmodium vivax transmission in Africa. PLoS Negl Trop Dis 9(11): 127.Google Scholar
Huang, Y, Paxton, WA, Wolinsky, SM, et al. (1996). The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med 2(11): 12401243.Google Scholar
Hughes, HB, Biehl, JP, Jones, AP, et al. (1954). Metabolism of isoniazid in man as related to the occurrence of peripheral neuritis. Am Rev Tuberculosis 70(2): 266273.Google Scholar
Hummel, S, Schmidt, D, Kremeyer, B, et al. (2005). Detection of the CCR5-Delta32 HIV resistance gene in Bronze Age skeletons. Genes Immun 6(4): 371374.Google Scholar
Hyde, JE (2007). Drug-resistant malaria: an insight. The FEBS Journal 274(18): 46884698.Google Scholar
Ito, K, Bick, AG, Flannick, J, et al. (2014). Increased burden of cardiovascular disease in carriers of APOL1 genetic variants. Circulation Res 114(5): 845850.Google Scholar
Jao, I, Kombe, F, Mwalukore, S, et al. (2015). Research stakeholders’ views on benefits and challenges for public health research data sharing in Kenya: the importance of trust and social relations. PLoS One 10(9): 118.Google Scholar
Johnson, JA, Gong, L, Whirl-Carrillo, M, et al. (2011). Clinical Pharmacogenetics Implementation Consortium guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin Pharmacol Therapeut 90(4): 625629.Google Scholar
Kalow, W and Gunn, DR (1959). Some statistical data on atypical cholinesterase of human serum. Ann Hum Genet 23(3): 239250.Google Scholar
Kalow, W and Staron, N (1957). On distribution and inheritance of atypical forms of human serum cholinesterase, as indicated by dibucaine numbers. Can J Biochem Physiol 35(12): 13051320.Google Scholar
Kasembeli, AN, Duarte, R, Ramsay, M, et al. (2015). APOL1 risk variants are strongly associated with HIV-associated nephropathy in Black South Africans. J Am Soc Nephrol 26(11): 28822990.Google Scholar
Kerb, R, Fux, R, Mörike, K, et al. (2009). Pharmacogenetics of antimalarial drugs: effect on metabolism and transport. Lancet Infect Dis 9(12): 760774.Google Scholar
Kesselring, AM, Wit, FW, Sabin, CA, et al. (2009). Risk factors for treatment-limiting toxicities in patients starting nevirapine-containing antiretroviral therapy. AIDS 23(13): 16891699.Google Scholar
Kettaneh, A, Seng, L, Tiev, KP, et al. (2006). Human leukocyte antigens and susceptibility to tuberculosis: a meta-analysis of case-control studies. Int J Tuberc Lung Dis 10(7): 717725.Google Scholar
Kindberg, E, Mickiene, A, Ax, C, et al. (2008). A deletion in the chemokine receptor 5 (CCR5) gene is associated with tickborne encephalitis. Int J Infect Dis 197(2): 266269.Google Scholar
Klein, TE, Chang, JT, Cho, MK, et al. (2001). Integrating genotype and phenotype information: an overview of the PharmGKB project. Pharmacogenetics Research Network and Knowledge Base. Pharmacogenomics J 1(3): 167170.Google Scholar
Ko, W, Rajan, P, Gomez, F, et al. (2013). Identifying Darwinian selection acting on different human APOL1 variants among diverse African populations. Am J Hum Genet 93(1): 5466.Google Scholar
Koboldt, DC, Steinberg, KM, Larson, DE, et al. (2013). The next-generation sequencing revolution and its impact on genomics. Cell 155(1): 2738.Google Scholar
Kopp, JB, Nelson, GW, Sampath, K, et al. (2011). APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol 22(11): 21292137.Google Scholar
Kudzi, W, Dodoo, ANO, and Mills, JJ (2010). Genetic polymorphisms in MDR1, CYP3A4 and CYP3A5 genes in a Ghanaian population: a plausible explanation for altered metabolism of ivermectin in humans? BMC Med Genet 11(1): 111.Google Scholar
Kunz, S, Rojek, JM, Kanagawa, M, et al. (2005). Posttranslational modification of alpha-dystroglycan, the cellular receptor for arenaviruses, by the glycosyltransferase LARGE is critical for virus binding. J Virol 79(22): 1428214296.Google Scholar
Lalani, AS, Masters, J, Zeng, W, et al. (1999). Use of chemokine receptors by poxviruses. Science 286(5446): 19681971.Google Scholar
Lamour, SD, Gomez-Romero, M, Vorkas, PA, et al. (2015). Discovery of infection associated metabolic markers in human African trypanosomiasis. PLoS Negl Trop Dis 9(10): 117.Google Scholar
Lander, ES, Linton, LM, Birren, B, et al. (2001). Initial sequencing and analysis of the human genome. Nature 409(6822): 860921.Google Scholar
Langhi, DM and Orlando, Bordin J (2006). Duffy blood group and malaria. Hematology 11(5–6): 389398.Google Scholar
Le, AQ, Taylor, J, Dong, W, et al. (2015). Differential evolution of a CXCR4-using HIV-1 strain in CCR5wt/wt and CCR5∆32/∆32 hosts revealed by longitudinal deep sequencing and phylogenetic reconstruction. Scientific Reports 5: 17607.Google Scholar
Li, J, Zhang, L, Zhou, H, et al. (2011). Global patterns of genetic diversity and signals of natural selection for human ADME genes. Hum Mol Genet 20(3): 528540.Google Scholar
Li, XQ, Bjorkman, A, Andersson, TB, et al. (2002). Amodiaquine clearance and its metabolism to N-desethylamodiaquine is mediated by CYP2C8: a new high affinity and turnover enzyme-specific probe substrate. J Pharmacol Exp Ther 300(2): 399407.Google Scholar
Libert, F, Cochaux, P, Beckman, G, et al. (1998). The deltaCCR5 mutation conferring protection against HIV-1 in Caucasian populations has a single and recent origin in Northeastern Europe. Hum Mol Genet 7(3): 399406.Google Scholar
Lim, JK, Louie, CY, Glaser, C, et al. (2008). Genetic deficiency of chemokine receptor CCR5 is a strong risk factor for symptomatic West Nile virus infection: a meta-analysis of 4 cohorts in the US epidemic. Int J Infect Dis 197(2): 262265.Google Scholar
Liu, R, Paxton, WA, Choe, S, et al. (1996). Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86(3): 367377.Google Scholar
Lombard, Z, Brune, AE, Hoal, EG, et al. (2006). HLA class II disease associations in southern Africa. Tissue Antigens 67(2): 97110.Google Scholar
Lopes, MF, Nunes, M, Henriques-Pons, P, et al. (1999). Increased susceptibility of Fas ligand-deficient gld mice to Trypanosoma cruzi infection due to a Th2-biased host immune response. Eur J Immunol 29(1): 8189.Google Scholar
Lu, Y, Nerurkar, VR, Dashwood, WM, et al. (1999). Genotype and allele frequency of a 32-base pair deletion mutation in the CCR5 gene in various ethnic groups: absence of mutation among Asians and Pacific Islanders. Int J Infect Dis 3(4): 186191.Google Scholar
Lynch, T and Price, A (2007). The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician 76(3): 391396.Google Scholar
Ma, Q and Lu, AY (2011). Pharmacogenetics, pharmacogenomics, and individualized medicine. Pharmacol Rev 63(2): 437459.Google Scholar
MacLean, L, Chisi, JE, Odiit, M, et al. (2004). Severity of human African trypanosomiasis in East Africa is associated with geographic location, parasite genotype, and host inflammatory cytokine response profile. Infect Immun 72(12): 70407044.Google Scholar
Mallal, S, Nolan, D, Witt, C, et al. (2002). Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 359: 727732.Google Scholar
Mangano, VD and Modiano, D (2014). Host genetics and parasitic infections. Clin Microbiol Infect 20(12): 12651275.Google Scholar
Mardis, ER (2013). Next-generation sequencing platforms. Annu Rev Anal Chem 6: 287303.Google Scholar
Martin, MA, Klein, TE, Dong, BJ, et al. (2014). Clinical Pharmacogenetics Implementation Consortium guidelines for HLA-B genotype and abacavir dosing: 2014 update. Pharmacol Ther, Part C 95(5): 499500.Google Scholar
Martins, GA, Petkova, SB, MacHado, FS, et al. (2001). Fas–FasL interaction modulates nitric oxide production in Trypanosoma cruzi-infected mice. Immunology 103(1): 122129.Google Scholar
Martinson, JJ, Chapman, NH, Rees, DC, et al. (1997). Global distribution of the CCR5 gene 32-basepair deletion. Nat Genet 16(1): 100103.Google Scholar
Masimirembwa, C, Hasler, J, Bertilssons, L, et al. (1996). Phenotype and genotype analysis of debrisoquine hydroxylase (CYP2D6) in a black Zimbabwean population: reduced enzyme activity and evaluation of metabolic correlation of CYP2D6 probe drugs. Eur J Clin Pharmacol 51(2): 117122.Google Scholar
Masimirembwa, C, Dandara, C, and Hasler, J (2014). Population Diversity and Pharmacogenomics in Africa. In Padmanabhan, S, ed., Handbook of Pharmacogenomics and Stratified Medicine. Elsevier, pp. 971998.Google Scholar
Matimba, A, Oluka, MN, Ebeshi, BU, et al. (2008). Establishment of a biobank and pharmacogenetics database of African populations. Eur J Hum Genet 16(7): 780783.Google Scholar
McCormick, JB (1986). Clinical, epidemiologic, and therapeutic aspects of Lassa fever. Med Microbiol Immunol 175(2–3): 153155.Google Scholar
McCormick, JB, King, IJ, Webb, PA, et al. (1986). Lassa fever: effective therapy with ribavirin. N Engl J Med 314(1): 2026.Google Scholar
McCutchan, FE (2006). Global epidemiology of HIV. J Med Virol 78(Suppl. 1): S7S12.Google Scholar
Mehlotra, RK, Henry-Halldin, CN, and Zimmerman, PA (2009). Application of pharmacogenomics to malaria: a holistic approach for successful chemotherapy. Pharmacogenomics 10(3): 435449.Google Scholar
Ménard, D, Barnadas, C, Bouchier, C, et al. (2010). Plasmodium vivax clinical malaria is commonly observed in Duffy-negative Malagasy people. PNAS 107(13): 59675971.Google Scholar
Mendis, K, Sina, BJ, Marchesini, P, et al. (2001). The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg 64(1–2 Suppl.): 97106.Google Scholar
Mhandire, D, Lacerda, M, Castel, S, et al. (2015). Effects of CYP2B6 and CYP1A2 genetic variation on nevirapine plasma concentration and pharmacodynamics as measured by CD4 cell count in Zimbabwean HIV-infected patients. OMICS 19(9): 553562.Google Scholar
Michael, NL, Chang, G, Louie, LG, et al. (1997). The role of viral phenotype and CCR-5 gene defects in HIV-1 transmission and disease progression. Nat Med 3(3): 338340.Google Scholar
Miller, LH, Mason, SJ, Clyde, DF, et al. (1976). The resistance factor to Plasmodium vivax in blacks: the Duffy-Blood-Group genotype FyFy. N Engl J Med 295(6): 302304.Google Scholar
Mira, MT, Alcais, A, Nguyen, VT, et al. (2004). Susceptibility to leprosy is associated with PARK2 and PACRG. Nature 427(6975): 636640.Google Scholar
Mishra, G, Kumar, N, Kaur, G, et al. (2014). Distribution of HLA-A, B and DRB1 alleles in Sahariya tribe of North Central India: an association with pulmonary tuberculosis. Infect Genet Evol 22: 175182.Google Scholar
Möller, M and Hoal, EG (2010). Current findings, challenges and novel approaches in human genetic susceptibility to tuberculosis. Tuberculosis 90(2): 7183.Google Scholar
Monath, TP, Newhouse, VF, Kemp, GE, et al. (1974). Lassa virus isolation from Mastomys natalensis rodents during an epidemic in Sierra Leone. Science 185(4147): 263265.Google Scholar
Moodley, K, Sibanda, N, February, K, et al. (2014). “It’s my blood”: ethical complexities in the use, storage and export of biological samples – perspectives from South African research participants. BMC Med Ethics 15(1): 4.Google Scholar
Muenke, M (2013). Individualized genomics and the future of translational medicine. Mol Genet Genomic Med 1(1): 13.Google Scholar
Muir, AJ, Gong, L, Johnson, SG, et al. (2014). Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for IFNL3 (IL28B) genotype and PEG interferon-α-based regimens. Pharmacol Ther, Part C 95(2): 141146.Google Scholar
Mukamal, KJ, Tremaglio, J, Friedman, DJ, et al. (2016). APOL1 genotype, kidney and cardiovascular disease, and death in older adults. Arterioscler Thromb Vasc Biol 36(2): 398403.Google Scholar
Mukonzo, JK, Roshammar, D, Waako, P, et al. (2009). A novel polymorphism in ABCB1 gene, CYP2B6*6 and sex predict single-dose efavirenz population pharmacokinetics in Ugandans. Br J Clin Pharmacol 68(5): 690699.Google Scholar
Mukonzo, JK, Okwera, A, Nakasujja, N, et al. (2013). Influence of efavirenz pharmacokinetics and pharmacogenetics on neuropsychological disorders in Ugandan HIV-positive patients with or without tuberculosis: a prospective cohort study. BMC Infect Dis 13(1): 261.Google Scholar
Mylne, AQ, Pigott, DM, Longbottom, J, et al. (2015). Mapping the zoonotic niche of Lassa fever in Africa. Trans R Soc Trop Med Hyg 109(8): 483492.Google Scholar
National Institute of Health (2010). NIH and Wellcome Trust announce partnership to support population-based genome studies in Africa. Available at: www.nih.gov/news-events/news-releases/nih-wellcome-trust-announce-partnership-support-population-based-genome-studies-africa.Google Scholar
Need, AC and Goldstein, DB (2009). Next generation disparities in human genomics: concerns and remedies. Trends Genet 25(11): 489494.Google Scholar
Nelson, MR, Tipney, H, Painter, JL, et al. (2015). The support of human genetic evidence for approved drug indications. Nat Genet 47(8): 856860.Google Scholar
Ngaimisi, E, Habtewold, A, Minzi, O, et al. (2013). Importance of ethnicity, CYP2B6 and ABCB1 genotype for efavirenz pharmacokinetics and treatment outcomes: a parallel-group prospective cohort study in two Sub-Saharan Africa populations. PLoS One 8(7). DOI: 10.1371/journal.pone.0067946.Google Scholar
Nobelprize.org (2015). The Nobel Prize in Physiology or Medicine 2015. Press Release. Nobel Media AB. Available at: www.nobelprize.org/nobel_prizes/medicine/laureates/2015/press.html.Google Scholar
Novembre, J, Galvani, AP, and Slatkin, M (2005). The geographic spread of the CCR5 Δ32 HIV-resistance allele. PLoS Biol 3(11): 19541962.Google Scholar
Nsanzimana, S, Remera, E, Kanters, S, et al. (2015). Life expectancy among HIV-positive patients in Rwanda: a retrospective observational cohort study. Lancet Global Health 3(3): e169e177.Google Scholar
Ntzani, EE, Liberopoulos, G, Manolio, TA, et al. (2012). Consistency of genome-wide associations across major ancestral groups. Hum Genet 131(7): 10571071.Google Scholar
Nyakutira, C, Roshammar, D, Chigutsa, E, et al. (2008). High prevalence of the CYP2B6 516G→T(*6) variant and effect on the population pharmacokinetics of efavirenz in HIV/AIDS outpatients in Zimbabwe. Eur J Clin Pharmacol 64(4): 357365.Google Scholar
Odiit, M, Kansiime, F, and Enyaru, JC (1997). Duration of symptoms and case fatality of sleeping sickness caused by Trypanosoma brucei rhodesiense in Tororo, Uganda. East Afr Med J 74(12): 792795.Google Scholar
Ogbonna, A and Uneke, CJ (2008). Artemisinin-based combination therapy for uncomplicated malaria in sub-Saharan Africa: the efficacy, safety, resistance and policy implementation since Abuja 2000. Trans R Soc Trop Med Hyg 102(7): 621627.Google Scholar
Oh, SS, Galanter, J, Thakur, N, et al. (2015). Diversity in clinical and biomedical research: a promise yet to be fulfilled. PLoS Med 12(12): 19.Google Scholar
Oluka, MN, Okalebo, FA, Guantai, AN, et al. (2015). Cytochrome P450 2B6 genetic variants are associated with plasma nevirapine levels and clinical response in HIV-1 infected Kenyan women: a prospective cohort study. AIDS Research and Therapy 12: 10.Google Scholar
Pagani, L, Kivisild, T, Tarekegn, A, et al. (2012). Ethiopian genetic diversity reveals linguistic stratification and complex influences on the Ethiopian gene pool. Am J Hum Genet 91(1): 8396.Google Scholar
Paganotti, GM, Gramolelli, S, Tabacchi, F, et al. (2012). Distribution of human CYP2C8*2 allele in three different African populations. Malar J 11(1): 125.Google Scholar
Parikh, S, Ouedraogo, JB, Goldstein, JA, et al. (2007). Amodiaquine metabolism is impaired by common polymorphisms in CYP2C8: implications for malaria treatment in Africa. Pharmacol Ther, Part C 82(2): 197203.Google Scholar
Parsa, A, Kao, WH, Xie, D, et al. (2013). APOL1 risk variants, race, and progression of chronic kidney disease. N Engl J Med 369(23): 21832196.Google Scholar
Pasvol, G, Weatherall, DJ, and Wilson, RJ (1978). Cellular mechanism for the protective effect of haemoglobin S against P. falciparum malaria. Nature 274(5672): 701703.Google Scholar
Pays, E, Vanhollebeke, B, Uzureau, P, Lecordier, L, and Perez-Morga, D (2014). The molecular arms race between African trypanosomes and humans. Nat Rev Microbiol 12(8): 575584.Google Scholar
Phillips, E and Mallal, S (2009). Successful translation of pharmacogenetics into the clinic: the abacavir example. Mol Diagn Ther 13(1): 19.Google Scholar
Piel, FB, Patil, AP, Howes, RE, et al. (2010). Global distribution of the sickle cell gene and geographical confirmation of the malaria hypothesis. Nat Commun 1: 104.Google Scholar
Pillai, G, Davies, G, Denti, P, et al. (2013). Pharmacometrics: opportunity for reducing disease burden in the developing world: the case of Africa. CPT Pharmacometrics Syst Pharmacol 2: e69.Google Scholar
Ramachandran, S, Deshpande, O, Roseman, CC, et al. (2005). Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. PNAS 102(44): 1594215947.Google Scholar
Ramos, E, Doumatey, A, Elkahloun, AG, et al. (2014). Pharmacogenomics, ancestry and clinical decision making for global populations. Pharmacogenomics J 14(3): 217222.Google Scholar
Ranade, K, Geese, WJ, Noor, M, et al. (2008). Genetic analysis implicates resistin in HIV lipodystrophy. AIDS 22(13): 15611568.Google Scholar
Rauch, A, Kutalik, Z, Descombes, P, et al. (2010). Genetic variation in IL28B is associated with chronic hepatitis C and treatment failure: a genome-wide association study. Gastroenterol 138(4): 1338–1345.e7.Google Scholar
Relling, MV and Klein, TE (2011). CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network. Clin Pharmacol Therapeut 89(3): 464467.Google Scholar
Ribeiro, CM, Pontes, MJ, Bird, S, et al. (2010). Trypanosomiasis-induced Th17-like immune responses in carp. PLoS One 5(9). DOI: 10.1371/journal.pone.0013012.Google Scholar
Roederer, MW, McLeod, H, and Juliano, JJ (2011). Can pharmacogenomics improve malaria drug policy? Bull WHO 89(11): 838-845.Google Scholar
Rosenberg, NA, Pritchard, JK, Weber, JL, et al. (2011). Genetic structure of human populations. Science 2381(2002): 23812385.Google Scholar
Ross, EL, Weinstein, MC, Schackman, BR, et al. (2015). The clinical role and cost-effectiveness of long-acting antiretroviral therapy. Clin Infect Dis 60(7): 11021110.Google Scholar
Rotimi, CN and Jorde, LB (2010). Ancestry and disease in the age of genomic medicine. N Engl J Med 363(16): 15511558.Google Scholar
Rotimi, C, Abayomi, A, Abimiku, A, et al. (2014). Research capacity: enabling the genomic revolution in Africa. Science 344(6190): 13461348.Google Scholar
Rowell, JL, Dowling, NF, Yu, W, Yesupriya, A, Zhang, L, and Gwinn, M (2012). Trends in population-based studies of human genetics in infectious diseases. PLoS One 7(2): e25431.Google Scholar
Sabeti, PC, Varilly, P, Fry, B, et al. (2007). Genome-wide detection and characterization of positive selection in human populations. Nature 449(7164): 913918.Google Scholar
Sachse, C, Brockmoller, J, Bauer, S, et al. (1997). Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 60(2): 284295.Google Scholar
Salem, AH and Batzer, MA (2007). Distribution of the HIV resistance CCR5-Delta32 allele among Egyptians and Syrians. Mutat Res 616(1–2): 175180.Google Scholar
Samson, M, Libert, F, Doranz, BJ, et al. (1996). Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382(6593): 722725.Google Scholar
Schliekelman, P, Garner, C, and Slatkin, M (2001). Natural selection and resistance to HIV. Nature 411(6837): 545546.Google Scholar
Scott, SA, Sangkuhl, K, Stein, CM, et al. (2013). Clinical Pharmacogenetics Implementation Consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Pharmacol Ther, Part C 94(3): 317323.Google Scholar
Segal, S and Hill, AVS (2003). Genetic susceptibility to infectious disease. Trends Microbiol 11(9): 445448.Google Scholar
Seripa, D, Pilotto, A, Panza, F, et al. (2010). Pharmacogenetics of cytochrome P450 (CYP) in the elderly. Ageing Res Rev 9(4): 457474.Google Scholar
Shahinas, D, Folefoc, A, and Pillai, DR (2013). Targeting Plasmodium falciparum Hsp90: towards reversing antimalarial resistance. Pathogens 2(1): 3354.Google Scholar
Shriner, D, Tekola-Ayele, F, Adeyemo, A, et al. (2014). Genome-wide genotype and sequence-based reconstruction of the 140,000 year history of modern human ancestry. Scientific Reports 4: 6055. Google Scholar
Shu, Y, Leabman, MK, Feng, B, et al. (2003). Evolutionary conservation predicts function of variants of the human organic cation transporter, OCT1. PNAS 100(10): 59025907.Google Scholar
Simarro, PP, Diarra, A, Ruiz, Postigo JA, Franco, JR, and Jannin, JG (2011). The human African trypanosomiasis control and surveillance programme of the World Health Organization 2000–2009: the way forward. PLoS Negl Trop Dis 5(2). DOI: 10.1371/journal.pntd.0001007.Google Scholar
Sirugo, G, Schim, M, van der Loeff, SO, et al. (2004). A national DNA bank in The Gambia, West Africa, and genomic research in developing countries. Nat Genet 36(8): 785786.Google Scholar
Siwo, GH, Williams, SM, and Moore, JH (2015). The future of genomic medicine education in Africa. Genome Med 7(1): 47.Google Scholar
Smith, I (2003). Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev 16(3): 463496.Google Scholar
Smithburn, K, Hughes, T, Burke, A, et al. (1940). A neurotropic virus isolated from the blood of a native of Uganda. Am J Trop Med Hyg s1-20(4): 471492.Google Scholar
Staunton, C and Moodley, K (2013). Challenges in biobank governance in Sub-Saharan Africa. BMC Med Ethics 14(1): 35.Google Scholar
Stephens, JC, Reich, DE, Goldstein, DB, et al. (1998). Dating the origin of the CCR5-Delta32 AIDS-resistance allele by the coalescence of haplotypes. Am J Hum Genet 62(6): 15071515.Google Scholar
Sternberg, JM (2005). Human African trypanosomiasis: clinical presentation and immune response. Parasite Immunol 26(11–12): 469476.Google Scholar
Suppiah, V, Moldovan, M, Ahlenstiel, G, et al. (2009). IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat Genet 41(10): 11001104.Google Scholar
Swart, M, Whitehorn, H, Ren, Y, et al. (2012). PXR and CAR single nucleotide polymorphisms influence plasma efavirenz levels in South African HIV/AIDS patients. BMC Med Genet 13(1): 112.Google Scholar
Swart, M, Skelton, M, Ren, Y, et al. (2013). High predictive value of CYP2B6 SNPs for steady-state plasma efavirenz levels in South African HIV/AIDS patients. Pharmacogenet Genomics 23(8): 415427.Google Scholar
Swen, JJ, Nijenhuis, M, de Boer, A, et al. (2011). Pharmacogenetics: from bench to byte – an update of guidelines. Pharmacol Ther, Part C 89(5): 662673.Google Scholar
Tanaka, Y, Nishida, N, and Sugiyama, M (2009). Genome-wide association of IL28B with response to pegylated interferon-α and ribavirin therapy for chronic hepatitis C. Nat Genet 41(10): 11051109.Google Scholar
Tarirai, C, Viljoen, AM, and Hamman, JH (2010). Herb–drug pharmacokinetic interactions reviewed. Expert Opin Drug Metab Toxicol 6(12): 15151538.Google Scholar
Tekola-Ayele, F and Rotimi, CN (2015). Translational genomics in low- and middle-income countries: opportunities and challenges. Public Health Genomics 18(4): 242247.Google Scholar
Tekola-Ayele, F, Adeyemo, A, Aseffa, A, et al. (2014). Clinical and pharmacogenomic implications of genetic variation in a Southern Ethiopian population. Pharmacogenomics J 15(1): 101108.Google Scholar
Thomford, NE, Dzobo, K, Chopera, D, et al. (2015). Pharmacogenomics implications of using herbal medicinal plants on African populations in health transition. Pharmaceuticals 8(3): 637663.Google Scholar
Thomson, R, Genovese, G, Canon, C, et al. (2014). Evolution of the primate trypanolytic factor APOL1. PNAS 111(20): E2130E2139.Google Scholar
Tindana, P, Molyneux, CS, Bull, S, et al. (2014). Ethical issues in the export, storage and reuse of human biological samples in biomedical research: perspectives of key stakeholders in Ghana and Kenya. BMC Med Ethics 15(1): 111.Google Scholar
Tishkoff, SA, Reed, FA, and Friedlaender, FR (2001). Haplotype diversity and linkage disequilibrium at human G6PD: recent origin of alleles that confer malarial resistance. Science 293(5529): 455462.CrossRefGoogle ScholarPubMed
Tishkoff, SA, Reed, FA, Friedlaender, FR, et al. (2009). The genetic structure and history of Africans and African Americans. Science 324(5930): 10351044.Google Scholar
Tostmann, A, Boeree, MJ, Aarnoutse, RE, de Lange, WC, van der Ven, AJ, and Dekhuijzen, R (2008). Antituberculosis drug-induced hepatotoxicity: concise up-to-date review. J Gastroenterol Hepatol 23(2): 192202.Google Scholar
Tu, Y (2011). The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat Med 17(10): 12171220.Google Scholar
Tyler-Smith, C, Yang, H, Landweber, LF, et al. (2015). Where next for genetics and genomics? PLoS Biol 13(7): 17.Google Scholar
Uzureau, P, Uzureau, S, Lecordier, L, et al. (2013). Mechanism of Trypanosoma brucei gambiense resistance to human serum. Nature 501(7467): 430434.Google Scholar
Venter, JC, Adams, MD, Myers, EW, et al. (2001). The sequence of the human genome. Science 291(5507): 1304.Google Scholar
Vogel, F (1959). Moderne Probleme der Humangenetik. Ergeb Inn Med Kinderheilkd 12: 52125.Google Scholar
de Vries, J, Tindana, P, Littler, KJ, et al. (2015). The H3Africa policy framework: negotiating fairness in genomics. Trends Genet 31(3): 117119.Google Scholar
Walker, K, Ginsberg, G, Hattis, D, et al. (2009). Genetic polymorphism in N-Acetyltransferase (NAT): population distribution of NAT1 and NAT2 activity. J Toxicol Environ Health B Crit Rev 12(5–6): 440472.Google Scholar
Wamala, D, Buteme, HK, Kirimunda, S, et al. (2016). Association between human leukocyte antigen class II and pulmonary tuberculosis due to Mycobacterium tuberculosis in Uganda. BMC Infect Dis 16: 23.Google Scholar
Wang, PY, Xie, SY, Hao, Q, et al. (2012). NAT2 polymorphisms and susceptibility to anti-tuberculosis drug-induced liver injury: a meta-analysis. Int J Tuberc Lung Dis 16(5): 589595.Google Scholar
Ward, BA, Gorski, JC, Jones, DR, Hall, SD, Flockhart, DA, and Desta, Z (2003). The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity. J Pharmacol Exp Ther 306(1): 287300.Google Scholar
Wardrop, NA, Atkinson, PM, Gething, PW, et al. (2010). Bayesian geostatistical analysis and prediction of Rhodesian human African trypanosomiasis. PLoS Negl Trop Dis 4(12): 110.Google Scholar
Wassmer, SC, Taylor, TE, Rathod, PK, et al. (2015). Investigating the pathogenesis of severe malaria: a multidisciplinary and cross-geographical approach. Am J Trop Med Hyg 93(Suppl. 3): 4256.Google Scholar
Welburn, SC, Fevre, EM, Coleman, PG, et al. (2001). Sleeping sickness: a tale of two diseases. Parasitol Today 17(1): 1924.Google Scholar
Welburn, SC, Molyneux, DH, and Maudlin, I (2016). Beyond tsetse: implications for research and control of human African trypanosomiasis epidemics. Trends Parasitol 32(3): 230241.Google Scholar
Winkler, C, An, P, and O’Brien, SJ (2004). Patterns of ethnic diversity among the genes that influence AIDS. Hum Mol Genet 13(Suppl. 1): R9R19.Google Scholar
Wonkam, A and Mayosi, BM (2014). Genomic medicine in Africa: promise, problems and prospects. Genome Med 6(2): 11.Google Scholar
World Health Organization (1998). Control and Surveillance of African Trypanosomiasis: Report of a WHO Expert Committee. World Health Organization Technical Report. Available at: www.ncbi.nlm.nih.gov/pubmed/10070249.Google Scholar
World Health Organization (2015a). Global Health Observatory (GHO) data, HIV/AIDS. Available at: www.who.int/gho/hiv/en.Google Scholar
World Health Organization (2015b). Treatment of severe malaria. In Guidelines for the Treatment of Malaria, World Health Organization.Google Scholar
World Health Organization (2015c). World Malaria Report 2015. World Health Organization. Available at: www.who.int/malaria/publications/world-malaria-report-2015/report/en/.Google Scholar
World Health Organization (2015d). Global Tuberculosis Report 2015. New York: World Health Organization. Available at: www.who.int/tb/publications/global_report/en/.Google Scholar
World Health Organization (2015e). Cases of sleeping sickness drop to lowest level in 75 years. Available at: www.who.int/trypanosomiasis_african/cases_drop_to_lowest_since_75_years/en.Google Scholar
World Health Organization (2016). Trypanosomiasis: symptoms, diagnosis and treatment. Available at: www.who.int/trypanosomiasis_african/diagnosis/en/#.WONHZhhKIF4.mendeley&title=Symptoms, diagnosis and treatment (accessed April 4, 2017).Google Scholar
Worodria, W, Massinga-Loembe, M, Mazakpwe, D, et al. (2011). Incidence and predictors of mortality and the effect of tuberculosis immune reconstitution inflammatory syndrome in a cohort of TB/HIV patients commencing antiretroviral therapy. J Acquir Immune Defic Syndr 58(1): 3237.Google Scholar
Yeung, S, Pongtavornpinyo, W, Hastings, IM, et al. (2004). Antimalarial drug resistance, artemisinin-based combination therapy, and the contribution of modeling to elucidating policy choices. Am J Trop Med Hyg 71(2 Suppl.): 179186.Google Scholar
Yew, WW and Leung, CC (2006). Antituberculosis drugs and hepatotoxicity. Respirology 11(6): 699707.Google Scholar
Yimer, G, Amogne, W, Habtewold, A, et al. (2012). High plasma efavirenz level and CYP2B6*6 are associated with efavirenz-based HAART-induced liver injury in the treatment of naïve HIV patients from Ethiopia: a prospective cohort study. Pharmacogenomics J 12(6): 499506.Google Scholar
Yuliwulandari, R, Sachrowardi, Q, Nakajima, H, et al. (2010). Association of HLA-A, -B, and -DRB1 with pulmonary tuberculosis in western Javanese Indonesia. Hum Immunol 71(7): 697701.Google Scholar
Zanger, UM, Turpeinen, M, Klein, K, and Schwab, M (2008). Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation. Anal Bioanal Chem 392(6): 10931108.Google Scholar
Zhang, L, Dresser, MJ, Gray, AT, et al. (1997). Cloning and functional expression of a human liver organic cation transporter. Mol Pharmacol 51(6): 913921.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×