Skip to main content Accessibility help
×
Home
  • Print publication year: 2019
  • Online publication date: February 2019

8 - Real Cycle Analysis

from Part II - Fundamentals
1.Gülen, S. C., Smith, R. W., Second Law Efficiency of the Rankine Bottoming Cycle of a Combined Cycle Power Plant, Journal of Engineering for Gas Turbines and Power, 132 (2010), 011801.
2.Gülen, S. C., Importance of Auxiliary Power Consumption on Combined Cycle Performance, Journal of Engineering for Gas Turbines and Power, 133 (2011), 04180.
3.Elmasri, M. A. GASCAN – An Interactive Code for Thermal Analysis of Gas Turbine Systems, Journal of Engineering for Gas Turbines and Power, 110 (1986), 201210.
4.Elmasri, M. A., Pourkey, F., “Prediction of Cooling Flow Requirements for Advanced Utility Gas Turbines – Part 1: Analysis and Scaling of the Effectiveness Curve,” ASME 86-WA/HT-43.
5.Elmasri, M. A., “Prediction of Cooling Flow Requirements for Advanced Utility Gas Turbines – Part 2: Influence of Ceramic Thermal Barrier Coatings,” ASME 86-WA/HT-44.
6.Khodak, E. A., Romakhova, G. A., Thermodynamic Analysis of Air-Cooled Gas Turbine Plants, ASME Journal of Engineering for Gas Turbines and Power, 123 (2001), 265270.
7.Wilcock, R. C., Young, J. B., Horlock, J. H., The Effect of Turbine Blade Cooling on the Cycle Efficiency of Gas Turbine Power Cycles, Journal of Engineering for Gas Turbines and Power, 127 (2005), 109120.
8.Horlock, J. H., Watson, D. T., Jones, T. V., Limitations on Gas Turbine Performance Imposed by Large Turbine Cooling Flows, Journal of Engineering for Gas Turbines and Power, 123 (2001), 487494.
9.Briesch, M. S., Bannister, R. L., Diakunchak, I. S., Huber, D. J., A Combined Cycle Designed to Achieve Greater than 60 Percent Efficiency, Journal of Engineering for Gas Turbines and Power, 117 (1995), 734741.
10.Teraji, D., “Mercury™ 50 Field Evaluation and Product Introduction,” Paper 05-IAGT-1.1, 16th Symposium on Industrial Application of Gas Turbines (IAGT), October 12–14, 2005, Banff, Alberta, Canada.
11.Gülen, S. C., “Advanced Fossil Fuel Power Systems,” in Energy Conversion, 2nd edition, Eds. Goswami, D.Y., Kreight, F. (Boca Raton, FL: CRC Press, 2017).
12.Horlock, J. H., The Evaporative Gas Turbine (EGT) Cycle, Journal of Engineering for Gas Turbines and Power, 120 (1998), 336343.
13.Nakhamkin, M. et al., The Cascaded Humidified Advanced Turbine (CHAT), Journal of Engineering for Gas Turbines and Power, 118 (1996), 565571.
14.Aramayo-Prudencio, A., Young, J. B., “The Analysis and Design of Saturators for Power Generation Cycles: Part 1 – Thermodynamics,” ASME Paper GT2003-38945, ASME Turbo Expo 2003, June 16–19, 2003, Atlanta, GA.
15.Aramayo-Prudencio, A., Young, J. B., “The Analysis and Design of Saturators for Power Generation Cycles: Part 2 – Heat and Mass Transfer,” ASME Paper GT2003-38946, ASME Turbo Expo 2003, June 16–19, 2003, Atlanta, GA.
16.Digumarthi, R., Chang, C.-N., Cheng Cycle Implementation on a Small gas Turbine Engine, Journal of Engineering for Gas Turbines and Power, 106 (1984), 699702.
17.Cheng, D. Y., “The Distinction between the Cheng and STIG Cycles,” ASME Paper GT2006-90382, ASME Turbo Expo 2006, May 8–11, 2006, Barcelona, Spain.
18.deBiasi, V., “Air Injected Power Augmentation Validated by Fr7FA Peaker Tests,” Gas Turbine World, March–April 2002 issue, pp. 12–15.