Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-18T08:16:26.242Z Has data issue: false hasContentIssue false

8 - Relative roles of bacteria and fungi in polycyclic aromatic hydrocarbon biodegradation and bioremediation of contaminated soils

Published online by Cambridge University Press:  10 December 2009

Carl E. Cerniglia
Affiliation:
National Center for Toxicological Research, US, Food and Drug Administration, USA
John B. Sutherland
Affiliation:
National Center for Toxicological Research, US, Food and Drug Administration, USA
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access

Summary

Introduction

Polycyclic aromatic hydrocarbons (PAHs) are a large group of toxic compounds (Fig. 8.1) that are components of coal and petroleum and are also produced during incomplete combustion of fuels. They are introduced into the environment via many routes, including fossil-fuel combustion, automobile and diesel engine exhausts, production of manufactured gas and coal tar, wood-preservation processes and waste incineration (Harvey, 1997; Pozzoli et al., 2004). Benzenoid PAHs are thermodynamically stable, with positive bond resonance energies (Aihara, 1996), and have vapour pressures of 2.8 × 10− 5 to 10.4 Pa (Sonnefeld et al., 1983). The aqueous solubility of PAHs ranges from 0.2 μg/l for indeno[1,2,3-cd]pyrene and 1.6 μg/l for benzo[a]pyrene to 31.7 mg/l for naphthalene (Lehto et al., 2003). Despite their low solubility, PAHs are widely distributed in the environment (Wilcke, 2000; Saltiene et al., 2002; Peachey, 2003; Pozzoli et al., 2004) and, as persistent organic pollutants, they are involved in biogeochemical cycling (Del Vento & Dachs, 2002; Jeon et al., 2003). The five-ring PAH, perylene, found in Jurassic sediments may even have originated from ancient fungi (Jiang et al., 2000).

Sixteen PAHs are on the lists of priority pollutants of the US Environmental Protection Agency and the European Union (Lehto et al., 2003); mixtures containing more than 50 individual PAHs have been found in sediments at hazardous waste sites (Brenner et al., 2002). Low-molecular-weight PAHs, with two or three rings, are the most volatile and usually the most abundant. High-molecular-weight PAHs, with four or more rings, are less volatile.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahtiainen, J., Valo, R., Järvinen, M. & Joutti, A. (2002). Microbial toxicity tests and chemical analysis as monitoring parameters at composting of creosote-contaminated soil. Ecotoxicology and Environmental Safety, 53, 323–9.CrossRefGoogle ScholarPubMed
Aihara, J. (1996). Bond resonance energies of polycyclic benzenoid and non-benzenoid hydrocarbons. Journal of the Chemical Society Perkin Transactions II, 10, 2185–95.CrossRefGoogle Scholar
Allard, A.-S. & Neilson, A. H. (1997). Bioremediation of organic waste sites: a critical review of microbiological aspects. International Biodeterioration and Biodegradation, 39, 253–85.CrossRefGoogle Scholar
Andersson, B. E., Welinder, L., Olsson, P. A., Olsson, S. & Henrysson, T. (2000). Growth of inoculated white-rot fungi and their interactions with the bacterial community in soil contaminated with polycyclic aromatic hydrocarbons, as measured by phospholipid fatty acids. Bioresource Technology, 73, 29–36.CrossRefGoogle Scholar
Andersson, B. E., Lundstedt, S., Tornberg, K.et al. (2003). Incomplete degradation of polycyclic aromatic hydrocarbons in soil inoculated with wood-rotting fungi and their effect on the indigenous soil bacteria. Environmental Toxicology and Chemistry, 22, 1238–43.CrossRefGoogle ScholarPubMed
Antizar-Ladislao, B., Lopez-Real, J. M. & Beck, A. J. (2004). Bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated waste using composting approaches. Critical Reviews in Environmental Science and Technology, 34, 249–89.CrossRefGoogle Scholar
April, T. M., Foght, J. M. & Currah, R. S. (2000). Hydrocarbon-degrading filamentous fungi isolated from flare pit soils in northern and western Canada. Canadian Journal of Microbiology, 46, 38–49.CrossRefGoogle ScholarPubMed
Atagana, H. I. (2004). Bioremediation of creosote-contaminated soil in South Africa by landfarming. Journal of Applied Microbiology, 96, 510–20.CrossRefGoogle ScholarPubMed
Atagana, H. I., Haynes, R. J. & Wallis, F. M. (2003). Optimization of soil physical and chemical conditions for the bioremediation of creosote-contaminated soil. Biodegradation, 14, 297–307.CrossRefGoogle Scholar
Balba, M. T., Al-Awadhi, N. & Al-Daher, R. (1998a). Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation. Journal of Microbiological Methods, 32, 155–64.CrossRefGoogle Scholar
Balba, M. T., Al-Daher, R., Al-Awadhi, N., Chino, H. & Tsuji, H. (1998b). Bioremediation of oil-contaminated desert soil: the Kuwaiti experience. Environment International, 24, 163–73.CrossRefGoogle Scholar
Baldrian, P., in der Wiesche, C., Gabriel, J., Nerud, F. & Zadražil, F. (2000). Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Applied and Environmental Microbiology, 66, 2471–8.CrossRefGoogle ScholarPubMed
Bastiaens, L., Springael, D., Wattiau, P.et al. (2000). Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers. Applied and Environmental Microbiology, 66, 1834–43.CrossRefGoogle ScholarPubMed
Bezalel, L., Hadar, Y., Fu, P. P., Freeman, J. P. & Cerniglia, C. E. (1996). Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Applied and Environmental Microbiology, 62, 2547–53.Google ScholarPubMed
Bhatt, M., Cajthaml, T. & Šašek, V. (2002). Mycoremediation of PAH-contaminated soil. Folia Microbiologica, 47, 255–8.CrossRefGoogle ScholarPubMed
Bogan, B. W., Lahner, L. M., Sullivan, W. R. & Paterek, J. R. (2003). Degradation of straight-chain aliphatic and high-molecular-weight polycyclic aromatic hydrocarbons by a strain of Mycobacterium austroafricanum. Journal of Applied Microbiology, 94, 230–9.CrossRefGoogle ScholarPubMed
Boonchan, S., Britz, M. L. & Stanley, G. A. (2000). Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Applied and Environmental Microbiology, 66, 1007–19.CrossRefGoogle ScholarPubMed
Bouchez, M., Blanchet, D., Bardin, V., Haeseler, F. & Vandecasteele, J.-P. (1999). Efficiency of defined strains and of soil consortia in the biodegradation of polycyclic aromatic hydrocarbon (PAH) mixtures. Biodegradation, 10, 429–35.CrossRefGoogle ScholarPubMed
Breedveld, G. D. & Karlsen, D. A. (2000). Estimating the availability of polycyclic aromatic hydrocarbons for bioremediation of creosote contaminated soils. Applied Microbiology and Biotechnology, 54, 255–61.CrossRefGoogle ScholarPubMed
Brenner, R. C., Magar, V. S., Ickes, J. A.et al. (2002). Characterization and fate of PAH-contaminated sediments at the Wyckoff/Eagle Harbor superfund site. Environmental Science and Technology, 36, 2605–13.CrossRefGoogle ScholarPubMed
Brezna, B., Khan, A. A. & Cerniglia, C. E. (2003). Molecular characterization of dioxygenases from polycyclic aromatic hydrocarbon-degrading Mycobacterium spp. FEMS Microbiology Letters, 223, 177–83.CrossRefGoogle ScholarPubMed
Brodkorb, T. S. & Legge, R. L. (1992). Enhanced biodegradation of phenanthrene in oil tar-contaminated soils supplemented with Phanerochaete chrysosporium. Applied and Environmental Microbiology, 58, 3117–21.Google ScholarPubMed
Bumpus, J. A., Tien, M., Wright, D. & Aust, S. D. (1985). Oxidation of persistent environmental pollutants by a white rot fungus. Science, 228, 1434–6.CrossRefGoogle ScholarPubMed
Cajthaml, T., Möder, M., Kačer, P., Šašek, V. & Popp, P. (2002). Study of fungal degradation products of polycyclic aromatic hydrocarbons using gas chromatography with ion trap mass spectrometry detection. Journal of Chromatography A, 974, 213–22.CrossRefGoogle ScholarPubMed
Cameotra, S. S. & Bollag, J.-M. (2003). Biosurfactant-enhanced bioremediation of polycyclic aromatic hydrocarbons. Critical Reviews in Environmental Science and Technology, 30, 111–26.CrossRefGoogle Scholar
Canet, R., Lopez-Real, J. M. & Beck, A. J. (1999). Overview of polycyclic aromatic hydrocarbon biodegradation by white-rot fungi. Land Contamination and Reclamation, 7, 191–7.Google Scholar
Canet, R., Birnstingl, J. G., Malcolm, D. G., Lopez-Real, J. M. & Beck, A. J. (2001). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by native microflora and combinations of white-rot fungi in a coal-tar contaminated soil. Bioresource Technology, 76, 113–17.CrossRefGoogle Scholar
Capotorti, G., Digianvincenzo, P., Cesti, P., Bernardi, A. & Guglielmetti, G. (2004). Pyrene and benzo[a]pyrene metabolism by an Aspergillus terreus strain isolated from a polycyclic aromatic hydrocarbons polluted soil. Biodegradation, 15, 79–85.CrossRefGoogle ScholarPubMed
Casillas, R. P., Crow, S. A., Heinze, T. M., Deck, J. & Cerniglia, C. E. (1996). Initial oxidative and subsequent conjugative metabolites produced during the metabolism of phenanthrene by fungi. Journal of Industrial Microbiology, 16, 205–15.CrossRefGoogle Scholar
Castaldi, F. J. (2003). Tank-based bioremediation of petroleum waste sludges. Environmental Progress, 22, 25–36.CrossRefGoogle Scholar
Castaño-Vinyals, G., D'Errico, A., Malats, N. & Kogevinas, M. (2004). Biomarkers of exposure to polycyclic aromatic hydrocarbons from environmental air pollution. Occupational and Environmental Medicine, 61, e12 (9 pp.).CrossRefGoogle ScholarPubMed
Cerniglia, C. E. (1992). Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, 3, 351–68.CrossRefGoogle Scholar
Cerniglia, C. E. (1993). Biodegradation of polycyclic aromatic hydrocarbons. Current Opinion in Biotechnology, 4, 331–8.CrossRefGoogle Scholar
Cerniglia, C. E. (1997). Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. Journal of Industrial Microbiology and Biotechnology, 19, 324–33.CrossRefGoogle ScholarPubMed
Cerniglia, C. E. & Gibson, D. T. (1979). Oxidation of benzo[a]pyrene by the filamentous fungus Cunninghamella elegans. Journal of Biological Chemistry, 254, 12174–80.Google Scholar
Cerniglia, C. E. & Gibson, D. T. (1980). Fungal oxidation of benzo[a]pyrene and (±)-trans-7, 8-dihydroxy-7,8-dihydro benzo[a]pyrene: Evidence for the formation of a benzo[a]pyrene 7,8-diol-9,10-epoxide. Journal of Biological Chemistry, 255, 5159–63.Google Scholar
Cerniglia, C. E. & Sutherland, J. B. (2001). Bioremediation of polycyclic aromatic hydrocarbons by ligninolytic and non-ligninolytic fungi. In Fungi in Bioremediation, ed. Gadd, G. M.. Cambridge: Cambridge University Press, pp. 136–87.CrossRefGoogle Scholar
Cerniglia, C. E. & Sutherland, J. B. (2006). Fungal metabolism of polycyclic aromatic hydrocarbons. In Microbial Degradation of Aromatic Compounds, 2nd edn., ed. Kukor, J. J. & Zylstra, G. J.. New York: Marcel Dekker, (in press).Google Scholar
Cerniglia, C. E. & Yang, S. K. (1984). Stereoselective metabolism of anthracene and phenanthrene by the fungus Cunninghamella elegans. Applied and Environmental Microbiology, 47, 119–24.Google ScholarPubMed
Cerniglia, C. E., Hebert, R. L., Szaniszlo, P. J. & Gibson, D. T. (1978). Fungal transformation of naphthalene. Archives of Microbiology, 117, 135–43.CrossRefGoogle ScholarPubMed
Cerniglia, C. E., Kelly, D. W., Freeman, J. P. & Miller, D. W. (1986). Microbial metabolism of pyrene. Chemico-Biological Interactions, 57, 203–16.CrossRefGoogle ScholarPubMed
Chang, B. V., Shiung, L. C. & Yuan, S. Y. (2002). Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil. Chemosphere, 48, 717–24.CrossRefGoogle ScholarPubMed
Charrois, J. W. A., McGill, W. B. & Froese, K. L. (2001). Acute ecotoxicity of creosote-contaminated soils to Eisenia fetida: a survival-based approach. Environmental Toxicology and Chemistry, 20, 2594–603.CrossRefGoogle ScholarPubMed
Chávez-Gómez, B., Quintero, R., Esparza-Garcia, F.et al. (2003). Removal of phenanthrene from soil by co-cultures of bacteria and fungi pregrown on sugarcane bagasse pith. Bioresource Technology, 89, 177–83.CrossRefGoogle ScholarPubMed
Chung, W. K. & King, G. M. (2001). Isolation, characterization, and polyaromatic hydrocarbon degradation potential of aerobic bacteria from marine macrofaunal burrow sediments and description of Lutibacterium anuloederans gen. nov., sp. nov., and Cycloclasticus spirellensus sp. nov. Applied and Environmental Microbiology, 67, 5585–92.CrossRefGoogle Scholar
Coates, J. D., Woodward, J., Allen, J., Philp, P. & Lovley, D. R. (1997). Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Applied and Environmental Microbiology, 63, 3589–93.Google ScholarPubMed
Colombo, J. C., Cabello, M. & Arambarri, A. M. (1996). Biodegradation of aliphatic and aromatic hydrocarbons by natural soil microflora and pure cultures of imperfect and lignolitic fungi. Environmental Pollution, 94, 355–62.CrossRefGoogle ScholarPubMed
Culp, S. J., Warbritton, A. R., Smith, B. A., Li, E. E. & Beland, F. A. (2000). DNA adduct measurements, cell proliferation and tumor mutation induction in relation to tumor formation in B6C3F1 mice fed coal tar or benzo[a]pyrene. Carcinogenesis, 21, 1433–40.Google ScholarPubMed
Daane, L. L., Harjono, I., Barns, S. M.et al. (2002). PAH-degradation by Paenibacillus spp. and description of Paenibacillus naphthalenovorans sp. nov., a naphthalene-degrading bacterium from the rhizosphere of salt marsh plants. International Journal of Systematic and Evolutionary Microbiology, 52, 131–9.CrossRefGoogle ScholarPubMed
Daisy, B. H., Strobel, G. A., Castillo, U.et al. (2002). Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology, 148, 3737–41.CrossRefGoogle ScholarPubMed
da Silva, M., Cerniglia, C. E., Pothuluri, J. V., Canhos, V. P. & Esposito, E. (2003). Screening filamentous fungi isolated from estuarine sediments for the ability to oxidize polycyclic aromatic hydrocarbons. World Journal of Microbiology and Biotechnology, 19, 399–405.CrossRefGoogle Scholar
Del Vento, S. & Dachs, J. (2002). Prediction of uptake dynamics of persistent organic pollutants by bacteria and phytoplankton. Environmental Toxicology and Chemistry, 21, 2099–107.CrossRefGoogle ScholarPubMed
Dipple, A., Khan, Q. A., Page, J. E., Pontén, I. & Szeliga, J. (1999). DNA reactions, mutagenic action and stealth properties of polycyclic aromatic hydrocarbon carcinogens (Review). International Journal of Oncology, 14, 103–11.Google Scholar
Dries, J. & Smets, B. F. (2002). Transformation and mineralization of benzo[a]pyrene by microbial cultures enriched on mixtures of three- and four-ring polycyclic aromatic hydrocarbons. Journal of Industrial Microbiology and Biotechnology, 28, 70–3.CrossRefGoogle ScholarPubMed
Ehlers, L. J. & Luthy, R. G. (2003). Contaminant bioavailability in soil and sediment. Environmental Science and Technology, 37, 295A–302A.CrossRefGoogle ScholarPubMed
Engst, W., Landsiedel, R., Hermersdörfer, H., Doehmer, J. & Glatt, H. (1999). Benzylic hydroxylation of 1-methylpyrene and 1-ethylpyrene by human and rat cytochromes P450 individually expressed in V79 Chinese hamster cells. Carcinogenesis, 20, 1777–85.CrossRefGoogle ScholarPubMed
Environmental Protection Agency (1986). Manual SW-846, method 8310. Polycyclic aromatic hydrocarbons. http://www.epa.gov/epaoswer/hazwaste/test/pdfs/8310.pdf.
Eschenbach, A., Wienberg, R. & Mahro, B. (1998). Fate and stability of nonextractable residues of [14C]PAH in contaminated soils under environmental stress conditions. Environmental Science and Technology, 32, 2585–90.CrossRefGoogle Scholar
Feitkenhauer, H., Müller, R. & Märkl, H. (2003). Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 60–70 °C by Thermus and Bacillus spp. Biodegradation, 14, 367–72.CrossRefGoogle ScholarPubMed
Fent, K. (2003). Ecotoxicological problems associated with contaminated sites. Toxicology Letters, 140–141, 353–65.CrossRefGoogle ScholarPubMed
Finkelstein, Z. I., Baskunov, B. P., Golovlev, E. L.et al. (2003). Fluorene transformation by bacteria of the genus Rhodococcus. Microbiology (Engl. Transl.), 72, 660–5.Google Scholar
Galushko, A., Minz, D., Schink, B. & Widdel, F. (1999). Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium. Environmental Microbiology, 1, 415–20.CrossRefGoogle ScholarPubMed
Gauthier, E., Déziel, E., Villemur, R.et al. (2003). Initial characterization of new bacteria degrading high-molecular weight polycyclic aromatic hydrocarbons isolated from a 2-year enrichment in a two-liquid-phase culture system. Journal of Applied Microbiology, 94, 301–11.CrossRefGoogle Scholar
Gaylor, D. W. (1995). Risk assessment for toxic chemicals in the environment. In Microbial Transformation and Degradation of Toxic Organic Chemicals, ed. Young, L. Y. & Cerniglia, C. E.. New York: Wiley-Liss, pp. 579–601.Google Scholar
Gibson, D. T. (1999). Beijerinckia sp. strain B1: a strain by any other name …Journal of Industrial Microbiology and Biotechnology, 23, 284–93.CrossRefGoogle Scholar
Gramss, G., Voigt, K.-D. & Kirsche, B. (1999). Degradation of polycyclic aromatic hydrocarbons with three to seven aromatic rings by higher fungi in sterile and unsterile soils. Biodegradation, 10, 51–62.CrossRefGoogle ScholarPubMed
Gravato, C. & Santos, M. A. (2002). Juvenile sea bass liver P450, EROD induction, and erythrocytic genotoxic responses to PAH and PAH-like compounds. Ecotoxicology and Environmental Safety, 51, 115–27.CrossRefGoogle ScholarPubMed
Habe, H. & Omori, T. (2003). Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Bioscience, Biotechnology and Biochemistry, 67, 225–43.CrossRefGoogle ScholarPubMed
Haemmerli, S. D., Leisola, M. S. A., Sanglard, D. & Fiechter, A. (1986). Oxidation of benzo[a]pyrene by extracellular ligninases of Phanerochaete chrysosporium: veratryl alcohol and stability of ligninase. Journal of Biological Chemistry, 261, 6900–3.Google ScholarPubMed
Hammel, K. E., Green, B. & Gai, W. Z. (1991). Ring fission of anthracene by a eukaryote. Proceedings of the National Academy of Sciences of the United States of America, 88, 10 605–8.CrossRefGoogle ScholarPubMed
Hammel, K. E., Gai, W. Z., Green, B. & Moen, M. A. (1992). Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium. Applied and Environmental Microbiology, 58, 1832–8.Google ScholarPubMed
Harayama, S. (1997). Polycyclic aromatic hydrocarbon bioremediation design. Current Opinion in Biotechnology, 8, 268–73.CrossRefGoogle ScholarPubMed
Harrigan, J. A., Vezina, C. M., McGarrigle, B. P.et al. (2004). DNA adduct formation in precision-cut rat liver and lung slices exposed to benzo[a]pyrene. Toxicological Sciences, 77, 307–14.CrossRefGoogle Scholar
Harvey, R. G. (1997). Polycyclic Aromatic Hydrocarbons. Hoboken, NJ: John Wiley & Sons.Google Scholar
Hedlund, B. P., Geiselbrecht, A. D., Bair, T. J. & Staley, J. T. (1999). Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov. Applied and Environmental Microbiology, 65, 251–9.Google ScholarPubMed
Heitkamp, M. A., Franklin, W. & Cerniglia, C. E. (1988a). Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium. Applied and Environmental Microbiology, 54, 2549–55.Google Scholar
Heitkamp, M. A., Freeman, J. P., Miller, D. W. & Cerniglia, C. E. (1988b). Pyrene degradation by a Mycobacterium sp.: identification of ring oxidation and ring fission products. Applied and Environmental Microbiology, 54, 2556–65.Google Scholar
Hestbjerg, H., Willumsen, P. A., Christensen, M., Andersen, O. & Jacobsen, C. S. (2003). Bioaugmentation of tar-contaminated soils under field conditions using Pleurotus ostreatus refuse from commercial mushroom production. Environmental Toxicology and Chemistry, 22, 692–8.CrossRefGoogle ScholarPubMed
Hirano, S., Kitauchi, F., Haruki, M.et al. (2004). Isolation and characterization of Xanthobacter polyaromaticivorans sp. nov. 127 W that degrades polycyclic and heterocyclic aromatic compounds under extremely low oxygen conditions. Bioscience, Biotechnology and Biochemistry, 68, 557–64.CrossRefGoogle Scholar
Ho, Y., Jackson, M., Yang, Y., Mueller, J. G. & Pritchard, P. H. (2000). Characterization of fluoranthene- and pyrene-degrading bacteria isolated from PAH-contaminated soils and sediments. Journal of Industrial Microbiology and Biotechnology, 24, 100–12.CrossRefGoogle Scholar
Hu, Y., Ren, F., Zhou, P., Xia, M. & Liu, S. (2003). Degradation of pyrene and characterization of Saccharothrix sp. PYX-6 from the oligotrophic Tianchi Lake in Xinjiang Uygur Autonomous Region, China. Chinese Science Bulletin, 48, 2210–5.Google Scholar
Huesemann, M. H., Hausmann, T. S. & Fortman, T. J. (2003). Assessment of bioavailability limitations during slurry biodegradation of petroleum hydrocarbons in aged soils. Environmental Toxicology and Chemistry, 22, 2853–60.CrossRefGoogle ScholarPubMed
Jeon, C. O., Park, W., Padmanabhan, P.et al. (2003). Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proceedings of the National Academy of Sciences of the United States of America, 100, 13 591–6.CrossRefGoogle ScholarPubMed
Jeon, C. O., Park, W., Ghiorse, W. C. & Madsen, E. L. (2004). Polaromonas naphthalenivorans sp. nov., a naphthalene-degrading bacterium from naphthalene-contaminated sediment. International Journal of Systematic and Evolutionary Microbiology, 54, 93–7.CrossRefGoogle ScholarPubMed
Jiang, C., Alexander, R., Kagi, R. I. & Murray, A. P. (2000). Origin of perylene in ancient sediments and its geological significance. Organic Geochemistry, 31, 1545–59.CrossRefGoogle Scholar
Johnsen, A. R. & Karlson, U. (2004). Evaluation of bacterial strategies to promote the bioavailability of polycyclic aromatic hydrocarbons. Applied Microbiology and Biotechnology, 63, 452–9.CrossRefGoogle ScholarPubMed
Johnsen, A. R., Winding, A., Karlson, U. & Roslev, P. (2002). Linking of microorganisms to phenanthrene metabolism in soil by analysis of 13C-labelled cell lipids. Applied and Environmental Microbiology, 68, 6106–13.CrossRefGoogle Scholar
Jones, K. D. & Tiller, C. L. (1999). Effect of solution chemistry on the extent of binding of phenanthrene by a soil humic acid: a comparison of dissolved and clay bound humic. Environmental Science and Technology, 33, 580–7.CrossRefGoogle Scholar
Joshi, M. M. & Lee, S. (1996). Effect of oxygen amendments and soil pH on bioremediation of industrially contaminated soils. Energy Sources, 18, 233–42.CrossRefGoogle Scholar
Juhasz, A. L. & Naidu, R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. International Biodeterioration and Biodegradation, 45, 57–88.CrossRefGoogle Scholar
Juhasz, A. L., Stanley, G. A. & Britz, M. L. (2002). Metabolite repression inhibits degradation of benzo[a]pyrene and dibenz[a, h]anthracene by Stenotrophomonas maltophilia VUN 10,003. Journal of Industrial Microbiology and Biotechnology, 28, 88–96.CrossRefGoogle ScholarPubMed
Kalf, D. F., Crommentuijn, T. & Plassche, E. J. (1997). Environmental quality objectives for 10 polycyclic aromatic hydrocarbons (PAHs). Ecotoxicology and Environmental Safety, 36, 89–97.CrossRefGoogle Scholar
Kanaly, R. A. & Harayama, S. (2000). Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. Journal of Bacteriology, 182, 2059–67.CrossRefGoogle ScholarPubMed
Kanaly, R. A. & Watanabe, K. (2004). Multiple mechanisms contribute to the biodegradation of benzo[a]pyrene by petroleum-derived multicomponent nonaqueous-phase liquids. Environmental Toxicology and Chemistry, 23, 850–6.CrossRefGoogle ScholarPubMed
Kanaly, R. A., Bartha, R., Watanabe, K. & Harayama, S. (2000). Rapid mineralization of benzo[a]pyrene by a microbial consortium growing on diesel fuel. Applied and Environmental Microbiology, 66, 4205–11.CrossRefGoogle ScholarPubMed
Kazunga, C. & Aitken, M. D. (2000). Products from the incomplete metabolism of pyrene by polycyclic aromatic hydrocarbon-degrading bacteria. Applied and Environmental Microbiology, 66, 1917–22.CrossRefGoogle ScholarPubMed
Kazunga, C., Aitken, M. D., Gold, A. & Sangaiah, R. (2001). Fluoranthene-2,3- and -1,5-diones are novel products from the bacterial transformation of fluoranthene. Environmental Science and Technology, 35, 917–22.CrossRefGoogle ScholarPubMed
Kelley, I., Freeman, J. P. & Cerniglia, C. E. (1990). Identification of metabolites from degradation of naphthalene by a Mycobacterium sp. Biodegradation, 1, 283–90.CrossRefGoogle ScholarPubMed
Khan, A. A., Wang, R.-F., Cao, W.-W.et al. (2001). Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1. Applied and Environmental Microbiology, 67, 3577–85.CrossRefGoogle ScholarPubMed
Koganti, A., Singh, R., Ma, B.-L. & Weyand, E. H. (2001). Comparative analysis of PAH:DNA adducts formed in lung of mice exposed to neat coal tar and soils contaminated with coal tar. Environmental Science and Technology, 35, 2704–9.CrossRefGoogle ScholarPubMed
Kosian, P. A., Makynen, E. A., Monson, P. D.et al. (1998). Application of toxicity-based fractionation techniques and structure-activity relationship models for the identification of phototoxic polycyclic aromatic hydrocarbons in sediment pore water. Environmental Toxicology and Chemistry, 17, 1021–33.Google Scholar
Kotterman, M. J. J., Rietberg, H.-J., Hage, A. & Field, J. A. (1998). Polycyclic aromatic hydrocarbon oxidation by the white-rot fungus Bjerkandera sp. strain BOS55 in the presence of nonionic surfactants. Biotechnology and Bioengineering, 57, 220–7.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Krivobok, S., Kuony, S., Meyer, C.et al. (2003). Identification of pyrene-induced proteins in Mycobacterium sp. strain 6PY1: evidence for two ring-hydroxylating dioxygenases. Journal of Bacteriology, 185, 3828–41.CrossRefGoogle ScholarPubMed
Lahav, R., Fareleira, P., Nejidat, A. & Abielovich, A. (2002). The identification and characterization of osmotolerant yeast isolates from chemical wastewater evaporation ponds. Microbial Ecology, 43, 388–96.CrossRefGoogle ScholarPubMed
Landmeyer, J. E., Chapelle, F. H., Petkewich, M. D. & Bradley, P. M. (1998). Assessment of natural attenuation of aromatic hydrocarbons in groundwater near a former manufactured-gas plant, South Carolina, USA. Environmental Geology, 34, 279–92.CrossRefGoogle Scholar
Lau, K. L., Tsang, Y. Y. & Chiu, S. W. (2003). Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere, 52, 1539–46.CrossRefGoogle ScholarPubMed
Lee, J., Kang, D., Lee, K.-H.et al. (2002). Influence of GSTM1 genotype on association between aromatic DNA adducts and urinary PAH metabolites in incineration workers. Mutation Research, 514, 213–21.CrossRefGoogle ScholarPubMed
Lee, K., Park, J.-W. & Ahn, I.-S. (2003). Effect of additional carbon source on naphthalene biodegradation by Pseudomonas putida G7. Journal of Hazardous Materials, B105, 157–67.CrossRefGoogle Scholar
Lehto, K.-M., Puhakka, J. A. & Lemmetyinen, H. (2003). Biodegradation of selected UV-irradiated and non-irradiated polycyclic aromatic hydrocarbons (PAHs). Biodegradation, 14, 249–63.CrossRefGoogle Scholar
Leštan, D. & Lamar, R. T. (1996). Development of fungal inocula for bioaugmentation of contaminated soils. Applied and Environmental Microbiology, 62, 2045–52.Google ScholarPubMed
Leys, N. M. E. J., Ryngaert, A., Bastiaens, L.et al. (2004). Occurrence and phylogenetic diversity of Sphingomonas strains in soils contaminated with polycyclic aromatic hydrocarbons. Applied and Environmental Microbiology, 70, 1944–55.CrossRefGoogle ScholarPubMed
Li, P., Sun, T., Stagnitti, F.et al. (2002). Field-scale bioremediation of soil contaminated with crude oil. Environmental Engineering Science, 19, 277–89.CrossRefGoogle Scholar
Lin, G.-H., Sauer, N. E. & Cutright, T. J. (1996). Environmental regulations: a brief overview of their applications to bioremediation. International Biodeterioration and Biodegradation, 38, 1–8.CrossRefGoogle Scholar
Liu, Y., Zhang, J. & Zhang, Z. (2004). Isolation and characterization of polycyclic aromatic hydrocarbons-degrading Sphingomonas sp. strain ZL5. Biodegradation, 15, 205–12.CrossRefGoogle ScholarPubMed
Lodovici, M., Akpan, V., Giovannini, L., Migliani, F. & Dolara, P. (1998). Benzo[a]pyrene diol-epoxide DNA adducts and levels of polycyclic aromatic hydrocarbons in autoptic samples from human lungs. Chemico-Biological Interactions, 116, 199–212.CrossRefGoogle ScholarPubMed
Lors, C., Mossmann, J. R. & Barbé, P. (2004). Phenotypic responses of the soil bacterial community to polycyclic aromatic hydrocarbon contamination in soils. Polycyclic Aromatic Compounds, 24, 21–36.CrossRefGoogle Scholar
Löser, C., Seidel, H., Zehnsdorf, A. & Hoffmann, P. (2000). Improvement of the bioavailability of hydrocarbons by applying nonionic surfactants during the microbial remediation of a sandy soil. Acta Biotechnologica, 20, 99–118.CrossRefGoogle Scholar
Lotfabad, S. K. & Gray, M. R. (2002). Kinetics of biodegradation of mixtures of polycyclic aromatic hydrocarbons. Applied Microbiology and Biotechnology, 60, 361–5.Google ScholarPubMed
MacGillivray, A. R. & Shiaris, M. P. (1994). Relative role of eukaryotic and prokaryotic micro-organisms in phenanthrene transformation in coastal sediments. Applied and Environmental Microbiology, 60, 1154–9.Google Scholar
Majcherczyk, A. & Johannes, C. (2000). Radical mediated indirect oxidation of a PEG-coupled polycyclic aromatic hydrocarbon (PAH) model compound by fungal laccase. Biochimica et Biophysica Acta, 1474, 157–62.CrossRefGoogle ScholarPubMed
Makkar, R. S. & Rockne, K. J. (2003). Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons. Environmental Toxicology and Chemistry, 22, 2280–92.CrossRefGoogle ScholarPubMed
Malachová, K. (1999). Using short-term mutagenicity tests for the evaluation of genotoxicity of contaminated soils. Journal of Soil Contamination, 8, 667–80.CrossRefGoogle Scholar
Maliszewska-Kordybach, B. & Smreczak, B. (2000). Ecotoxicological activity of soils polluted with polycyclic aromatic hydrocarbons (PAHs)–Effect on plants. Environmental Technology, 21, 1099–110.CrossRefGoogle Scholar
May, R., Schröder, P. & Sandermann, H. (1997). Ex-situ process for treating PAH-contaminated soil with Phanerochaete chrysosporium. Environmental Science and Technology, 31, 2626–33.CrossRefGoogle Scholar
Meckenstock, R. U., Safinowski, M. & Griebler, C. (2004). Anaerobic degradation of polycyclic aromatic hydrocarbons. FEMS Microbiology Ecology, 49, 27–36.CrossRefGoogle ScholarPubMed
Melcher, R. J., Apitz, S. E. & Hemmingsen, B. B. (2002). Impact of irradiation and polycyclic aromatic hydrocarbon spiking on microbial populations in marine sediment for future aging and biodegradability studies. Applied and Environmental Microbiology, 68, 2858–68.CrossRefGoogle ScholarPubMed
Mendonça, E. & Picado, A. (2002). Ecotoxicological monitoring of remediation in a coke oven soil. Environmental Toxicology, 17, 74–9.CrossRefGoogle Scholar
Meulenberg, R., Rijnaarts, H. H. M., Doddema, H. J. & Field, J. A. (1997). Partially oxidized polycyclic aromatic hydrocarbons show an increased bioavailability and biodegradability. FEMS Microbiology Letters, 152, 45–9.CrossRefGoogle ScholarPubMed
Michallet-Ferrier, P., Aït-Aïssa, S., Balaguer, P.et al. (2004). Assessment of estrogen (ER) and aryl hydrocarbon receptor (AhR) mediated activities in organic sediment extracts of the Detroit River, using in vitro bioassays based on human MELN and teleost PLHC-1 cell lines. Journal of Great Lakes Research, 30, 82–92.CrossRefGoogle Scholar
Miller, K. P. & Ramos, K. S. (2001). Impact of cellular metabolism on the biological effects of benzo[a]pyrene and related hydrocarbons. Drug Metabolism Reviews, 33, 1–35.CrossRefGoogle ScholarPubMed
Moody, J. D., Freeman, J. P., Doerge, D. R. & Cerniglia, C. E. (2001). Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1. Applied and Environmental Microbiology, 67, 1476–83.CrossRefGoogle ScholarPubMed
Moody, J. D., Freeman, J. P., Fu, P. P. & Cerniglia, C. E. (2004). Degradation of benzo[a]pyrene by Mycobacterium vanbaalenii PYR-1. Applied and Environmental Microbiology, 70, 340–5.CrossRefGoogle ScholarPubMed
Mougin, C. (2002). Bioremediation and phytoremediation of industrial PAH-polluted soils. Polycyclic Aromatic Compounds, 22, 1011–43.CrossRefGoogle Scholar
Mrozik, A., Piotrowska-Seget, Z. & Labużek, S. (2003). Bacterial degradation and bioremediation of polycyclic aromatic hydrocarbons. Polish Journal of Environmental Studies, 12, 15–25.Google Scholar
Mueller, J. G., Cerniglia, C. E. & Pritchard, P. H. (1996). In Bioremediation: Principles and Applications, ed. Crawford, R. L. & Crawford, D. L.. Cambridge: Cambridge University Press, pp. 125–94.CrossRefGoogle Scholar
Neumann, N. F. & Galvez, F. (2002). DNA microarrays and toxicogenomics: applications for ecotoxicology?Biotechnology Advances, 20, 391–419.CrossRefGoogle ScholarPubMed
Novotný, Č., Erbanová, P., Cajthaml, T.et al. (2000). Irpex lacteus, a white rot fungus applicable to water and soil bioremediation. Applied Microbiology and Biotechnology, 54, 850–3.Google ScholarPubMed
Ohura, T., Amagai, T., Fusaya, M. & Matsushita, H. (2004). Polycyclic aromatic hydrocarbons in indoor and outdoor environments and factors affecting their concentrations. Environmental Science and Technology, 38, 77–83.CrossRefGoogle ScholarPubMed
Pan, F., Yang, Q., Zhang, Y., Zhang, S. & Yang, M. (2004). Biodegradation of polycyclic aromatic hydrocarbons by Pichia anomala. Biotechnology Letters, 26, 803–6.CrossRefGoogle ScholarPubMed
Peachey, R. B. J. (2003). Tributyltin and polycyclic aromatic hydrocarbon levels in Mobile Bay, Alabama: a review. Marine Pollution Bulletin, 46, 1365–71.CrossRefGoogle ScholarPubMed
Penning, T. M., Burczynski, M. E., Hung, C.-F.et al. (1999). Dihydrodiol dehydrogenases and polycyclic aromatic hydrocarbon activation: generation of reactive and redox active o-quinones. Chemical Research in Toxicology, 12, 1–18.CrossRefGoogle ScholarPubMed
Pickard, M. A., Roman, R., Tinoco, R. & Vázquez-Duhalt, R. (1999). Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Applied and Environmental Microbiology, 65, 3805–9.Google ScholarPubMed
Pinto, L. J. & Moore, M. M. (2000). Release of polycyclic aromatic hydrocarbons from contaminated soils by surfactant and remediation of this effluent by Penicillium spp. Environmental Toxicology and Chemistry, 19, 1741–8.CrossRefGoogle Scholar
Pointing, S. B. (2001). Feasibility of bioremediation by white-rot fungi. Applied Microbiology and Biotechnology, 57, 20–33.Google ScholarPubMed
Potin, O., Rafin, C. & Veignie, E. (2004). Bioremediation of an aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil by filamentous fungi isolated from the soil. International Biodeterioration and Biodegradation, 54, 45–52.CrossRefGoogle Scholar
Pozzoli, L., Gilardoni, S., Perrone, M. G.et al. (2004). Polycyclic aromatic hydrocarbons in the atmosphere: monitoring, sources, sinks and fate. I: Monitoring and sources. Annali di Chimica, 94, 17–32.CrossRefGoogle ScholarPubMed
Preuss, R., Angerer, J. & Drexler, H. (2003). Naphthalene – an environmental and occupational toxicant. International Archives of Occupational and Environmental Health, 76, 556–76.CrossRefGoogle ScholarPubMed
Rafin, C., Potin, O., Veignie, E., Lounès-Hadj Sahraoui, A. & Sancholle, M. (2000). Degradation of benzo[a]pyrene as sole carbon source by a non white rot fungus, Fusarium solani. Polycyclic Aromatic Compounds, 21, 311–29.Google Scholar
Rama, R., Sigoillot, J.-C., Chaplain, V.et al. (2001). Inoculation of filamentous fungi in manufactured gas plant site soils and PAH transformation. Polycyclic Aromatic Compounds, 18, 397–414.CrossRefGoogle Scholar
Ramsay, J. A., Li, H., Brown, R. S. & Ramsay, B. A. (2003). Naphthalene and anthracene mineralization linked to oxygen, nitrate, Fe(III) and sulphate reduction in a mixed microbial population. Biodegradation, 14, 321–9.CrossRefGoogle Scholar
Rasmussen, G. & Olsen, R. A. (2004). Sorption and biological removal of creosote-contaminants from groundwater in soil/sand vegetated with orchard grass (Dactylis glomerata). Advances in Environmental Research, 8, 313–27.CrossRefGoogle Scholar
Ravelet, C., Grosset, C., Krivobok, S., Montuelle, B. & Alary, J. (2001). Pyrene degradation by two fungi in a freshwater sediment and evaluation of fungal biomass by ergosterol content. Applied Microbiology and Biotechnology, 56, 803–8.CrossRefGoogle Scholar
Renoux, A. Y., Millette, D., Tyagi, R. D. & Samson, R. (1999). Detoxification of fluorene, phenanthrene, carbazole and p-cresol in columns of aquifer sand as studied by the Microtox® assay. Water Research, 33, 2045–52.CrossRefGoogle Scholar
Rivera, L., Curto, M. J. C., Pais, P., Galceran, M. T. & Puignou, L. (1996). Solid-phase extraction for the selective isolation of polycyclic aromatic hydrocarbons, azaarenes and heterocyclic aromatic amines in charcoal-grilled meat. Journal of Chromatography A, 731, 85–94.CrossRefGoogle ScholarPubMed
Rockne, K. J., Chee-Sanford, J. C., Sanford, R. A.et al. (2000). Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions. Applied and Environmental Microbiology, 66, 1595–601.CrossRefGoogle ScholarPubMed
Rodrigues, J. L. M., Aiello, M. R., Urbance, J. W., Tsoi, T. V. & Tiedje, J. M. (2002). Use of both 16S rRNA and engineered functional genes with real-time PCR to quantify an engineered, PCB-degrading Rhodococcus in soil. Journal of Microbiological Methods, 51, 181–9.CrossRefGoogle ScholarPubMed
Romero, M. C., Cazau, M. C., Giorgieri, S. & Arambarri, A. M. (1998). Phenanthrene degradation by micro-organisms isolated from a contaminated stream. Environmental Pollution, 101, 355–9.CrossRefGoogle Scholar
Romero, M. C., Salvioli, M. L., Cazau, M. C. & Arambarri, A. M. (2002). Pyrene degradation by yeasts and filamentous fungi. Environmental Pollution, 117, 159–63.CrossRefGoogle ScholarPubMed
Rothermich, M. M., Hayes, L. A. & Lovley, D. R. (2002). Anaerobic, sulfate-dependent degradation of polycyclic aromatic hydrocarbons in petroleum-contaminated harbor sediment. Environmental Science and Technology, 36, 4811–17.CrossRefGoogle ScholarPubMed
Ruberto, L., Vazquez, S. C. & MacCormack, W. P. (2003). Effectiveness of the natural bacterial flora, biostimulation and bioaugmentation on the bioremediation of a hydrocarbon contaminated Antarctic soil. International Biodeterioration and Biodegradation, 52, 115–25.CrossRefGoogle Scholar
Saltiene, Z., Brukstiene, D. & Ruzgyte, A. (2002). Contamination of soil by polycyclic aromatic hydrocarbons in some urban areas. Polycyclic Aromatic Compounds, 22, 23–35.CrossRefGoogle Scholar
Samanta, S. K., Singh, O. V. & Jain, R. K. (2002). Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends in Biotechnology, 20, 243–8.CrossRefGoogle ScholarPubMed
Santodonato, J. (1997). Review of the estrogenic and antiestrogenic activity of polycyclic aromatic hydrocarbons: relationship to carcinogenicity. Chemosphere, 34, 835–48.CrossRefGoogle ScholarPubMed
Saponaro, S., Bonomo, L., Petruzzelli, G., Romele, L. & Barbafieri, M. (2002). Polycyclic aromatic hydrocarbons (PAHs) slurry phase bioremediation of a manufacturing gas plant (MGP) site aged soil. Water, Air, and Soil Pollution, 135, 219–36.CrossRefGoogle Scholar
Saraswathy, A. & Hallberg, R. (2002). Degradation of pyrene by indigenous fungi from a former gasworks site. FEMS Microbiology Letters, 210, 227–32.CrossRefGoogle ScholarPubMed
Schneider, J., Grosser, R., Jayasimhulu, K., Xue, W. & Warshawsky, D. (1996). Degradation of pyrene, benz[a]anthracene, and benzo[a]pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site. Applied and Environmental Microbiology, 62, 13–19.Google ScholarPubMed
Selifonov, S. A., Chapman, P. J., Akkerman, S. B.et al. (1998). Use of 13C nuclear magnetic resonance to assess fossil fuel biodegradation: fate of [1–13C]acenaphthene in creosote polycyclic aromatic compound mixtures degraded by bacteria. Applied and Environmental Microbiology, 64, 1447–53.Google Scholar
Šepič, E., Bricelj, M. & Leskovšek, H. (1998). Degradation of fluoranthene by Pasteurella sp. IFA and Mycobacterium sp. PYR-1: Isolation and identification of metabolites. Journal of Applied Microbiology, 85, 746–54.CrossRefGoogle ScholarPubMed
Shimada, T. & Fujii-Kuriyama, Y. (2004). Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and 1B1. Cancer Science, 95, 1–6.CrossRefGoogle ScholarPubMed
Sho, M., Hamel, C. & Greer, C. W. (2004). Two distinct gene clusters encode pyrene degradation in Mycobacterium sp. strain S65. FEMS Microbiology Ecology, 48, 209–20.CrossRefGoogle ScholarPubMed
Shuttleworth, K. L. & Cerniglia, C. E. (1996). Bacterial degradation of low concentrations of phenanthrene and inhibition by naphthalene. Microbial Ecology, 31, 305–17.CrossRefGoogle Scholar
Sonnefeld, W. J., Zoller, W. H. & May, W. E. (1983). Dynamic coupled-column liquid chromatographic determination of ambient temperature vapor pressures of polynuclear aromatic hydrocarbons. Analytical Chemistry, 55, 275–80.CrossRefGoogle Scholar
Steffen, K. T., Hatakka, A. & Hofrichter, M. (2003). Degradation of benzo[a]pyrene by the litter-decomposing basidiomycete Stropharia coronilla: role of manganese peroxidase. Applied and Environmental Microbiology, 69, 3957–64.CrossRefGoogle ScholarPubMed
Straube, W. L., Jones-Meehan, J., Pritchard, P. H. & Jones, W. R. (1999). Bench-scale optimization of bioaugmentation strategies for treatment of soils contaminated with high molecular weight polyaromatic hydrocarbons. Resources, Conservation and Recycling, 27, 27–37.CrossRefGoogle Scholar
Straube, W. L., Nestler, C. C., Hansen, L. D.et al. (2003). Remediation of polyaromatic hydrocarbons (PAHs) through landfarming with biostimulation and bioaugmentation. Acta Biotechnologica, 23, 179–96.CrossRefGoogle Scholar
Sutherland, J. B. (2004). Degradation of hydrocarbons by yeasts and filamentous fungi. In Fungal Biotechnology in Agricultural, Food, and Environmental Applications, ed. Arora, D. K.. New York: Marcel Dekker, pp. 443–55.Google Scholar
Sutherland, J. B., Freeman, J. P., Selby, A. L.et al. (1990). Stereoselective formation of a K-region dihydrodiol from phenanthrene by Streptomyces flavovirens. Archives of Microbiology, 154, 260–6.CrossRefGoogle ScholarPubMed
Sutherland, J. B., Selby, A. L., Freeman, J. P., Evans, F. E. & Cerniglia, C. E. (1991). Metabolism of phenanthrene by Phanerochaete chrysosporium. Applied and Environmental Microbiology, 57, 3310–16.Google ScholarPubMed
Sutherland, J. B., Selby, A. L., Freeman, J. P.et al. (1992). Identification of xyloside conjugates formed from anthracene by Rhizoctonia solani. Mycological Research, 96, 509–17.CrossRefGoogle Scholar
Sutherland, J. B., Rafii, F., Khan, A. A. & Cerniglia, C. E. (1995). Mechanisms of polycyclic aromatic hydrocarbon degradation. In Microbial Transformation and Degradation of Toxic Organic Chemicals, ed. Young, L. Y. & Cerniglia, C. E.. New York: Wiley-Liss, pp. 269–306.Google Scholar
Sverdrup, L. E., Nielsen, T. & Krogh, P. H. (2002). Soil ecotoxicity of polycyclic aromatic hydrocarbons in relation to soil sorption, lipophilicity, and water solubility. Environmental Science and Technology, 36, 2429–35.CrossRefGoogle ScholarPubMed
Tiehm, A., Stieber, M., Werner, P. & Frimmel, F. H. (1997). Surfactant-enhanced mobilization and biodegradation of polycyclic aromatic hydrocarbons in manufactured gas plant soil. Environmental Science and Technology, 31, 2570–76.CrossRefGoogle Scholar
Oost, R., Beyer, J. & Vermeulen, N. P. E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology, 13, 57–149.CrossRefGoogle ScholarPubMed
Herwijnen, R., Wattiau, P., Bastiaens, L.et al. (2003). Elucidation of the metabolic pathway of fluorene and cometabolic pathways of phenanthrene, fluoranthene, anthracene and dibenzothiophene by Sphingomonas sp. LB126. Research in Microbiology, 154, 199–206.CrossRefGoogle ScholarPubMed
Veignie, E., Rafin, C., Woisel, P., Lounès-Hadj Sahraoui, A. & Cazier, F. (2002). Metabolization of the polycyclic aromatic hydrocarbon benzo[a]pyrene by a non-white rot fungus (Fusarium solani) in a batch reactor. Polycyclic Aromatic Compounds, 22, 87–97.CrossRefGoogle Scholar
Veignie, E., Rafin, C., Woisel, P. & Cazier, F. (2004). Preliminary evidence of the role of hydrogen peroxide in the degradation of benzo[a]pyrene by a non-white rot fungus Fusarium solani. Environmental Pollution, 129, 1–4.CrossRefGoogle ScholarPubMed
Verdin, A., Lounès-Hadj Sahraoui, A. & Durand, R. (2004). Degradation of benzo[a]pyrene by mitosporic fungi and extracellular oxidative enzymes. International Biodeterioration and Biodegradation, 53, 65–70.CrossRefGoogle Scholar
Verdin, A., Lounès-Hadj Sahraoui, A., Newsam, R., Robinson, G. & Durand, R. (2005). Polycyclic aromatic hydrocarbons storage by Fusarium solani in intracellular lipid vesicles. Environmental Pollution, 133, 283–91.CrossRefGoogle ScholarPubMed
Vila, J., López, Z., Sabaté, J.et al. (2001). Identification of a novel metabolite in the degradation of pyrene by Mycobacterium sp. strain AP1: actions of the isolate on two- and three-ring polycyclic aromatic hydrocarbons. Applied and Environmental Microbiology, 67, 5497–505.CrossRefGoogle ScholarPubMed
Villeneuve, D. L., Khim, J. S., Kannan, K. & Giesy, J. P. (2002). Relative potencies of individual polycyclic aromatic hydrocarbons to induce dioxinlike and estrogenic responses in three cell lines. Environmental Toxicology, 17, 128–37.CrossRefGoogle ScholarPubMed
Volkering, F., Breure, A. M. & Rulkens, W. H. (1998). Microbiological aspects of surfactant use for biological soil remediation. Biodegradation, 8, 401–17.CrossRefGoogle Scholar
Watanabe, T., Katayama, S., Enoki, M., Honda, Y. & Kuwahara, M. (2000). Formation of acyl radical in lipid peroxidation of linoleic acid by manganese-dependent peroxidase from Ceriporiopsis subvermispora and Bjerkandera adusta. European Journal of Biochemistry, 267, 4222–31.CrossRefGoogle ScholarPubMed
White, P. A. (2002). The genotoxicity of priority polycyclic aromatic hydrocarbons in complex mixtures. Mutation Research, 515, 85–98.CrossRefGoogle ScholarPubMed
Wilcke, W. (2000). Polycyclic aromatic hydrocarbons (PAHs) in soil–a review. Journal of Plant Nutrition and Soil Science, 163, 229–48.3.0.CO;2-6>CrossRefGoogle Scholar
Willumsen, P., Karlson, U., Stackebrandt, E. & Kroppenstedt, R. M. (2001). Mycobacterium frederiksbergense sp. nov., a novel polycyclic aromatic hydrocarbon-degrading Mycobacterium species. International Journal of Systematic and Evolutionary Microbiology, 51, 1715–22.CrossRefGoogle ScholarPubMed
Wrenn, B. A. & Venosa, A. D. (1996). Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most-probable-number procedure. Canadian Journal of Microbiology, 42, 252–8.CrossRefGoogle ScholarPubMed
Yang, J., Liu, X., Long, T.et al. (2003). Influence of nonionic surfactant on the solubilization and biodegradation of phenanthrene. Journal of Environmental Sciences (China), 15, 859–62.Google ScholarPubMed
Yu, H. (2002). Environmental carcinogenic polycyclic aromatic hydrocarbons: photochemistry and phototoxicity. Journal of Environmental Science and Health C, 20, 149–83.CrossRefGoogle ScholarPubMed
Zhang, H., Kallimanis, A., Koukkou, A. I. & Drainas, C. (2004). Isolation and characterization of novel bacteria degrading polycyclic aromatic hydrocarbons from polluted Greek soils. Applied Microbiology and Biotechnology, 65, 124–31.CrossRefGoogle ScholarPubMed
Zheng, Z. & Obbard, J. P. (2001). Effect of non-ionic surfactants on elimination of polycyclic aromatic hydrocarbons (PAHs) in soil-slurry by Phanerochaete chrysosporium. Journal of Chemical Technology and Biotechnology, 76, 423–9.CrossRefGoogle Scholar
Zheng, Z. & Obbard, J. P. (2002). Polycyclic aromatic hydrocarbon removal from soil by surfactant solubilization and Phanerochaete chrysosporium oxidation. Journal of Environmental Quality, 31, 1842–7.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×