Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T02:23:15.335Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. eds. (2006). Current Protocols in Molecular Biology. John Wiley.Google Scholar
Sambrook, J. & Russell, D. W. (2001). Molecular Cloning: A Laboratory Manual. 3rd edition. Cold Spring Harbor Laboratory Press.Google Scholar
Kessler, C. & Manta, V. (1990). Specificity of restriction endonucleases and DNA modification methyltransferases. Gene, 92, 1–248.CrossRefGoogle ScholarPubMed
Stekel, D. (2003). Microarray Bioinformatics. Cambridge University Press.CrossRefGoogle Scholar
Wilson, G. G. & Murray, N. E. (1991). Restriction and modification systems. Annual Reviews of Genetics, 25, 585–627.CrossRefGoogle ScholarPubMed
Bower, M. A., Spencer, M., Matsumura, S., Nisbet, R. E. R. & Howe, C. J. (2005). How many clones need to be sequenced from a single forensic or ancient DNA sample in order to determine a reliable consensus sequence?Nucleic Acids Research, 33, 2549–2556.CrossRefGoogle ScholarPubMed
Cooper, A. & Poinar, H. N. (2000). Ancient DNA: do it right or not at all. Science, 289, 1139.CrossRefGoogle ScholarPubMed
Hagelberg, E., Gray, I. C. & Jeffreys, A. J. (1991). Identification of the skeletal remains of a murder victim by DNA analysis. Nature, 352, 427–429.CrossRefGoogle ScholarPubMed
McPherson, M. J. & Møller, S. G. (2006). PCR: The Basics. Taylor & Francis.Google Scholar
Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B. & Erlich, H. A. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 239, 487–491.CrossRefGoogle ScholarPubMed
Suzuki, R., Yoshikawa, T., Ihira, M., Enomoto, Y., Inagaki, S., Matsumoto, K., Kato, K., Kudo, K., Kojima, S. & Asano, Y. (2006). Development of the loop-mediated isothermal amplification method for rapid detection of cytomegalovirus DNA. Journal of Virological Methods, 132, 216–221.CrossRefGoogle ScholarPubMed
Thomas, R. H., Schaffner, W., Wilson, A. C. & Pääbo, S. (1989). DNA phylogeny of the extinct marsupial wolf. Nature, 340, 465–467.CrossRefGoogle ScholarPubMed
Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids. Journal of Molecular Biology, 166, 557–580.CrossRefGoogle ScholarPubMed
Hanahan, D., Jessee, J. & Bloom, F. R. (1991). Plasmid transformation of Escherichia coli and other bacteria. Methods in Enzymology, 204, 63–113.CrossRefGoogle ScholarPubMed
Knoblauch, M., Hibberd, J. M., Gray, J. C. & Bel., A. J. E. (1999). A galinstan expansion femtosyringe for microinjection of eukaryotic organelles and prokaryotes. Nature Biotechnology, 17, 906–909.CrossRefGoogle ScholarPubMed
Summers, D. K. (1996). The Biology of Plasmids. Blackwell Science.CrossRefGoogle Scholar
Wilson, G. G. & Murray, N. E. (1991). Restriction and modification systems. Annual Reviews of Genetics, 25, 585–627.CrossRefGoogle ScholarPubMed
Clackson, T. & Lowman, H. B. eds (2004). Phage Display: A Practical Approach. Oxford University Press.Google Scholar
Groisman, E. A., Castilho, B. A. & Casadaban, M. J. (1984). In vivo DNA cloning and adjacent gene fusing with a mini-Mu-lac bacteriophage containing a plasmid replicon. Proceedings of the National Academy of Sciences, USA, 81, 1480–1483.CrossRefGoogle ScholarPubMed
Ioannou, P. A., Amemiya, C. T., Garnes, J., Kroisel, P. M., Shizuya, H., Chen, C., Batzer, M. A. & Jong, P. J. (1994). A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nature Genetics, 6, 84–89.Google ScholarPubMed
Kaiser, K., Murray, N. E. & Whittaker P. A. (1995). Construction of representative genomic DNA libraries using phage lambda replacement vectors. In Glover, D. M. and Hames, B. D. eds, DNA Cloning 1: A Practical Approach. IRL Press, pp. 37–84.Google Scholar
Kim, U.-J., Birren, B. W., Slepak, T., Mancino, V., Boysen, C., Kang, H.-L., Simon, M. I. & Shizuya, H. (1996). Construction and characterization of a human bacterial artificial chromosome library. Genomics, 34, 213–218.CrossRefGoogle ScholarPubMed
Ptashne, M. (2004). A Genetic Switch: Phage Lambda Revisited. Cold Spring Harbor Laboratory Press.Google Scholar
Short, J. M., Fernandez, J. M., Sorge, J. A. & Huse, W. D. (1988). Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties. Nucleic Acids Research, 16, 7583–7600.CrossRefGoogle ScholarPubMed
Sternberg, N. L. (1992). Cloning high molecular weight DNA fragments by the bascteriophage P1 system. Trends in Genetics, 8, 11–16.CrossRefGoogle ScholarPubMed
Frohman, M. A., Dush, M. K. & Martin, G. R. (1988). Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proceedings of the National Academy of Sciences, USA, 85, 8998–9002.CrossRefGoogle ScholarPubMed
Soares, M. B., Bonaldo, M. de F., Jelene, P., Su, L., Lawton, L. & Efstratiadis, A. (1994). Construction and characterization of a normalized cDNA library. Proceedings of the National Academy of Sciences, USA, 91, 9228–9232.CrossRefGoogle ScholarPubMed
Clackson, T. & Lowman, H. B. eds (2004). Phage Display: A Practical Approach. Oxford University Press.Google Scholar
Fields, S. & Sternglanz, R. (1994). The two-hybrid system: an assay for protein–protein interactions. Trends in Genetics. 10, 286–292.CrossRefGoogle ScholarPubMed
Hediger, M. A., Coady, M. J., Ikeda, T. S. & Wright, E. M. (1987). Expression, cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature, 330, 379–381.CrossRefGoogle Scholar
Jaeger, S., Eriani, G. & Martin, F. (2004). Results and prospects of the yeast three-hybrid system. FEBS Letters, 556, 7–12.CrossRefGoogle ScholarPubMed
Schaffitzel, C., Hanes, J., Jermutus, L. & Plückthun, A. (1999). Ribosome display: an in vitro method for selection and evolution of antibodies from libraries. Journal of Immunological Methods. 231, 119–135.CrossRefGoogle Scholar
SenGupta, D. J., Zhang, B., Kraemer, B., Pochart, P., Fields, S. & Wickens, M. (1996). A three-hybrid system to detect RNA–protein interactions in vitro. Proceedings of the National Academy of Sciences, USA, 93, 8496–8501.CrossRefGoogle Scholar
Baulcombe, D. (2005). RNA silencing. Trends in Biochemical Sciences, 30, 290–293.CrossRefGoogle ScholarPubMed
Hamilton, A. J. & Baulcombe, D. C. (1999). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 286, 950–952.CrossRefGoogle ScholarPubMed
Hammond, S. M. (2005). Dicing and slicing: the core machinery of the RNA interference pathway. FEBS Letters, 579, 5822–5829.CrossRefGoogle ScholarPubMed
Kolmar, H. & Fritz, H.-J. (1995). Oligonucleotide-directed mutagenesis with single-stranded cloning vectors. In Glover, D. M. and Hames, B. D. eds, DNA Cloning 1: A Practical Approach. IRL Press, pp. 193–224.Google Scholar
Rothstein, R. (1991). Targeting, disruption, replacement and allele rescue: integrative DNA transformation in yeast. Methods in Enzymology, 194, 281–301.CrossRefGoogle Scholar
Timmons, L. & Fire, A. (1998). Specific interference by ingested dsRNA. Nature, 395, 854.CrossRefGoogle ScholarPubMed
Tyagi, R., Lai, R. & Duggleby, R. G. (2004). A new approach to ‘megaprimer’ polymerase chain reaction mutagenesis without an intermediate gel purification step. BMC Biotechnology, 4, 2.CrossRefGoogle ScholarPubMed
Wang, W. Y. & Malcolm, B. A. (1999). Two-stage PCR protocol allowing introduction of multiple mutations, deletions and insertions using QuikChangeTM site-directed mutagenesis. Biotechniques, 26, 680–682.Google Scholar
Yem, L., Svendsen, J., Lee, J.-S., Gray, J. T., Magnier, M., Baba, T., D'Amato, R. J. & Mulligan, R. C. (2004). Exogenous control of mammalian gene expression through modulation of RNA self-cleavage. Nature, 431, 471–476.Google Scholar
Brosius, J., Erfle, M. & Storella, J. (1985). Spacing of the −10 and −35 regions in the tac promoter. Journal of Biological Chemistry, 260, 3539–3541.Google ScholarPubMed
Brosius, J. & Holy, A. (1984). Regulation of ribosomal RNA promoters with a synthetic lac operator. Proceedings of the National Academy of Sciences, USA, 81, 6929–6933.CrossRefGoogle ScholarPubMed
Chong, S., Mersha, F. B., Comb, D. G., Scott, M. E., Landry, D., Vence, L. M., Perler, F. B., Benner, J., Kucera, R. B., Hirvonen, C. A., Pelletier, J. J., Paulus, H. & Xu, M.-Q. (1997). Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein-splicing element. Gene, 192, 271–281.CrossRefGoogle ScholarPubMed
Chubet, R. G. & Brizzard, B. L. (1996). Vectors for expression and secretion of FLAG epitope-tagged proteins in mammalian cells. Biotechniques, 20, 136–141.Google ScholarPubMed
Finn, R. D., Kapelioukh, I. & Paine, M. J. I. (2005). Rainbow tags: a visual tag system for recombinant protein expression and purification. Biotechniques, 38, 387–392.CrossRefGoogle ScholarPubMed
Friedel, R. H., Plump, A., Lu, X., Spilker, K., Joliocoeur, C., Wong, K., Venkatesh, T. R., Yaron, A., Hynes, M., Chen, B., Okada, A., McConnell, S. K., Rayburn, H. & Tessier-Lavigne, M. (2005). Gene targeting using a promoterless gene trap vector (“targeted trapping”) is an efficient method to mutate a large fraction of genes. Proceedings of the National Academy of Sciences, USA, 102, 13 188–13 193.CrossRefGoogle ScholarPubMed
Glover, D. M. & Hames, B. D. eds (1995). DNA Cloning 2, Expression Systems: A Practical Approach. IRL Press.Google Scholar
Johnson, A. A. T., Hibberd, J. M., Gay, C., Essah, P. A., Haseloff, J., Tester, M. & Guiderdoni, E. (2005). Spatial control of transgene expression in rice (Oryza sativa L.) using the GAL4 enhancer trapping system. Plant Journal, 41, 779–789.CrossRefGoogle ScholarPubMed
Lilius, G., Persson, M., Buflow, L. & Mosbach, K. (1991). Metal affinity precipitation of proteins carrying genetically attached polyhistidine affinity tails. European Journal of Biochemistry, 198, 499–504.CrossRefGoogle ScholarPubMed
Cabello, F. C., Sartakova, M. L. & Dobrikova, E. Y. (2001). Genetic manipulation of spirochetes – light at the end of the tunnel. Trends in Microbiology, 9, 245–248.CrossRefGoogle ScholarPubMed
Hanahan, D., Jessee, J. & Bloom, F. R. (1991). Plasmid transformation of Escherichia coli and other bacteria. Methods in Enzymology, 204, 63–113.CrossRefGoogle ScholarPubMed
Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. (2000). Practical Streptomyces genetics. John Innes Foundation.Google Scholar
Kunji, E. R. S., Slotboom, D.-J. & Poolman, B. (2003). Lactococcus lactis as host for overproduction of functional membrane proteins. Biochimica et Biophysica Acta, 1610, 97–108.CrossRefGoogle ScholarPubMed
Grice, S. F. J. (1990). Regulated promoter for high-level expression of heterologous genes inBacillus subtilis. Methods in Enzymology, 185, 201–214.Google ScholarPubMed
Marx, C. J. & Lidstrom, M. E. (2001). Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria. Microbiology, 147, 2065–2075.CrossRefGoogle ScholarPubMed
Nagarajan, V. (1990). System for secretion of heterologous proteins in Bacillus subtilis. Methods in Enzymology, 185, 214–228.CrossRefGoogle ScholarPubMed
Scott, H. N., Laible, P. D. & Hanson, D. K. (2003). Sequences of versatile broad-host-range vectors of the RK2 family. Plasmid, 50, 74–79.CrossRefGoogle ScholarPubMed
Cereghino, J. L. & Cregg, J. M. (2000). Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiology Reviews, 24, 45–66.CrossRefGoogle ScholarPubMed
Funk, M., Niedenthal, R., Mumberg, D., Brinkmann, K., Rönicke, V. & Henkel, T. (2002). Vector systems for heterologous expression of proteins in Saccharomyces cerevisiae. Methods in Enzymology, 350, 248–257.CrossRefGoogle ScholarPubMed
Gouka, R. J., Punt, P. J. & Hondel, C. A. M. J. J. (1997). Efficient production of secreted proteins by Aspergillus: progress, limitations and prospects. Applied Microbiology and Biotechnology, 47, 1–11.CrossRefGoogle ScholarPubMed
Ruiz-Diez, B. (2002). Strategies for the transformation of filamentous fungi. Journal of Applied Microbiology, 92, 189–195.CrossRefGoogle ScholarPubMed
Schlessinger, D. (1990). Yeast artifical chromosomes: tools for mapping and analysis of complex genomes. Trends in Genetics, 6, 248–258.CrossRefGoogle Scholar
Siam, R., Dolan, W. P. & Forsburg, S. L. (2004). Choosing and using Schizosaccharomyces pombe plasmids. Methods, 33, 189–198.CrossRefGoogle ScholarPubMed
Song, H., Li, Y., Fang, W., Geng, Y., Wang, X., Wang, M. & Qiu, B. (2003). Development of a set of expression vectors inHansenula polymorpha. Biotechnology Letters, 25, 1999–2006.CrossRefGoogle ScholarPubMed
Toews, M. W., Warmbold, J., Konzack, S., Rischitor, P., Veith, D., Vienken, K., Vinuesa, C., Wei, H. & Fischer, R. (2004). Establishment of mRFP1 as a fluorescent marker in Aspergillus nidulans and construction of expression vectors for high-throughput protein tagging using recombination in vitro (GATEWAY). Current Genetics, 45, 383–389.Google Scholar
Wang, L., Kao, R., Ivey, F. D. & Hoffmann, C. S. (2004). Strategies for gene disruptions and plasmid constructions in fission yeast. Methods, 33, 199–205.CrossRefGoogle ScholarPubMed
Wang, Y.-C. M., Chuang, L. L., Lee, F. W. F. & Da Silva, N. A. (2003). Sequential cloned gene integration in the yeast Kluyveromyces lactis. Applied Microbiology and Biotechnology, 62, 523–527.CrossRefGoogle ScholarPubMed
Bateman, J. M. & Purton, S. (2000). Tools for chloroplast transformation in Chlamydomonas: expression vectors and a new dominant selectable marker. Molecular and General Genetics, 263, 404–410.CrossRefGoogle Scholar
Castle, L. A., Siehl, D. L., Gorton, R., Patten, P. A., Chen, Y. H., Bertain, S., Cho, H.-J., Duck, N., Wong, J., Liu, D. & Lassner, M. W. (2004). Discovery and directed evolution of a glyphosate tolerance gene. Science, 304, 1151–1154.CrossRefGoogle ScholarPubMed
Clough, S. J. & Bent, A. F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16, 735–743.CrossRefGoogle ScholarPubMed
Hare, P. D. & Chua, N.-H. (2002). Excision of selectable markers from transgenic plants. Nature Biotechnology, 20, 575–580.Google ScholarPubMed
Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S. & Mullineaux, P. M. (2000). pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Molecular Biology, 42, 819–832.CrossRefGoogle ScholarPubMed
Ma, J. K. C., Drake, P. M. W. & Christou, P. (2003). The production of recombinant pharmaceutical proteins in plants. Nature Reviews Genetics, 4, 794–805.CrossRefGoogle ScholarPubMed
Ogita, S., Uefuji, H., Yamaguchi, Y., Koizumi, N. & Sano, H. (2003). Producing decaffeinated coffee plants. Nature, 423, 823.CrossRefGoogle ScholarPubMed
Walker, T. L., Collet, C. & Purton, S. (2005). Algal transgenics in the genomic era. Journal of Phycology, 41, 1077–1093.CrossRefGoogle Scholar
Weigel, D. & Glazebrook, J. (2002). Arabidopsis: A Laboratory Manual. Cold Spring HarborLaboratory press.Google Scholar
Wright, M., Dawson, J., Dunder, E., Suttie, J., Reed, J., Kramer, C., Chang, Y., Novitzky, R., Wang, H. & Artim-Moore, L. (2001). Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Reports, 20, 429–436.CrossRefGoogle Scholar
Bonnefoy, N. & Fox, T. D. (2001). Genetic transformation of Saccharomyces cerevisiae mitochondria. Methods in Cell Biology, 65, 381–396.CrossRefGoogle ScholarPubMed
Lutz, K. A., Bosacchi, M. H. & Maliga, P. (2006). Plastid marker-gene excision by transiently expressed CRE recombinase. Plant Journal, 45, 447–456.CrossRefGoogle ScholarPubMed
Maliga, P. (2004). Plastid transformation in higher plants. Annual Review of Plant Biology, 55, 289–313.CrossRefGoogle ScholarPubMed
Mireau, H., Arnal, N. & Fox, T. D. (2003). Expression of Barstar as a selectable marker in yeast mitochondria. Molecular Genetics and Genomics, 270, 1–8.CrossRefGoogle ScholarPubMed
Berezikov, E., Bargmann, C. I. & Plasterk, R. H. A. (2004). Homologous gene targeting in Caenorhabditis elegans by biolistic transformation. Nucleic Acids Research, 32, e40.CrossRefGoogle ScholarPubMed
Praitis, V., Casey, E., Collar, D. & Austin, J. (2001). Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics, 157, 1217–1226.Google ScholarPubMed
Timmons, L. & Fire, A. (1998). Specific interference by ingested dsRNA. Nature, 395, 854.CrossRefGoogle ScholarPubMed
Liepman, A. H., Wilkerson, C. G. & Keegstra, K. (2005). Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proceedings of the National Academy of Sciences, USA, 102, 2221–2226.CrossRefGoogle ScholarPubMed
Luckow, V. A., Lee, S. C., Barry, G. F. & Olins, P. O. (1993). Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. Journal of Virology, 67, 4566–4579.Google ScholarPubMed
Richardson, C. D. ed. (2005). Baculovirus Expression Protocols. Humana Press.Google Scholar
Rong, Y. S. & Golic, K. G. (2000). Gene targeting by homologous recombination in Drosophila. Science, 288, 2013–2018.CrossRefGoogle ScholarPubMed
Schotta, G. & Reuter, G. (2000). Controlled expression of tagged proteins in Drosophila using a new modular P-element vector system. Molecular and General Genetics, 262, 916–920.CrossRefGoogle ScholarPubMed
Venken, K. J. T. & Bellen, H. J. (2005). Emerging technologies for gene manipulation in Drosophila melanogaster. Nature Reviews Genetics, 6, 167–178.CrossRefGoogle ScholarPubMed
Wimmer, E. A. (2003). Applications of insect transgenesis. Nature Reviews Genetics, 4, 225–232.CrossRefGoogle ScholarPubMed
Basu, J., Compitello, G., Stromberg, G., Willard, H. F. & Bokkelen, G. (2005). Efficient assembly of de novo human artificial chromosomes from large genomic loci. BMC Biotechnology, 5, 21.CrossRefGoogle ScholarPubMed
Basu, J. & Willard, H. F. (2005). Artificial and engineered chromosomes: non-integrating vectors for gene therapy. Trends in Molecular Medicine, 11, 251–258.CrossRefGoogle ScholarPubMed
Brocard, J., Warot, X., Wendling, O., Messaddeq, N., Vonesch, , , J.-L.Chambon, P. & Metzger, D. (1997). Spatio-temporally controlled site-specific somatic mutagenesis in the mouse. Proceedings of the National Academy of Sciences, USA, 94, 14 559–14 563.CrossRefGoogle ScholarPubMed
Gordon, J. W. (1993). Production of transgenic mice. Methods in Enzymology, 225, 747–753.CrossRefGoogle ScholarPubMed
Grimm, S. (2004). The art and design of genetic screens: mammalian culture cells. Nature Reviews Genetics, 5, 179–189.CrossRefGoogle ScholarPubMed
Kistner, A., Gossen, M., Zimmerman, F., Jerecic, J., Ullmer, C., Lübbert, H. & Bujard, H. (1996). Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proceedings of the National Academy of Sciences, USA, 93, 10 933–10 938.CrossRefGoogle ScholarPubMed
Verma, I. M. & Weitzmann, M. D. (2005). Gene therapy: twenty-first century medicine. Annual Review of Biochemistry, 74, 711–738.CrossRefGoogle ScholarPubMed
Uhlmann, E. J., Wong, M., Baldwin, R. L., Bajenaru, M. L., Onda, H., Kwiatkowski, D. J., Yamada, K. & Gutmann, D. H. (2002). Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Annals of Neurology, 52, 285–296.CrossRefGoogle ScholarPubMed
Kessler, C. & Manta, V. (1990). Specificity of restriction endonucleases and DNA modification methyltransferases. Gene, 92, 1–248.CrossRefGoogle ScholarPubMed
Stekel, D. (2003). Microarray Bioinformatics. Cambridge University Press.CrossRefGoogle Scholar
Wilson, G. G. & Murray, N. E. (1991). Restriction and modification systems. Annual Reviews of Genetics, 25, 585–627.CrossRefGoogle ScholarPubMed
Bower, M. A., Spencer, M., Matsumura, S., Nisbet, R. E. R. & Howe, C. J. (2005). How many clones need to be sequenced from a single forensic or ancient DNA sample in order to determine a reliable consensus sequence?Nucleic Acids Research, 33, 2549–2556.CrossRefGoogle ScholarPubMed
Cooper, A. & Poinar, H. N. (2000). Ancient DNA: do it right or not at all. Science, 289, 1139.CrossRefGoogle ScholarPubMed
Hagelberg, E., Gray, I. C. & Jeffreys, A. J. (1991). Identification of the skeletal remains of a murder victim by DNA analysis. Nature, 352, 427–429.CrossRefGoogle ScholarPubMed
McPherson, M. J. & Møller, S. G. (2006). PCR: The Basics. Taylor & Francis.Google Scholar
Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B. & Erlich, H. A. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 239, 487–491.CrossRefGoogle ScholarPubMed
Suzuki, R., Yoshikawa, T., Ihira, M., Enomoto, Y., Inagaki, S., Matsumoto, K., Kato, K., Kudo, K., Kojima, S. & Asano, Y. (2006). Development of the loop-mediated isothermal amplification method for rapid detection of cytomegalovirus DNA. Journal of Virological Methods, 132, 216–221.CrossRefGoogle ScholarPubMed
Thomas, R. H., Schaffner, W., Wilson, A. C. & Pääbo, S. (1989). DNA phylogeny of the extinct marsupial wolf. Nature, 340, 465–467.CrossRefGoogle ScholarPubMed
Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids. Journal of Molecular Biology, 166, 557–580.CrossRefGoogle ScholarPubMed
Hanahan, D., Jessee, J. & Bloom, F. R. (1991). Plasmid transformation of Escherichia coli and other bacteria. Methods in Enzymology, 204, 63–113.CrossRefGoogle ScholarPubMed
Knoblauch, M., Hibberd, J. M., Gray, J. C. & Bel., A. J. E. (1999). A galinstan expansion femtosyringe for microinjection of eukaryotic organelles and prokaryotes. Nature Biotechnology, 17, 906–909.CrossRefGoogle ScholarPubMed
Summers, D. K. (1996). The Biology of Plasmids. Blackwell Science.CrossRefGoogle Scholar
Wilson, G. G. & Murray, N. E. (1991). Restriction and modification systems. Annual Reviews of Genetics, 25, 585–627.CrossRefGoogle ScholarPubMed
Clackson, T. & Lowman, H. B. eds (2004). Phage Display: A Practical Approach. Oxford University Press.Google Scholar
Groisman, E. A., Castilho, B. A. & Casadaban, M. J. (1984). In vivo DNA cloning and adjacent gene fusing with a mini-Mu-lac bacteriophage containing a plasmid replicon. Proceedings of the National Academy of Sciences, USA, 81, 1480–1483.CrossRefGoogle ScholarPubMed
Ioannou, P. A., Amemiya, C. T., Garnes, J., Kroisel, P. M., Shizuya, H., Chen, C., Batzer, M. A. & Jong, P. J. (1994). A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nature Genetics, 6, 84–89.Google ScholarPubMed
Kaiser, K., Murray, N. E. & Whittaker P. A. (1995). Construction of representative genomic DNA libraries using phage lambda replacement vectors. In Glover, D. M. and Hames, B. D. eds, DNA Cloning 1: A Practical Approach. IRL Press, pp. 37–84.Google Scholar
Kim, U.-J., Birren, B. W., Slepak, T., Mancino, V., Boysen, C., Kang, H.-L., Simon, M. I. & Shizuya, H. (1996). Construction and characterization of a human bacterial artificial chromosome library. Genomics, 34, 213–218.CrossRefGoogle ScholarPubMed
Ptashne, M. (2004). A Genetic Switch: Phage Lambda Revisited. Cold Spring Harbor Laboratory Press.Google Scholar
Short, J. M., Fernandez, J. M., Sorge, J. A. & Huse, W. D. (1988). Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties. Nucleic Acids Research, 16, 7583–7600.CrossRefGoogle ScholarPubMed
Sternberg, N. L. (1992). Cloning high molecular weight DNA fragments by the bascteriophage P1 system. Trends in Genetics, 8, 11–16.CrossRefGoogle ScholarPubMed
Frohman, M. A., Dush, M. K. & Martin, G. R. (1988). Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proceedings of the National Academy of Sciences, USA, 85, 8998–9002.CrossRefGoogle ScholarPubMed
Soares, M. B., Bonaldo, M. de F., Jelene, P., Su, L., Lawton, L. & Efstratiadis, A. (1994). Construction and characterization of a normalized cDNA library. Proceedings of the National Academy of Sciences, USA, 91, 9228–9232.CrossRefGoogle ScholarPubMed
Clackson, T. & Lowman, H. B. eds (2004). Phage Display: A Practical Approach. Oxford University Press.Google Scholar
Fields, S. & Sternglanz, R. (1994). The two-hybrid system: an assay for protein–protein interactions. Trends in Genetics. 10, 286–292.CrossRefGoogle ScholarPubMed
Hediger, M. A., Coady, M. J., Ikeda, T. S. & Wright, E. M. (1987). Expression, cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature, 330, 379–381.CrossRefGoogle Scholar
Jaeger, S., Eriani, G. & Martin, F. (2004). Results and prospects of the yeast three-hybrid system. FEBS Letters, 556, 7–12.CrossRefGoogle ScholarPubMed
Schaffitzel, C., Hanes, J., Jermutus, L. & Plückthun, A. (1999). Ribosome display: an in vitro method for selection and evolution of antibodies from libraries. Journal of Immunological Methods. 231, 119–135.CrossRefGoogle Scholar
SenGupta, D. J., Zhang, B., Kraemer, B., Pochart, P., Fields, S. & Wickens, M. (1996). A three-hybrid system to detect RNA–protein interactions in vitro. Proceedings of the National Academy of Sciences, USA, 93, 8496–8501.CrossRefGoogle Scholar
Baulcombe, D. (2005). RNA silencing. Trends in Biochemical Sciences, 30, 290–293.CrossRefGoogle ScholarPubMed
Hamilton, A. J. & Baulcombe, D. C. (1999). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 286, 950–952.CrossRefGoogle ScholarPubMed
Hammond, S. M. (2005). Dicing and slicing: the core machinery of the RNA interference pathway. FEBS Letters, 579, 5822–5829.CrossRefGoogle ScholarPubMed
Kolmar, H. & Fritz, H.-J. (1995). Oligonucleotide-directed mutagenesis with single-stranded cloning vectors. In Glover, D. M. and Hames, B. D. eds, DNA Cloning 1: A Practical Approach. IRL Press, pp. 193–224.Google Scholar
Rothstein, R. (1991). Targeting, disruption, replacement and allele rescue: integrative DNA transformation in yeast. Methods in Enzymology, 194, 281–301.CrossRefGoogle Scholar
Timmons, L. & Fire, A. (1998). Specific interference by ingested dsRNA. Nature, 395, 854.CrossRefGoogle ScholarPubMed
Tyagi, R., Lai, R. & Duggleby, R. G. (2004). A new approach to ‘megaprimer’ polymerase chain reaction mutagenesis without an intermediate gel purification step. BMC Biotechnology, 4, 2.CrossRefGoogle ScholarPubMed
Wang, W. Y. & Malcolm, B. A. (1999). Two-stage PCR protocol allowing introduction of multiple mutations, deletions and insertions using QuikChangeTM site-directed mutagenesis. Biotechniques, 26, 680–682.Google Scholar
Yem, L., Svendsen, J., Lee, J.-S., Gray, J. T., Magnier, M., Baba, T., D'Amato, R. J. & Mulligan, R. C. (2004). Exogenous control of mammalian gene expression through modulation of RNA self-cleavage. Nature, 431, 471–476.Google Scholar
Brosius, J., Erfle, M. & Storella, J. (1985). Spacing of the −10 and −35 regions in the tac promoter. Journal of Biological Chemistry, 260, 3539–3541.Google ScholarPubMed
Brosius, J. & Holy, A. (1984). Regulation of ribosomal RNA promoters with a synthetic lac operator. Proceedings of the National Academy of Sciences, USA, 81, 6929–6933.CrossRefGoogle ScholarPubMed
Chong, S., Mersha, F. B., Comb, D. G., Scott, M. E., Landry, D., Vence, L. M., Perler, F. B., Benner, J., Kucera, R. B., Hirvonen, C. A., Pelletier, J. J., Paulus, H. & Xu, M.-Q. (1997). Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein-splicing element. Gene, 192, 271–281.CrossRefGoogle ScholarPubMed
Chubet, R. G. & Brizzard, B. L. (1996). Vectors for expression and secretion of FLAG epitope-tagged proteins in mammalian cells. Biotechniques, 20, 136–141.Google ScholarPubMed
Finn, R. D., Kapelioukh, I. & Paine, M. J. I. (2005). Rainbow tags: a visual tag system for recombinant protein expression and purification. Biotechniques, 38, 387–392.CrossRefGoogle ScholarPubMed
Friedel, R. H., Plump, A., Lu, X., Spilker, K., Joliocoeur, C., Wong, K., Venkatesh, T. R., Yaron, A., Hynes, M., Chen, B., Okada, A., McConnell, S. K., Rayburn, H. & Tessier-Lavigne, M. (2005). Gene targeting using a promoterless gene trap vector (“targeted trapping”) is an efficient method to mutate a large fraction of genes. Proceedings of the National Academy of Sciences, USA, 102, 13 188–13 193.CrossRefGoogle ScholarPubMed
Glover, D. M. & Hames, B. D. eds (1995). DNA Cloning 2, Expression Systems: A Practical Approach. IRL Press.Google Scholar
Johnson, A. A. T., Hibberd, J. M., Gay, C., Essah, P. A., Haseloff, J., Tester, M. & Guiderdoni, E. (2005). Spatial control of transgene expression in rice (Oryza sativa L.) using the GAL4 enhancer trapping system. Plant Journal, 41, 779–789.CrossRefGoogle ScholarPubMed
Lilius, G., Persson, M., Buflow, L. & Mosbach, K. (1991). Metal affinity precipitation of proteins carrying genetically attached polyhistidine affinity tails. European Journal of Biochemistry, 198, 499–504.CrossRefGoogle ScholarPubMed
Cabello, F. C., Sartakova, M. L. & Dobrikova, E. Y. (2001). Genetic manipulation of spirochetes – light at the end of the tunnel. Trends in Microbiology, 9, 245–248.CrossRefGoogle ScholarPubMed
Hanahan, D., Jessee, J. & Bloom, F. R. (1991). Plasmid transformation of Escherichia coli and other bacteria. Methods in Enzymology, 204, 63–113.CrossRefGoogle ScholarPubMed
Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. (2000). Practical Streptomyces genetics. John Innes Foundation.Google Scholar
Kunji, E. R. S., Slotboom, D.-J. & Poolman, B. (2003). Lactococcus lactis as host for overproduction of functional membrane proteins. Biochimica et Biophysica Acta, 1610, 97–108.CrossRefGoogle ScholarPubMed
Grice, S. F. J. (1990). Regulated promoter for high-level expression of heterologous genes inBacillus subtilis. Methods in Enzymology, 185, 201–214.Google ScholarPubMed
Marx, C. J. & Lidstrom, M. E. (2001). Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria. Microbiology, 147, 2065–2075.CrossRefGoogle ScholarPubMed
Nagarajan, V. (1990). System for secretion of heterologous proteins in Bacillus subtilis. Methods in Enzymology, 185, 214–228.CrossRefGoogle ScholarPubMed
Scott, H. N., Laible, P. D. & Hanson, D. K. (2003). Sequences of versatile broad-host-range vectors of the RK2 family. Plasmid, 50, 74–79.CrossRefGoogle ScholarPubMed
Cereghino, J. L. & Cregg, J. M. (2000). Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiology Reviews, 24, 45–66.CrossRefGoogle ScholarPubMed
Funk, M., Niedenthal, R., Mumberg, D., Brinkmann, K., Rönicke, V. & Henkel, T. (2002). Vector systems for heterologous expression of proteins in Saccharomyces cerevisiae. Methods in Enzymology, 350, 248–257.CrossRefGoogle ScholarPubMed
Gouka, R. J., Punt, P. J. & Hondel, C. A. M. J. J. (1997). Efficient production of secreted proteins by Aspergillus: progress, limitations and prospects. Applied Microbiology and Biotechnology, 47, 1–11.CrossRefGoogle ScholarPubMed
Ruiz-Diez, B. (2002). Strategies for the transformation of filamentous fungi. Journal of Applied Microbiology, 92, 189–195.CrossRefGoogle ScholarPubMed
Schlessinger, D. (1990). Yeast artifical chromosomes: tools for mapping and analysis of complex genomes. Trends in Genetics, 6, 248–258.CrossRefGoogle Scholar
Siam, R., Dolan, W. P. & Forsburg, S. L. (2004). Choosing and using Schizosaccharomyces pombe plasmids. Methods, 33, 189–198.CrossRefGoogle ScholarPubMed
Song, H., Li, Y., Fang, W., Geng, Y., Wang, X., Wang, M. & Qiu, B. (2003). Development of a set of expression vectors inHansenula polymorpha. Biotechnology Letters, 25, 1999–2006.CrossRefGoogle ScholarPubMed
Toews, M. W., Warmbold, J., Konzack, S., Rischitor, P., Veith, D., Vienken, K., Vinuesa, C., Wei, H. & Fischer, R. (2004). Establishment of mRFP1 as a fluorescent marker in Aspergillus nidulans and construction of expression vectors for high-throughput protein tagging using recombination in vitro (GATEWAY). Current Genetics, 45, 383–389.Google Scholar
Wang, L., Kao, R., Ivey, F. D. & Hoffmann, C. S. (2004). Strategies for gene disruptions and plasmid constructions in fission yeast. Methods, 33, 199–205.CrossRefGoogle ScholarPubMed
Wang, Y.-C. M., Chuang, L. L., Lee, F. W. F. & Da Silva, N. A. (2003). Sequential cloned gene integration in the yeast Kluyveromyces lactis. Applied Microbiology and Biotechnology, 62, 523–527.CrossRefGoogle ScholarPubMed
Bateman, J. M. & Purton, S. (2000). Tools for chloroplast transformation in Chlamydomonas: expression vectors and a new dominant selectable marker. Molecular and General Genetics, 263, 404–410.CrossRefGoogle Scholar
Castle, L. A., Siehl, D. L., Gorton, R., Patten, P. A., Chen, Y. H., Bertain, S., Cho, H.-J., Duck, N., Wong, J., Liu, D. & Lassner, M. W. (2004). Discovery and directed evolution of a glyphosate tolerance gene. Science, 304, 1151–1154.CrossRefGoogle ScholarPubMed
Clough, S. J. & Bent, A. F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16, 735–743.CrossRefGoogle ScholarPubMed
Hare, P. D. & Chua, N.-H. (2002). Excision of selectable markers from transgenic plants. Nature Biotechnology, 20, 575–580.Google ScholarPubMed
Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S. & Mullineaux, P. M. (2000). pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Molecular Biology, 42, 819–832.CrossRefGoogle ScholarPubMed
Ma, J. K. C., Drake, P. M. W. & Christou, P. (2003). The production of recombinant pharmaceutical proteins in plants. Nature Reviews Genetics, 4, 794–805.CrossRefGoogle ScholarPubMed
Ogita, S., Uefuji, H., Yamaguchi, Y., Koizumi, N. & Sano, H. (2003). Producing decaffeinated coffee plants. Nature, 423, 823.CrossRefGoogle ScholarPubMed
Walker, T. L., Collet, C. & Purton, S. (2005). Algal transgenics in the genomic era. Journal of Phycology, 41, 1077–1093.CrossRefGoogle Scholar
Weigel, D. & Glazebrook, J. (2002). Arabidopsis: A Laboratory Manual. Cold Spring HarborLaboratory press.Google Scholar
Wright, M., Dawson, J., Dunder, E., Suttie, J., Reed, J., Kramer, C., Chang, Y., Novitzky, R., Wang, H. & Artim-Moore, L. (2001). Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Reports, 20, 429–436.CrossRefGoogle Scholar
Bonnefoy, N. & Fox, T. D. (2001). Genetic transformation of Saccharomyces cerevisiae mitochondria. Methods in Cell Biology, 65, 381–396.CrossRefGoogle ScholarPubMed
Lutz, K. A., Bosacchi, M. H. & Maliga, P. (2006). Plastid marker-gene excision by transiently expressed CRE recombinase. Plant Journal, 45, 447–456.CrossRefGoogle ScholarPubMed
Maliga, P. (2004). Plastid transformation in higher plants. Annual Review of Plant Biology, 55, 289–313.CrossRefGoogle ScholarPubMed
Mireau, H., Arnal, N. & Fox, T. D. (2003). Expression of Barstar as a selectable marker in yeast mitochondria. Molecular Genetics and Genomics, 270, 1–8.CrossRefGoogle ScholarPubMed
Berezikov, E., Bargmann, C. I. & Plasterk, R. H. A. (2004). Homologous gene targeting in Caenorhabditis elegans by biolistic transformation. Nucleic Acids Research, 32, e40.CrossRefGoogle ScholarPubMed
Praitis, V., Casey, E., Collar, D. & Austin, J. (2001). Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics, 157, 1217–1226.Google ScholarPubMed
Timmons, L. & Fire, A. (1998). Specific interference by ingested dsRNA. Nature, 395, 854.CrossRefGoogle ScholarPubMed
Liepman, A. H., Wilkerson, C. G. & Keegstra, K. (2005). Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proceedings of the National Academy of Sciences, USA, 102, 2221–2226.CrossRefGoogle ScholarPubMed
Luckow, V. A., Lee, S. C., Barry, G. F. & Olins, P. O. (1993). Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. Journal of Virology, 67, 4566–4579.Google ScholarPubMed
Richardson, C. D. ed. (2005). Baculovirus Expression Protocols. Humana Press.Google Scholar
Rong, Y. S. & Golic, K. G. (2000). Gene targeting by homologous recombination in Drosophila. Science, 288, 2013–2018.CrossRefGoogle ScholarPubMed
Schotta, G. & Reuter, G. (2000). Controlled expression of tagged proteins in Drosophila using a new modular P-element vector system. Molecular and General Genetics, 262, 916–920.CrossRefGoogle ScholarPubMed
Venken, K. J. T. & Bellen, H. J. (2005). Emerging technologies for gene manipulation in Drosophila melanogaster. Nature Reviews Genetics, 6, 167–178.CrossRefGoogle ScholarPubMed
Wimmer, E. A. (2003). Applications of insect transgenesis. Nature Reviews Genetics, 4, 225–232.CrossRefGoogle ScholarPubMed
Basu, J., Compitello, G., Stromberg, G., Willard, H. F. & Bokkelen, G. (2005). Efficient assembly of de novo human artificial chromosomes from large genomic loci. BMC Biotechnology, 5, 21.CrossRefGoogle ScholarPubMed
Basu, J. & Willard, H. F. (2005). Artificial and engineered chromosomes: non-integrating vectors for gene therapy. Trends in Molecular Medicine, 11, 251–258.CrossRefGoogle ScholarPubMed
Brocard, J., Warot, X., Wendling, O., Messaddeq, N., Vonesch, , , J.-L.Chambon, P. & Metzger, D. (1997). Spatio-temporally controlled site-specific somatic mutagenesis in the mouse. Proceedings of the National Academy of Sciences, USA, 94, 14 559–14 563.CrossRefGoogle ScholarPubMed
Gordon, J. W. (1993). Production of transgenic mice. Methods in Enzymology, 225, 747–753.CrossRefGoogle ScholarPubMed
Grimm, S. (2004). The art and design of genetic screens: mammalian culture cells. Nature Reviews Genetics, 5, 179–189.CrossRefGoogle ScholarPubMed
Kistner, A., Gossen, M., Zimmerman, F., Jerecic, J., Ullmer, C., Lübbert, H. & Bujard, H. (1996). Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proceedings of the National Academy of Sciences, USA, 93, 10 933–10 938.CrossRefGoogle ScholarPubMed
Verma, I. M. & Weitzmann, M. D. (2005). Gene therapy: twenty-first century medicine. Annual Review of Biochemistry, 74, 711–738.CrossRefGoogle ScholarPubMed
Cabello, F. C., Sartakova, M. L. & Dobrikova, E. Y. (2001). Genetic manipulation of spirochetes – light at the end of the tunnel. Trends in Microbiology, 9, 245–248.CrossRefGoogle ScholarPubMed
Hanahan, D., Jessee, J. & Bloom, F. R. (1991). Plasmid transformation of Escherichia coli and other bacteria. Methods in Enzymology, 204, 63–113.CrossRefGoogle ScholarPubMed
Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. (2000). Practical Streptomyces genetics. John Innes Foundation.Google Scholar
Kunji, E. R. S., Slotboom, D.-J. & Poolman, B. (2003). Lactococcus lactis as host for overproduction of functional membrane proteins. Biochimica et Biophysica Acta, 1610, 97–108.CrossRefGoogle ScholarPubMed
Grice, S. F. J. (1990). Regulated promoter for high-level expression of heterologous genes inBacillus subtilis. Methods in Enzymology, 185, 201–214.Google ScholarPubMed
Marx, C. J. & Lidstrom, M. E. (2001). Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria. Microbiology, 147, 2065–2075.CrossRefGoogle ScholarPubMed
Nagarajan, V. (1990). System for secretion of heterologous proteins in Bacillus subtilis. Methods in Enzymology, 185, 214–228.CrossRefGoogle ScholarPubMed
Scott, H. N., Laible, P. D. & Hanson, D. K. (2003). Sequences of versatile broad-host-range vectors of the RK2 family. Plasmid, 50, 74–79.CrossRefGoogle ScholarPubMed
Cereghino, J. L. & Cregg, J. M. (2000). Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiology Reviews, 24, 45–66.CrossRefGoogle ScholarPubMed
Funk, M., Niedenthal, R., Mumberg, D., Brinkmann, K., Rönicke, V. & Henkel, T. (2002). Vector systems for heterologous expression of proteins in Saccharomyces cerevisiae. Methods in Enzymology, 350, 248–257.CrossRefGoogle ScholarPubMed
Gouka, R. J., Punt, P. J. & Hondel, C. A. M. J. J. (1997). Efficient production of secreted proteins by Aspergillus: progress, limitations and prospects. Applied Microbiology and Biotechnology, 47, 1–11.CrossRefGoogle ScholarPubMed
Ruiz-Diez, B. (2002). Strategies for the transformation of filamentous fungi. Journal of Applied Microbiology, 92, 189–195.CrossRefGoogle ScholarPubMed
Schlessinger, D. (1990). Yeast artifical chromosomes: tools for mapping and analysis of complex genomes. Trends in Genetics, 6, 248–258.CrossRefGoogle Scholar
Siam, R., Dolan, W. P. & Forsburg, S. L. (2004). Choosing and using Schizosaccharomyces pombe plasmids. Methods, 33, 189–198.CrossRefGoogle ScholarPubMed
Song, H., Li, Y., Fang, W., Geng, Y., Wang, X., Wang, M. & Qiu, B. (2003). Development of a set of expression vectors inHansenula polymorpha. Biotechnology Letters, 25, 1999–2006.CrossRefGoogle ScholarPubMed
Toews, M. W., Warmbold, J., Konzack, S., Rischitor, P., Veith, D., Vienken, K., Vinuesa, C., Wei, H. & Fischer, R. (2004). Establishment of mRFP1 as a fluorescent marker in Aspergillus nidulans and construction of expression vectors for high-throughput protein tagging using recombination in vitro (GATEWAY). Current Genetics, 45, 383–389.Google Scholar
Wang, L., Kao, R., Ivey, F. D. & Hoffmann, C. S. (2004). Strategies for gene disruptions and plasmid constructions in fission yeast. Methods, 33, 199–205.CrossRefGoogle ScholarPubMed
Wang, Y.-C. M., Chuang, L. L., Lee, F. W. F. & Da Silva, N. A. (2003). Sequential cloned gene integration in the yeast Kluyveromyces lactis. Applied Microbiology and Biotechnology, 62, 523–527.CrossRefGoogle ScholarPubMed
Bateman, J. M. & Purton, S. (2000). Tools for chloroplast transformation in Chlamydomonas: expression vectors and a new dominant selectable marker. Molecular and General Genetics, 263, 404–410.CrossRefGoogle Scholar
Castle, L. A., Siehl, D. L., Gorton, R., Patten, P. A., Chen, Y. H., Bertain, S., Cho, H.-J., Duck, N., Wong, J., Liu, D. & Lassner, M. W. (2004). Discovery and directed evolution of a glyphosate tolerance gene. Science, 304, 1151–1154.CrossRefGoogle ScholarPubMed
Clough, S. J. & Bent, A. F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16, 735–743.CrossRefGoogle ScholarPubMed
Hare, P. D. & Chua, N.-H. (2002). Excision of selectable markers from transgenic plants. Nature Biotechnology, 20, 575–580.Google ScholarPubMed
Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S. & Mullineaux, P. M. (2000). pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Molecular Biology, 42, 819–832.CrossRefGoogle ScholarPubMed
Ma, J. K. C., Drake, P. M. W. & Christou, P. (2003). The production of recombinant pharmaceutical proteins in plants. Nature Reviews Genetics, 4, 794–805.CrossRefGoogle ScholarPubMed
Ogita, S., Uefuji, H., Yamaguchi, Y., Koizumi, N. & Sano, H. (2003). Producing decaffeinated coffee plants. Nature, 423, 823.CrossRefGoogle ScholarPubMed
Walker, T. L., Collet, C. & Purton, S. (2005). Algal transgenics in the genomic era. Journal of Phycology, 41, 1077–1093.CrossRefGoogle Scholar
Weigel, D. & Glazebrook, J. (2002). Arabidopsis: A Laboratory Manual. Cold Spring HarborLaboratory press.Google Scholar
Wright, M., Dawson, J., Dunder, E., Suttie, J., Reed, J., Kramer, C., Chang, Y., Novitzky, R., Wang, H. & Artim-Moore, L. (2001). Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Reports, 20, 429–436.CrossRefGoogle Scholar
Bonnefoy, N. & Fox, T. D. (2001). Genetic transformation of Saccharomyces cerevisiae mitochondria. Methods in Cell Biology, 65, 381–396.CrossRefGoogle ScholarPubMed
Lutz, K. A., Bosacchi, M. H. & Maliga, P. (2006). Plastid marker-gene excision by transiently expressed CRE recombinase. Plant Journal, 45, 447–456.CrossRefGoogle ScholarPubMed
Maliga, P. (2004). Plastid transformation in higher plants. Annual Review of Plant Biology, 55, 289–313.CrossRefGoogle ScholarPubMed
Mireau, H., Arnal, N. & Fox, T. D. (2003). Expression of Barstar as a selectable marker in yeast mitochondria. Molecular Genetics and Genomics, 270, 1–8.CrossRefGoogle ScholarPubMed
Berezikov, E., Bargmann, C. I. & Plasterk, R. H. A. (2004). Homologous gene targeting in Caenorhabditis elegans by biolistic transformation. Nucleic Acids Research, 32, e40.CrossRefGoogle ScholarPubMed
Praitis, V., Casey, E., Collar, D. & Austin, J. (2001). Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics, 157, 1217–1226.Google ScholarPubMed
Timmons, L. & Fire, A. (1998). Specific interference by ingested dsRNA. Nature, 395, 854.CrossRefGoogle ScholarPubMed
Liepman, A. H., Wilkerson, C. G. & Keegstra, K. (2005). Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proceedings of the National Academy of Sciences, USA, 102, 2221–2226.CrossRefGoogle ScholarPubMed
Luckow, V. A., Lee, S. C., Barry, G. F. & Olins, P. O. (1993). Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. Journal of Virology, 67, 4566–4579.Google ScholarPubMed
Richardson, C. D. ed. (2005). Baculovirus Expression Protocols. Humana Press.Google Scholar
Rong, Y. S. & Golic, K. G. (2000). Gene targeting by homologous recombination in Drosophila. Science, 288, 2013–2018.CrossRefGoogle ScholarPubMed
Schotta, G. & Reuter, G. (2000). Controlled expression of tagged proteins in Drosophila using a new modular P-element vector system. Molecular and General Genetics, 262, 916–920.CrossRefGoogle ScholarPubMed
Venken, K. J. T. & Bellen, H. J. (2005). Emerging technologies for gene manipulation in Drosophila melanogaster. Nature Reviews Genetics, 6, 167–178.CrossRefGoogle ScholarPubMed
Wimmer, E. A. (2003). Applications of insect transgenesis. Nature Reviews Genetics, 4, 225–232.CrossRefGoogle ScholarPubMed
Basu, J., Compitello, G., Stromberg, G., Willard, H. F. & Bokkelen, G. (2005). Efficient assembly of de novo human artificial chromosomes from large genomic loci. BMC Biotechnology, 5, 21.CrossRefGoogle ScholarPubMed
Basu, J. & Willard, H. F. (2005). Artificial and engineered chromosomes: non-integrating vectors for gene therapy. Trends in Molecular Medicine, 11, 251–258.CrossRefGoogle ScholarPubMed
Brocard, J., Warot, X., Wendling, O., Messaddeq, N., Vonesch, , , J.-L.Chambon, P. & Metzger, D. (1997). Spatio-temporally controlled site-specific somatic mutagenesis in the mouse. Proceedings of the National Academy of Sciences, USA, 94, 14 559–14 563.CrossRefGoogle ScholarPubMed
Gordon, J. W. (1993). Production of transgenic mice. Methods in Enzymology, 225, 747–753.CrossRefGoogle ScholarPubMed
Grimm, S. (2004). The art and design of genetic screens: mammalian culture cells. Nature Reviews Genetics, 5, 179–189.CrossRefGoogle ScholarPubMed
Kistner, A., Gossen, M., Zimmerman, F., Jerecic, J., Ullmer, C., Lübbert, H. & Bujard, H. (1996). Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proceedings of the National Academy of Sciences, USA, 93, 10 933–10 938.CrossRefGoogle ScholarPubMed
Verma, I. M. & Weitzmann, M. D. (2005). Gene therapy: twenty-first century medicine. Annual Review of Biochemistry, 74, 711–738.CrossRefGoogle ScholarPubMed
Uhlmann, E. J., Wong, M., Baldwin, R. L., Bajenaru, M. L., Onda, H., Kwiatkowski, D. J., Yamada, K. & Gutmann, D. H. (2002). Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Annals of Neurology, 52, 285–296.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Christopher Howe
  • Book: Gene Cloning and Manipulation
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511807343.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Christopher Howe
  • Book: Gene Cloning and Manipulation
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511807343.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Christopher Howe
  • Book: Gene Cloning and Manipulation
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511807343.013
Available formats
×