Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T07:58:13.798Z Has data issue: false hasContentIssue false

5 - Particulate Formation

from Part 2 - Fundamentals and Modeling: Production and Control

Published online by Cambridge University Press:  05 June 2013

Tim C. Lieuwen
Affiliation:
Georgia Institute of Technology
Vigor Yang
Affiliation:
Georgia Institute of Technology
Get access

Summary

Definition – Smoke/Soot/Carbonaceous Emissions

Carbonaceous materials emitting from the exhaust of gas turbine engines are frequently referred to as soot emissions, nonvolatile particulates, or smoke. Frequently, these terms are used interchangeably. Such emissions typically consist of single particles ranging from 10–80 nanometers that may agglomerate into a complex fractal chain structure with much larger dimensions. A series of photomicrographs from transmission electron microscope (TEM) analysis at different levels of magnification for a combustor operating at 80 percent power is shown in Figure 5.1.

These carbonaceous soot particles should be contrasted with volatile particulates (see Chapter 6), although volatiles may condense onto soot particles. In particular, soot particles can act as carriers of condensed polycyclic aromatic hydrocarbons (PAHs), some of which are carcinogens. Additional discussion of these subjects can be found in this chapter and in Chapter 6 of this book. Recent results indicate that the morphology of these soot particles may change with power levels and even fuel makeup (Anderson et al., 2011).

Type
Chapter
Information
Gas Turbine Emissions , pp. 123 - 153
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Society for Testing and Materials. (1989). Standard Test Methods for Surface and Interfacial Tension of Solutions of Surface-Active Agents, D1331–89.
Anderson, B. E., Beyersdorf, A. J., Hudgins, C. H., Plant, J. V., Thornhill, K. L., Winstead, E. L., Ziemba, L. D. et al. (2011). Alternative Aviation Fuel Experiment (AAFEX), NASA/TM–2011–217059, February.
Appel, J., Bockhorn, H., and Frenklach, M. (2000). Combust. Flame 121: 122. ..CrossRef
Bachmann, J. D., Damburg, R. J., Caldwell, J. C., Edwards, C., and Koman, P. D. (1996). “Review of the National Ambient Air Quality Standards for Particulate Matter: Policy Assessment of Scientific and Technical Information,” EPA-452/R-96–013 (NTIS PB97–115406), Office of Air Quality Planning and Standards, Research Triangle Park, NC.
Balthasar, M., and Frenklach, M. (2005). Proc. Combust. Inst. 30: 1467–75.CrossRef
Bendetto, D., Pasini, S., Falcitelli, M., Marca, C. La., and Tognotti, L. (2000). Comb. Sci. & Tech. 153: 279–94.CrossRef
Bengtsson, K. U. M., Benz, P., Schären, R., and Frouzakis, C. E. (1998). Proc. Comb. Inst. 27: 1393–9.CrossRef
Benish, T. G., Lafeur, A. L., Taghizadeh, K., and Howard, J. B. (1996). Proc. Comb. Inst. 26: 2319–26.CrossRef
Bhargava, A., Colket, M., Sowa, W., Casleton, K., and Maloney, D. (2000). “An Experimental and Modeling Study of Humid Air Premixed Flames.” ASME Journal of Engineering For Gas Turbines and Power 122(3): 405–11.CrossRefGoogle Scholar
Blanquart, G., and Pitsch, H. (2007). “Parameter Free Aggregation Model for Soot Formation.” Presented at the fifth U.S. Combustion Meeting, San Diego, CA, March 25–8.
Blazowski, W. S., and Jackson, T. A. (1978). “Evaluation of Future Jet Fuel Combustion Characteristics,” AFAPL-TR-77–93, July.
Bockhorn, H., D’Anna, A., Sarofim, A.F., and Wang, H., eds. (2009). Combustion Generated Fine Carbonaceous Particles, KIT Scientific Publishing, Karlsuher.
Bonig, M., Feldermann, C., Jander, H., Luers, B., Rudolph, G., and Wagner, H. Gg. (1991). “Soot Formation in Premixed C2H4 Flat Flames at Elevated Pressure, Proc. Combust.” Inst 23: 1581–7.Google Scholar
Brandt, O., and Roth, P. (1989). “A Tunable IR-Diode Laser Technique for Measuring Reaction Rates of High Temperature Aeroslos.” Combustion and Flame 77: 69–78.CrossRefGoogle Scholar
Brocklehurst, H. T., Pridden, C. H., and Moss, J. B. (1997). “Soot Predictions within an Aero Gas Turbine Combustor Chamber.” ASME Paper 97-GT-148.
Brundish, K. D., Miller, M. N., Wilson, C. W., Hilton, M., and Johnson, M. P. (2003). “Measurement of Smoke Particle Size and Distribution Within a Gas Turbine Combustor.” Proceedings of ASME Turbo Expo, Atlanta GA, GT2003–38627, June.CrossRef
Bruno, C., and Vallini, L. (1999). “Flameless Combustion and its Application to Aero-engines.” Fourteenth International Symposium on Air Breathing Engines, September 5–10, Florence, Italy.
Bulzan, D., Anderson, B., Wey, C., Howard, R., Winstead, E., Beyersdorf, A., Corporan, E., et al. (2010). “Gaseous and Particulate Emissions Results of the NASA Alternative Aviation Fuel Experiment (AAFEX).” Proceedings of the ASME Turbo Expo 2010, GT2010–23524, Glasgow, Scotland.CrossRef
Champagne, D. L. (1971). “Standard Measurement of Aircraft Gas Turbine Engine Exhaust Smoke.” ASME 71-GT-88, 1971.CrossRef
Colket, M. B. (1988). “The Pyrolysis of Acetylene and Vinylacetylene in a Single-Pulse Shock Tube,” Proc. Comb. Inst. 21: 851–64.CrossRefGoogle Scholar
Colket, M. B., and Hall, R. J. (1994). “Successes and Uncertainties in Modeling Soot Formation in Laminar, Premixed Flames,” in Soot Formation in Combustion, Mechanisms and Models, Bockhorn, H., ed., Springer Verlag, Berlin, p. 417.Google Scholar
Colket, M. B., and Hall, R. J. (1997). “Mechanisms Controlling Soot Formation in Diffusion Flames.” AFOSR Contract F49620–94-C-0059, UTRC97–5.906.0001–1, August 1, 1994 to July 31, 1997.
Colket, M. B., Hall, R. J., and Stouffer, S. (2004). “Modeling Soot Formation in a Stirred Reactor.” ASME Turbo-Expo Meeting, GT2004–54001, Vienna, Austria.CrossRef
Colket, M. B., Liscinsky, D. L., Chiappetta, L., Leong, M., Madabhushi, R., Zeppieri, S., and Hautman, D. (2003). “Mitigation of Particulate Emissions in Engines via Fuel Additives.” UTRC Report No. R03–6.100.0007–1, AF Technology Investment Agreement F33615–00–2–2001, April.
Colket, M. B., and Seery, D. J. (1984). Presentation at the Twentieth Symposium (International) on Combustion, Ann Arbor, MI.Google Scholar
Colket, M. B., and Seery, D. J. (1994). Proc. Comb. Inst. 25: 883–91.CrossRef
D’Anna, A., D’Alessio, A., and Minutolo, P. (1994). “Spectroscopic and Chemical Characterization of Soot Inception Processes in Premixed Laminar Flames at Atmospheric Pressure,” in Soot Formation in Combustion, Bockhorn, H., ed., Springer Verlag, Berlin, p. 83.Google Scholar
Dobbins, R. A. (1996). Comb. Sci and Tech 121: 103.CrossRef
Dobbins, R. A., Fletcher, R. A., and Lu, W. (1995). Combust. Flame 100: 301–9.CrossRef
Dobbins, R. A., and Subramaniasivam, H. (1994). “Soot Precursor Particles in Flames,” in Soot Formation in Combustion, Bockhorn, H., ed. Springer-Verlag, Berlin, p. 290.
Dockery, D. W., Pope, III, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., Ferris, Jr., B. G., and Speizer, F. E. (1993). New England Journal of Medicine 329: 1753.CrossRef
Echavarria, C. A., Jaramillo, I. C., Sarofim, A. F., Lighty, J. S. (2011). Proc. Comb. Inst. 33: 659–66.CrossRef
Eckerle, W. A. and Rosfjord, T. J. (1987). “Soot Loading in a Generic Gas Turbine Combustor.” AIAA-87–0297.CrossRef
Edwards, T. (Chair) (2006). “Jet Fuel Surrogate Research: A White Paper for Presentation and Discussion at the Surrogate Fuels Workshop – Part IV.” February 13.
Fairweather, M., Jones, W. P., Ledin, H. S., and Lindstedt, R. P. (1985). Proc. Comb. Inst. 24: 1067–74.CrossRef
Fairweather, M., Jones, W. P., and Lindstedt, R. P. (1992). Combust. Flame 89: 45.CrossRef
Fenimore, C. P., and Jones, C. W. (1967). J. Phys. Chem. 71: 593.CrossRef
Flower, W. L. and Bowman, C. T. (1986). “Soot Production in Axisymmetric Laminar Diffusion Flames at Pressures from One to Ten Atmospheres.” Proc. Comb. Inst. 26: 1115–24.Google Scholar
Friedlander, S. K., and Wang, C. S. (1966). Journal of Colloid Interface Science 22: 126.CrossRef
Frenklach, M., Clary, D., Gardiner, Jr., W. C., and Stein, S. E. (1985). “Detailed Kinetic Modeling of Soot Formation in Shock-Tube Pyrolysis of Acetylene,Proc. Comb. Inst. 20: 887–901.CrossRefGoogle Scholar
Frenklach, M., and Wang, H. (1990). “Detailed Modeling of Soot Particle Nucleation and Growth,” Proc. Comb. Inst. 23: 1559–66.CrossRefGoogle Scholar
Frenklach, M., and Wang, H. (1994). “Detailed Mechanism and Modeling of Soot Particle Formation,” in Soot Formation in Combustion, Mechanisms and Models, Bockhorn, H. ed., Springer Verlag, Berlin, p. 165.Google Scholar
Fuchs, N. A. (1964). Mechanics of Aerosols, Pergamon, pp. 291–4.Google Scholar
Gelbard, F. (1982). MAEROS Users Manual, NUREG/CR-1391, (SANDD80–0822).
Gelbard, F., and Seinfeld, J. H. (1980). “Simulation of Multicomponent Aerosol Dynamics,” J. Coll. Int. Sci. 78: 485.CrossRefGoogle Scholar
Glarborg, P., Kee, R. J., Grcar, J. F., and Miller, J. A. (1986). “PSR: A Fortran Program for Modeling Well-Stirred Reactors.” Sandia Report No. SAND86–8209, Sandia National Laboratories.
Glassman, I. (1988). “Soot Formation in Combustion Processes.” Proc. Combust. Inst. 22: 295–311.CrossRefGoogle Scholar
Glaude, P. A., Curran, H. J., Pitz, W. J., and Westbrook, C. K. (2000). “Kinetic Study of the Combustion of Organophosphorous Compounds,” Proceedings of the Combustion Institute 28: 1749–56.CrossRefGoogle Scholar
Gomez, A., and Glassman, I. (1988), “Quantitative Comparison of Fuel Soot Formation Rates in Laminar Diffusion Flames,” Proceedings of the Combustion Institute 21: 1087.CrossRefGoogle Scholar
Gomez, A., Littman, M., and Glassman, I. (1987). “Comparative Study of Soot Formation on the Centerline of Axisymmetric Laminar Diffusion Flames: Fuel and Temperature Effects,” Combustion and Flame 70: 225.CrossRefGoogle Scholar
Gosman, A. D., and Ioannides, E. (1983). “Aspects of Computer Simulation of Liquid- Fueled Combustors,” Journal of Energy 7: 482–90.CrossRefGoogle Scholar
Gran, R., Melaaen, M. C., and Magnussen, B. F. (1994). “Numerical Simulation of Local Extinction Effects in Turbulent Combustor Flows of Methane Air.” Proceedings of the Combustion Institute 25: 1283–91.CrossRefGoogle Scholar
Hall, R. J. (1994). “Radiative Dissipation in Planar Gas Soot Mixtures,” J. Quant. Spectrosc. Radiat. Transfer 51: 635–44.CrossRefGoogle Scholar
Hall, R. J., Smooke, M., and Colket, M. B. (1997). “Predictions of Soot Dynamics in Opposed Jet Diffusion Flames,” in Physical and Chemical Aspects of Combustion: A Tribute to Irvin Glassman, Sawyer, R. F. and Dryer, F. L. eds., Combustion Science and Technology Book Series, Gordon and Breach, Langhorne, PA, pp. 189–230.Google Scholar
Handbook of Aviation Fuel Properties (1983). Prepared by the Coordinating Research Council.
Hansen, N., Klippenstein, S. J., Taatjes, C. A., Miller, J. A., Wang, J., Cool, T. A., Yang, B. et al. (2006). “Identification of C5Hx Isomers in fuel-Rich Flames by Photoionization Mass Spectrometry and Electronic Structure Calculation,” J. Phys. Chem. A, 110(10): 3670–8.CrossRefGoogle Scholar
Harris, S. J., and Maricq, M. M. (2001). “Signature Size Distributions for Diesel and Gasoline Engine Exhaust Particulate Matter.” Journal of Aerosol Science 32(6): 749–64.CrossRefGoogle Scholar
Harris, S. J., and Weiner, A. M. (1983). “Surface Growth of Soot Particles in Premixed Ethylene Air Flames,” Combustion Science and Technology 31: 155–67.CrossRefGoogle Scholar
Haynes, B. S., and Wagner, H. Gg. (1981). “Soot Formation.” Progress in Energy and Combustion Science 7: 229–73.CrossRefGoogle Scholar
Hinds, W. C. (1982). Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, New York: John Wiley.
Hoshizaki, H., Wood, A. D., Seidenstien, S., Brandalise, B. B., and Myer, J. W. (1975). “Development of an Analytical Correlation between Gas Turbine Engine Smoke Production and Jet Plume Visibility.” Lockheed Palo Alto Research Laboratory, Air Force Aero Propulsion Laboratory Report AFAPL-TR-76–29, July 31.
Howard, J. B., and Kausch, W. J. (1980). “Soot Control by Fuel Additives,” Progress in Energy and Combustion Science 6: 263–76.CrossRefGoogle Scholar
Hura, H. S., and Glassman, I. (1988). “Soot Formation of Diffusion Flames of Fuel/Oxygen Mixtures,Proc. Comb. Inst. 22: 371–8.CrossRefGoogle Scholar
Hurley, C. D. (1993). “Smoke Measurements inside a Gas Turbine Combustor.” AIAA-93–2070.CrossRef
ICAO (1995). Engine Exhaust Emission Data Bank, first edition, Doc 9646-AN/943, Montreal, Quebec, Canada.Google Scholar
Kee, R. J., Rupley, F. M., and Miller, J. A. (1989). “CHEMKIN II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics.” Sandia Report No. SAND89–8009, Sandia National Laboratories.
Kennedy, I. M. (1997). “Models of Soot Formation and Oxidation.” Prog. Energy Combust. Sci. 23: 95–132.CrossRefGoogle Scholar
Köylü, Ű. Ő., McEnally, C. S., Rosner, D. E., and Pfefferle, L. D. (1997). “Simultaneous Measurements of Soot Volume Fraction and Particle Size/Microstructure in Flames Using a Thermophoretic Sampling Technique,” Combustion and Flame 110: 494–507.CrossRefGoogle Scholar
Kumfer, B., and Kennedy, I. (2009). “The Role of Soot in the Health Effects of Inhaled Airborne Particles,” in Combustion Generated Fine Carbonaceous Particles, Bockhorn, H., D’Anna, A., Sarofim, A. F., and Wang, H. eds., KIT Scientific Publishing, Karlsuher, pp 1–15.Google Scholar
Lai, F. S., Friedlander, S. K., Pich, J., and Hidy, G. M. (1972). “The Self-Preserving Particle Size Distribution for Brownian Coagulation in the Free-Molecule Regime,” J. Colloid Interface Science 39: 395.CrossRefGoogle Scholar
Lee, W., and Na, Y. D. (2000). “Soot Study in Laminar Diffusion Flames at Elevated Pressure Using Two-Color Pyrometry and Abel Inversion.” JSME Int. J. B 43: 550–5.CrossRefGoogle Scholar
Lefebvre, A. H. (1985). “Influence of Fuel Properties on Gas Turbine Combustion Performance,” AFWAL-TR-84–2104, January.
Lindstedt, P. (1994). “Simplified Soot Nucleation and Surface Growth Steps for Non-Premixed Flames,” in Soot Formation in Combustion: Mechanisms and Models, Bockhorn, H. ed., Springer-Verlag, New York.Google Scholar
Liscinsky, D., Colket, M. B., Hautman, D. J., and True, B. (2001). “Effect of Fuel Additives on Particulate Formation in Gas Turbine Combustors,” AIAA 2001–3745, presented at the 37th AIAA Joint Propulsion Conference and Exhibit, Salt Lake City, Utah, July 8–11.
Liscinsky, D., and Hollick, H. (2008). “Effect of Particle Sampling Technique and Transport on Particle Penetration at the High Temperature and Pressure Conditions Found in Gas Turbine Combustors and Engines.” Summary Report of Year 1 Activities, NASA Contract No. NNC07CB03C, United Technologies Research Center, East Hartford, CT, February 29.
Liscinsky, D. S., and Hollick, H. H. (2010). “Effect of Particle Sampling Technique and Transport on Particle Penetration at the High Temperature and Pressure Conditions Found in Gas Turbine Combustors and Engines.” NASA contractor report, NASA/CR-2010-NNC07CB03C.
Liu, A. B., Mather, D., and Reitz, R. D. (1993). “Modeling the Effects of Drop Drag and Breakup on Fuel Sprays.” SAE Technical Paper 930072.CrossRef
Magnussen, B. F., and Hjertager, B. H. (1976). “On Mathematical Modeling of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion,Proceedings of the Combustion Institute 16: 719–29.CrossRefGoogle Scholar
Malecki, R. E., Rhie, C. M., Mckinney, R. G., Ouyang, H., Syed, S. A., Colket, M. B., and Madabhushi, R. K. (2001). “Application of an Advanced CFD-Based Analysis System to the PW6000 Combustor to Optimize Exit Temperature Distribution – Part I: Description and Validation of the Analysis Tool.” Proceedings of ASME Turbo EXPO (2001-GT-0062), New Orleans, LA, June.Google Scholar
Marchal, C., Delfau, J.-L., Vovelle, C., Morèac, G., Mounaïm-Rousselle, C., and Mauss, F. (2009). “Modelling of Aromatics and Soot Formation from Large Fuel Molecules,” Proceedings of the Combustion Institute 32: 753–9.CrossRef
Marinov, N. M., Pitz, W. J., Westbrook, C. K., Lutz, A. E., Vincitore, A. M., and Senkan, S. M. (1998). “Chemical Kinetic Modeling of a Methane Opposed-Low Diffusion Flame and Comparison to Experiments,” Proc. Comb. Inst. 27: 605–13.CrossRef
Marsh, R., Crayford, A., Petzold, A., Johnson, M., Williams, P., Ibrahim, A., Kay, P., et al. (2010). “Studying, Sampling and Measurement of Aircraft Particulate Emissions II (SAMPLE II) – Final Report.” Research Project EASA, 2009, European Aviation Safety Agency, November.
Melius, C. F, Miller, J. A., and Evleth, E. M. (1993). “Unimolecular Reaction Mechanisms Involving C3H4, C4H4, and C6H6 Hydrocarbon Species,” Proc. Comb. Inst. 24: 621–8.CrossRef
Mensch, A., Santoro, R. J., Litzinger, T. A., and Lee, S.-Y. (2010). “Sooting Characteristics Of Surrogates For Jet Fuels,” Combust. Flame 157: 1097–105.CrossRef
McCrain, L. L. and Roberts, W. L. (2005). “Measurements in the Soot Volume Field in Laminar Diffusion Flames at Elevated Pressures.” Combust. Flame, 140: 60–9.CrossRefGoogle Scholar
McEnally, C., and Pfefferle, L. (2009). “Sooting Tendencies of Nonvolatile Aromatic Hydrocarbons,” Proc. Comb. Inst. 32: 673–9.CrossRef
McEnally, C., Shaffer, A., Long, M. B., Pfefferle, L., Smooke, M. D., Colket, M. B., and Hall, R. J. (1998). “Computational and Experimental Study of Soot Formation in a Coflow, Laminar Ethylene Diffusion Flame,” Proc. Comb. Inst. 27: 1497–505.CrossRef
McVey, J. B., Russell, S., and Kennedy, J. B. (1987). “High-Resolution Patternator for the Characterization of Fuel Sprays.” Journal of Propulsion and Power 3: 202–9.CrossRefGoogle Scholar
McKinnon, J. T., and Howard, J. B. (1992). Twenty-Fourth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, p. 965.Google Scholar
Miller, J. A., and Klippenstein, S. J. (2001). “The Recombination of Propargyl Radicals: Solving the Master Equation,” J. Phys. Chem. A 105: 7254–66.CrossRef
Miller, J. A., and Klippenstein, S. J. (2003). “The Recombination of Propargyl Radicals and Other Reactions on a C6H6 Potential,” J. Phys. Chem. A 107: 7783–99.CrossRef
Miller, J. A., and Melius, C. F. (1992). Combust. Flame 91: 21–39.CrossRef
Moses, C. (1984). “U.S. Army Alternative Gas-Turbine Fuels Research: MERADCOM.” Combustion Problems in Turbine Engines, AGARD-CP-353, January, pp. 7–1 to 7–10.Google Scholar
Mosier, S. A. (1984). “Fuel Effects on Gas Turbine Combustion Systems.” Combustion Problems in Turbine Engines, AGARD-CP-353, January, pp. 5–1 to 5–15.Google Scholar
Mueller, M. E., Blanquart, G., and Pitsch, H. (1975). “Hybrid Method of Moments for Modeling Soot Formation and Growth,” Combust. Flame 156: 1143–55.CrossRef
Mulcahy, M. F. R., and Young, B. C. (1975). “Reaction of Hydroxyl Radicals with Carbon at 298 K,” Carbon 13: 115.CrossRef
Nagle, J., and Strickland-Constable, R. F. (1962). “Oxidation of Carbon between 1000-2000°C,” in Proceedings of Fifth Carbon Conference 1: 154, Pergamon Press, Inc., Oxford.
Neoh, K. G., Howard, J. B., and Sarofim, A. F. (1980). “Effect of Oxidation on the Physical Structure of Soot,” in Particulate Carbon, Siegla, D. C. and Smith, B. W. eds., Plenum Press, New York, p. 261.
Neoh, K. G., Howard, J. B., and Sarofim, A. F. (1984). “Effect of Oxidation on the Physical Structure of Soot,” Proc. Combust. Inst. 20: 951.CrossRef
Norgren, C. T., and Ingebo, R. D. (1975). “Particulate Exhaust Emissions from an Experimental Combustor.” Lewis Research Center, NASA Technical Memorandum, NASA TM X-3254, June.
Odgers, J., and Kretschmer, D. (1984). “The Effects of Fuel Composition upon Heat Transfer in Gas Turbine Combustors,” in Combustion Problems in Turbine Engines, AGARD-CP-353, January, pp. 8–1 to 8–10.Google Scholar
O’Rourke, P. J. (1981). Collective Drop Effects on Vaporizing Liquid Sprays, PhD dissertation, Princeton University.Google Scholar
O’Rourke, P. J., and Amsden, A. A. (1987). “The TAB Method for Numerical Calculation of Spray Droplet Breakup.” SAE Technical Paper 872089.CrossRef
Palmer, H. B., and Cullis, C. F. (1965). “The Formation of Carbon from Gases,” in “Chemistry and Physics of Carbon,” Walker, P. L. ed., Marcel Dekker, NY, p. 265.
Park, S. H. and Rogak, S. N. (2004). “A Novel Fixed-Sectional Model for the Formation and Growth of Aerosol Agglomerates.” Journal of Aerosol Sciences, pp. 1385.CrossRefGoogle Scholar
Penner, J. E., Lister, D. H., Griggs, D. J., Dokken, D. J., and McFarland, M., eds. (1999). “Aviation and the Global Atmosphere,” in Intergovernmental Panel on Climate Change, A Special Report of Working Groups I and II, Cambridge University Press.
Priemus, H., and Schutte-Postma, E. (2009). “Notes on the Particulate Matter Standards in the European Union and the Netherlands.” Int. J. Environ. Res. Public Health 6(3): 1155–73.CrossRefGoogle ScholarPubMed
Rao, A. D. (1989). “Process for Producing Power.” U.S. Patent 4,829,763, May.Google Scholar
Richter, H., Granata, S., Green, W. H., and Howard, J. B. (2005). “Detailed Modeling of PAH and Soot Formation in a Laminar Premixed Benzene/Oxygen/Argon Low-Pressure Flame,” Proc Comb. Inst. 30: 1397–405.CrossRef
Roth, P., Brandt, O., and Von Gersum, S. (1991). “High Temperature Oxidation of Suspended Soot Particles Verified by CO and CO2 Measurements,” Proc Comb. Inst. 23: 1485–91.CrossRef
Sampath, P., and Gratton, M. (1984). “Fuel Character Effects on Performance of Small Gas Turbine Combustion Systems,” in Combustion Problems in Turbine Engines, AGARD-CP-353, January, pp. 6–1 to 6–12.Google Scholar
Singh, J., Balthasar, M., Kraft, M., and Wagner, W. (2005). “Stochastic of Soot Particle Size and Age Distributions in Laminar Premixed Flames,” Proc. Comb. Inst. 30: 1457–66.CrossRef
Smooke, M. D., Hall, R. J., Colket, M. B., Fielding, J., Long, M. B., McEnally, C. S., and Pfefferle, L. D. (2004). “Investigation of the Transition from Lightly Sooting Towards Heavily Sooting Co-Flow Ethylene Diffusion Flames,” Comb. Theory and Modelling 8: 593–606.CrossRef
Smooke, M. D., Long, M. B., Connelly, B. C., Colket, M. B., and Hall, R. J. (2005). “Soot Formation in Laminar Diffusion Flames,” Comb. Flame 143: 613–28.CrossRef
Smooke, M. D., McEnally, C. S., Pfefferle, L. D, Hall, R. J., and Colket, M. B. (1999). “Computational and Experimental Study of Soot Formation in a Coflow, Laminar Diffusion Flame,” Comb. Flame 117: 117–39.CrossRef
Smooke, M. D., Yetter, R. A., Parr, T. P., Hanson-Parr, D. M., Tanoff, M. A., Colket, M. B., and Hall, R. J. (2000). “Computational and Experimental of Ammonia Perchlorate/Ethylene Counter Flow Diffusion Flames,” Proc. Comb. Inst. 28: 2013–20.CrossRef
Smoluchowski, M. (1916). “Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen,” Physik. Zeit. 17: 557–71, 585–99.
Snyder, T. S., Stewart, J. F., Stoner, M. D., and McKinney, R. G. (2001). “Application of an Advanced CFD-Based Analysis System to the PW6000 Combustor to Optimize Exit Temperature Distribution. – Part II: Comparison of Predictions to Full Annular Rig Test Data.” Proceedings of ASME Turbo EXPO (2001-GT-0064), New Orleans, LA, June.
Thomson, K. A., Gulder, O. L., Weckman, E. J., Fraser, R. A., Smallwood, G. J., and Snelling, D. R. (2005). “Soot Concentrations and Temperature Measurements in Annular, Non-premixed, Laminar Flames at Pressures up to 4 MPa.” Combustion and Flame, February, 140(3): 222.CrossRefGoogle Scholar
Tolpadi, A. K., Danis, A. M., Mongia, H. C., and Lindstedt, R. P. (1997). “Soot Modeling in Gas Turbine Combustors.” ASME Paper 97-GT-149.CrossRef
Tsang, W. (Organizing Chair) (2003). “Workshop on Combustion Simulation Databases for Real Transportation Fuels.” National Institute of Standards and Technology, Gaithersburg, MD, September 4–5.
U.S. Environmental Protection Agency. (1997). National Ambient Air Quality Standards for Particulate Matter: Final Decision, Federal Registrar, 62 FR 38652, July 18.
Violi, A., Kubota, A., Truong, T. N., Pitz, W. J., Westbrook, C. K., and Sarofim, A. F. (2002). “A Fully Integrated Kinetic Monte Carlo Molecular Dynamics for the Simulation of Soot Precursor Growth,” Proc. Combust. Inst. 29: 2343–9.CrossRef
Violi, A., Sarofim, A. F., and Voth, G. A. (2004). “Kinetic Monte Carlo-Molecular Dynamics Approach To Model Soot Inception,” Combust Sci. Technol. 176: 991–1005.CrossRef
Von Gersum, S., and Roth, P. (1990). “High temperature oxidation of soot particles by. O atoms and OH radicals,” J. Aerosol Science 21: S31–S34.CrossRef
Von Gersum, S., and Roth, P. (1992). “Soot oxidation in high temperature N2O/Ar and NO/Ar mixtures,” Proc. Combust. Inst. 24: 999–1006.CrossRef
Wagner, H. Gg. (1979). “Soot Formation in Combustion,” Proc. Combust. Inst. 17: 3.CrossRef
Waldmann, L., and Schmitt, K. H. (1966). Chapter 6 in Aerosol Science, Davies, C. N. ed., Academic Press.Google Scholar
Wang, H. (2011). “Formation of Nascent Soot and Other Condensed-Phase Materials in Flames.” Proc. Combust. Inst. 33: 41–67.CrossRefGoogle Scholar
Wayson, R. L., Fleming, G. G., and Lovinelli, R. (2009). “Methodology to Estimate Particulate Matter Emitting from Certified Commercial Aircraft Engines.” J. Air & Water Management Assoc. 59: 91–100.Google Scholar
Wey, C. C., Anderson, B. E., Hudgins, C., Wey, C., Li-Jones, X., Winstead, E., Thornhill, L. K. et al. (2006). “Aircraft Particle Emissions eXperiment (APEX).” NASA/TM-2006–214382, ARL-TR-3903, Cleveland, OH, September.
Wey, C. C., Anderson, B. E., Wey, C., Miake-Lye, R. C., Whitefield, P., and Howard, R. (2007). “Overview on the Aircraft Particle Emissions Experiment.” Journal of Propulsion and Power 23: 898–905.CrossRefGoogle Scholar
Willeke, K., and Baron, P. A., eds. (1993). Aerosol Measurement, Principles, Techniques, and Applications, Van Nostrand Reinhold, New York.
Wolff, G. T. (1996). “Closure by the Clean Air Scientific Advisory Committee (CASAC) on the Staff Paper for Particulate Matter.” EPA-SAB-CASAC-LTR-96–008, U.S. Environmental Protection Agency, Washington, DC.
Wood, A. D. (1975). “Correlation between Smoke Measurements and the Optical Properties of Jet Engine Smoke.” Society of Automotive Engineering Paper 751119.CrossRef
Woods, I. T., and Haynes, B. S. (1994). “Active Sites in Soot Growth,” in Soot Formation in Combustion – Mechanisms and Models, Bockhorn, H. ed., SpringerVerlag, Berlin, pp. 275–89.Google Scholar
Wu, C. H., and Kern, R. D. (1987). “Shock-Tube Study of Allene Pyrolysis,” J. Phys. Chem 91: 6291–6.CrossRef
Xu, F., El-Leathy, A. M., Kim, C. H., and Faeth, G. M. (2003). “Soot Surface Growth in Laminar Hydrocarbon/Air Diffusion Flames,” Combust. Flame 132: 43–57.CrossRef
Xu, F., Lin, K-C., and Faeth, G. M. (1998). “Soot Formation in Laminar Premixed Methane/Oxygen Flames at Atmospheric Pressure,” Comb. Flame 115: 195–209.CrossRef
Xu, F., Sunderland, P. B., and Faeth, G. M. (1997). “Soot Formation in Laminar Premixed Ethylene/Air Flames at Atmospheric Pressure,” Combust. Flame 108: 471–93.CrossRef
Yang, Y., Boehman, A. L., and Santoro, R. J. (2007). “A Study of Jet Fuel Sooting Tendency Using the Threshold Sooting Index (TSI) Method,” Combust. Flame 149: 191–205.CrossRef
Zhang, Q., Guo, H., Liu, F., Smallwood, G. J., and Thomson, M. J. (2009). “Modeling of Soot Aggregate Formation and Size Distribution in a Laminar Ethylene/Air Coflow Diffusion Flame with Detailed PAH Chemistry and an Advanced Sectional Aerosol Dynamics Model,” Proc. Combust. Inst. 32: 761–8.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×