Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T03:54:28.938Z Has data issue: false hasContentIssue false

Part Three - Gravity is Geometry, after all

Published online by Cambridge University Press:  05 June 2015

Abhay Ashtekar
Affiliation:
Pennsylvania State University
Beverly K. Berger
Affiliation:
Formerly Program Director for Gravitational Physics, National Science Foundation
James Isenberg
Affiliation:
University of Oregon
Malcolm MacCallum
Affiliation:
University of Bristol
Get access

Summary

Introduction

Einstein's general relativity is a mathematically beautiful application of geometric ideas to gravitational physics. Motion is determined by geodesics in spacetime, tidal effects between physical bodies can be read directly from the curvature of that spacetime, and the curvature is closely tied to matter and its motion in spacetime. When proposed in 1915, general relativity was a completely new way to think about physical phenomena, based on the geometry of curved spacetimes that was largely unknown to physicists.

While the geometric nature of Einstein's theory is beautiful and conceptually simple, the fundamental working structure of the theory as a system of partial differential equations (PDEs) is much more complex. Einstein's equations are not easily categorized as wave- like or potential-like or heat-like, and they are pervasively nonlinear. Hence, despite the great interest in general relativity, mathematical progress in studying Einstein's equations (beyond the discovery of a small collection of explicit solutions with lots of symmetry) was quite slow for a number of years.

This changed significantly in the 1950s with the appearance of Yvonne Choquet- Bruhat's proof that the Einstein equations can be treated as a well-posed Cauchy problem [1]. The long-term effects of this work have been profound: Mathematically, it has led to the present status of Einstein's equations as one of the most interesting and important systems in PDE theory and in geometrical analysis. Physically, the well-posedness of the Cauchy problem for the Einstein equations has led directly to our present ability to numerically simulate (with remarkable accuracy) solutions of these equations which model a wide range of novel phenomena in the strong-field regime.

The Cauchy formulation of general relativity splits the problem of solving Einstein's equations, and studying the behavior of these solutions, into two equally important tasks: First, one finds an initial data set – a “snapshot” of the gravitational field and its rate of change – which satisfies the Einstein constraint equations, which are essentially four of the ten Einstein field equations.

Type
Chapter
Information
General Relativity and Gravitation
A Centennial Perspective
, pp. 347 - 360
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×