Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 10
  • Print publication year: 2006
  • Online publication date: December 2009

8 - Relative roles of bacteria and fungi in polycyclic aromatic hydrocarbon biodegradation and bioremediation of contaminated soils



Polycyclic aromatic hydrocarbons (PAHs) are a large group of toxic compounds (Fig. 8.1) that are components of coal and petroleum and are also produced during incomplete combustion of fuels. They are introduced into the environment via many routes, including fossil-fuel combustion, automobile and diesel engine exhausts, production of manufactured gas and coal tar, wood-preservation processes and waste incineration (Harvey, 1997; Pozzoli et al., 2004). Benzenoid PAHs are thermodynamically stable, with positive bond resonance energies (Aihara, 1996), and have vapour pressures of 2.8 × 10− 5 to 10.4 Pa (Sonnefeld et al., 1983). The aqueous solubility of PAHs ranges from 0.2 μg/l for indeno[1,2,3-cd]pyrene and 1.6 μg/l for benzo[a]pyrene to 31.7 mg/l for naphthalene (Lehto et al., 2003). Despite their low solubility, PAHs are widely distributed in the environment (Wilcke, 2000; Saltiene et al., 2002; Peachey, 2003; Pozzoli et al., 2004) and, as persistent organic pollutants, they are involved in biogeochemical cycling (Del Vento & Dachs, 2002; Jeon et al., 2003). The five-ring PAH, perylene, found in Jurassic sediments may even have originated from ancient fungi (Jiang et al., 2000).

Sixteen PAHs are on the lists of priority pollutants of the US Environmental Protection Agency and the European Union (Lehto et al., 2003); mixtures containing more than 50 individual PAHs have been found in sediments at hazardous waste sites (Brenner et al., 2002). Low-molecular-weight PAHs, with two or three rings, are the most volatile and usually the most abundant. High-molecular-weight PAHs, with four or more rings, are less volatile.

Ahtiainen, J., Valo, R., Järvinen, M. & Joutti, A. (2002). Microbial toxicity tests and chemical analysis as monitoring parameters at composting of creosote-contaminated soil. Ecotoxicology and Environmental Safety, 53, 323–9.
Aihara, J. (1996). Bond resonance energies of polycyclic benzenoid and non-benzenoid hydrocarbons. Journal of the Chemical Society Perkin Transactions II, 10, 2185–95.
Allard, A.-S. & Neilson, A. H. (1997). Bioremediation of organic waste sites: a critical review of microbiological aspects. International Biodeterioration and Biodegradation, 39, 253–85.
Andersson, B. E., Welinder, L., Olsson, P. A., Olsson, S. & Henrysson, T. (2000). Growth of inoculated white-rot fungi and their interactions with the bacterial community in soil contaminated with polycyclic aromatic hydrocarbons, as measured by phospholipid fatty acids. Bioresource Technology, 73, 29–36.
Andersson, B. E., Lundstedt, S., Tornberg, al. (2003). Incomplete degradation of polycyclic aromatic hydrocarbons in soil inoculated with wood-rotting fungi and their effect on the indigenous soil bacteria. Environmental Toxicology and Chemistry, 22, 1238–43.
Antizar-Ladislao, B., Lopez-Real, J. M. & Beck, A. J. (2004). Bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated waste using composting approaches. Critical Reviews in Environmental Science and Technology, 34, 249–89.
April, T. M., Foght, J. M. & Currah, R. S. (2000). Hydrocarbon-degrading filamentous fungi isolated from flare pit soils in northern and western Canada. Canadian Journal of Microbiology, 46, 38–49.
Atagana, H. I. (2004). Bioremediation of creosote-contaminated soil in South Africa by landfarming. Journal of Applied Microbiology, 96, 510–20.
Atagana, H. I., Haynes, R. J. & Wallis, F. M. (2003). Optimization of soil physical and chemical conditions for the bioremediation of creosote-contaminated soil. Biodegradation, 14, 297–307.
Balba, M. T., Al-Awadhi, N. & Al-Daher, R. (1998a). Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation. Journal of Microbiological Methods, 32, 155–64.
Balba, M. T., Al-Daher, R., Al-Awadhi, N., Chino, H. & Tsuji, H. (1998b). Bioremediation of oil-contaminated desert soil: the Kuwaiti experience. Environment International, 24, 163–73.
Baldrian, P., in der Wiesche, C., Gabriel, J., Nerud, F. & Zadražil, F. (2000). Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Applied and Environmental Microbiology, 66, 2471–8.
Bastiaens, L., Springael, D., Wattiau, al. (2000). Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers. Applied and Environmental Microbiology, 66, 1834–43.
Bezalel, L., Hadar, Y., Fu, P. P., Freeman, J. P. & Cerniglia, C. E. (1996). Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Applied and Environmental Microbiology, 62, 2547–53.
Bhatt, M., Cajthaml, T. & Šašek, V. (2002). Mycoremediation of PAH-contaminated soil. Folia Microbiologica, 47, 255–8.
Bogan, B. W., Lahner, L. M., Sullivan, W. R. & Paterek, J. R. (2003). Degradation of straight-chain aliphatic and high-molecular-weight polycyclic aromatic hydrocarbons by a strain of Mycobacterium austroafricanum. Journal of Applied Microbiology, 94, 230–9.
Boonchan, S., Britz, M. L. & Stanley, G. A. (2000). Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Applied and Environmental Microbiology, 66, 1007–19.
Bouchez, M., Blanchet, D., Bardin, V., Haeseler, F. & Vandecasteele, J.-P. (1999). Efficiency of defined strains and of soil consortia in the biodegradation of polycyclic aromatic hydrocarbon (PAH) mixtures. Biodegradation, 10, 429–35.
Breedveld, G. D. & Karlsen, D. A. (2000). Estimating the availability of polycyclic aromatic hydrocarbons for bioremediation of creosote contaminated soils. Applied Microbiology and Biotechnology, 54, 255–61.
Brenner, R. C., Magar, V. S., Ickes, J. al. (2002). Characterization and fate of PAH-contaminated sediments at the Wyckoff/Eagle Harbor superfund site. Environmental Science and Technology, 36, 2605–13.
Brezna, B., Khan, A. A. & Cerniglia, C. E. (2003). Molecular characterization of dioxygenases from polycyclic aromatic hydrocarbon-degrading Mycobacterium spp. FEMS Microbiology Letters, 223, 177–83.
Brodkorb, T. S. & Legge, R. L. (1992). Enhanced biodegradation of phenanthrene in oil tar-contaminated soils supplemented with Phanerochaete chrysosporium. Applied and Environmental Microbiology, 58, 3117–21.
Bumpus, J. A., Tien, M., Wright, D. & Aust, S. D. (1985). Oxidation of persistent environmental pollutants by a white rot fungus. Science, 228, 1434–6.
Cajthaml, T., Möder, M., Kačer, P., Šašek, V. & Popp, P. (2002). Study of fungal degradation products of polycyclic aromatic hydrocarbons using gas chromatography with ion trap mass spectrometry detection. Journal of Chromatography A, 974, 213–22.
Cameotra, S. S. & Bollag, J.-M. (2003). Biosurfactant-enhanced bioremediation of polycyclic aromatic hydrocarbons. Critical Reviews in Environmental Science and Technology, 30, 111–26.
Canet, R., Lopez-Real, J. M. & Beck, A. J. (1999). Overview of polycyclic aromatic hydrocarbon biodegradation by white-rot fungi. Land Contamination and Reclamation, 7, 191–7.
Canet, R., Birnstingl, J. G., Malcolm, D. G., Lopez-Real, J. M. & Beck, A. J. (2001). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by native microflora and combinations of white-rot fungi in a coal-tar contaminated soil. Bioresource Technology, 76, 113–17.
Capotorti, G., Digianvincenzo, P., Cesti, P., Bernardi, A. & Guglielmetti, G. (2004). Pyrene and benzo[a]pyrene metabolism by an Aspergillus terreus strain isolated from a polycyclic aromatic hydrocarbons polluted soil. Biodegradation, 15, 79–85.
Casillas, R. P., Crow, S. A., Heinze, T. M., Deck, J. & Cerniglia, C. E. (1996). Initial oxidative and subsequent conjugative metabolites produced during the metabolism of phenanthrene by fungi. Journal of Industrial Microbiology, 16, 205–15.
Castaldi, F. J. (2003). Tank-based bioremediation of petroleum waste sludges. Environmental Progress, 22, 25–36.
Castaño-Vinyals, G., D'Errico, A., Malats, N. & Kogevinas, M. (2004). Biomarkers of exposure to polycyclic aromatic hydrocarbons from environmental air pollution. Occupational and Environmental Medicine, 61, e12 (9 pp.).
Cerniglia, C. E. (1992). Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, 3, 351–68.
Cerniglia, C. E. (1993). Biodegradation of polycyclic aromatic hydrocarbons. Current Opinion in Biotechnology, 4, 331–8.
Cerniglia, C. E. (1997). Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. Journal of Industrial Microbiology and Biotechnology, 19, 324–33.
Cerniglia, C. E. & Gibson, D. T. (1979). Oxidation of benzo[a]pyrene by the filamentous fungus Cunninghamella elegans. Journal of Biological Chemistry, 254, 12174–80.
Cerniglia, C. E. & Gibson, D. T. (1980). Fungal oxidation of benzo[a]pyrene and (±)-trans-7, 8-dihydroxy-7,8-dihydro benzo[a]pyrene: Evidence for the formation of a benzo[a]pyrene 7,8-diol-9,10-epoxide. Journal of Biological Chemistry, 255, 5159–63.
Cerniglia, C. E. & Sutherland, J. B. (2001). Bioremediation of polycyclic aromatic hydrocarbons by ligninolytic and non-ligninolytic fungi. In Fungi in Bioremediation, ed. Gadd, G. M.. Cambridge: Cambridge University Press, pp. 136–87.
Cerniglia, C. E. & Sutherland, J. B. (2006). Fungal metabolism of polycyclic aromatic hydrocarbons. In Microbial Degradation of Aromatic Compounds, 2nd edn., ed. Kukor, J. J. & Zylstra, G. J.. New York: Marcel Dekker, (in press).
Cerniglia, C. E. & Yang, S. K. (1984). Stereoselective metabolism of anthracene and phenanthrene by the fungus Cunninghamella elegans. Applied and Environmental Microbiology, 47, 119–24.
Cerniglia, C. E., Hebert, R. L., Szaniszlo, P. J. & Gibson, D. T. (1978). Fungal transformation of naphthalene. Archives of Microbiology, 117, 135–43.
Cerniglia, C. E., Kelly, D. W., Freeman, J. P. & Miller, D. W. (1986). Microbial metabolism of pyrene. Chemico-Biological Interactions, 57, 203–16.
Chang, B. V., Shiung, L. C. & Yuan, S. Y. (2002). Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil. Chemosphere, 48, 717–24.
Charrois, J. W. A., McGill, W. B. & Froese, K. L. (2001). Acute ecotoxicity of creosote-contaminated soils to Eisenia fetida: a survival-based approach. Environmental Toxicology and Chemistry, 20, 2594–603.
Chávez-Gómez, B., Quintero, R., Esparza-Garcia, al. (2003). Removal of phenanthrene from soil by co-cultures of bacteria and fungi pregrown on sugarcane bagasse pith. Bioresource Technology, 89, 177–83.
Chung, W. K. & King, G. M. (2001). Isolation, characterization, and polyaromatic hydrocarbon degradation potential of aerobic bacteria from marine macrofaunal burrow sediments and description of Lutibacterium anuloederans gen. nov., sp. nov., and Cycloclasticus spirellensus sp. nov. Applied and Environmental Microbiology, 67, 5585–92.
Coates, J. D., Woodward, J., Allen, J., Philp, P. & Lovley, D. R. (1997). Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Applied and Environmental Microbiology, 63, 3589–93.
Colombo, J. C., Cabello, M. & Arambarri, A. M. (1996). Biodegradation of aliphatic and aromatic hydrocarbons by natural soil microflora and pure cultures of imperfect and lignolitic fungi. Environmental Pollution, 94, 355–62.
Culp, S. J., Warbritton, A. R., Smith, B. A., Li, E. E. & Beland, F. A. (2000). DNA adduct measurements, cell proliferation and tumor mutation induction in relation to tumor formation in B6C3F1 mice fed coal tar or benzo[a]pyrene. Carcinogenesis, 21, 1433–40.
Daane, L. L., Harjono, I., Barns, S. al. (2002). PAH-degradation by Paenibacillus spp. and description of Paenibacillus naphthalenovorans sp. nov., a naphthalene-degrading bacterium from the rhizosphere of salt marsh plants. International Journal of Systematic and Evolutionary Microbiology, 52, 131–9.
Daisy, B. H., Strobel, G. A., Castillo, al. (2002). Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology, 148, 3737–41.
da Silva, M., Cerniglia, C. E., Pothuluri, J. V., Canhos, V. P. & Esposito, E. (2003). Screening filamentous fungi isolated from estuarine sediments for the ability to oxidize polycyclic aromatic hydrocarbons. World Journal of Microbiology and Biotechnology, 19, 399–405.
Del Vento, S. & Dachs, J. (2002). Prediction of uptake dynamics of persistent organic pollutants by bacteria and phytoplankton. Environmental Toxicology and Chemistry, 21, 2099–107.
Dipple, A., Khan, Q. A., Page, J. E., Pontén, I. & Szeliga, J. (1999). DNA reactions, mutagenic action and stealth properties of polycyclic aromatic hydrocarbon carcinogens (Review). International Journal of Oncology, 14, 103–11.
Dries, J. & Smets, B. F. (2002). Transformation and mineralization of benzo[a]pyrene by microbial cultures enriched on mixtures of three- and four-ring polycyclic aromatic hydrocarbons. Journal of Industrial Microbiology and Biotechnology, 28, 70–3.
Ehlers, L. J. & Luthy, R. G. (2003). Contaminant bioavailability in soil and sediment. Environmental Science and Technology, 37, 295A–302A.
Engst, W., Landsiedel, R., Hermersdörfer, H., Doehmer, J. & Glatt, H. (1999). Benzylic hydroxylation of 1-methylpyrene and 1-ethylpyrene by human and rat cytochromes P450 individually expressed in V79 Chinese hamster cells. Carcinogenesis, 20, 1777–85.
Environmental Protection Agency (1986). Manual SW-846, method 8310. Polycyclic aromatic hydrocarbons.
Eschenbach, A., Wienberg, R. & Mahro, B. (1998). Fate and stability of nonextractable residues of [14C]PAH in contaminated soils under environmental stress conditions. Environmental Science and Technology, 32, 2585–90.
Feitkenhauer, H., Müller, R. & Märkl, H. (2003). Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 60–70 °C by Thermus and Bacillus spp. Biodegradation, 14, 367–72.
Fent, K. (2003). Ecotoxicological problems associated with contaminated sites. Toxicology Letters, 140–141, 353–65.
Finkelstein, Z. I., Baskunov, B. P., Golovlev, E. al. (2003). Fluorene transformation by bacteria of the genus Rhodococcus. Microbiology (Engl. Transl.), 72, 660–5.
Galushko, A., Minz, D., Schink, B. & Widdel, F. (1999). Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium. Environmental Microbiology, 1, 415–20.
Gauthier, E., Déziel, E., Villemur, al. (2003). Initial characterization of new bacteria degrading high-molecular weight polycyclic aromatic hydrocarbons isolated from a 2-year enrichment in a two-liquid-phase culture system. Journal of Applied Microbiology, 94, 301–11.
Gaylor, D. W. (1995). Risk assessment for toxic chemicals in the environment. In Microbial Transformation and Degradation of Toxic Organic Chemicals, ed. Young, L. Y. & Cerniglia, C. E.. New York: Wiley-Liss, pp. 579–601.
Gibson, D. T. (1999). Beijerinckia sp. strain B1: a strain by any other name …Journal of Industrial Microbiology and Biotechnology, 23, 284–93.
Gramss, G., Voigt, K.-D. & Kirsche, B. (1999). Degradation of polycyclic aromatic hydrocarbons with three to seven aromatic rings by higher fungi in sterile and unsterile soils. Biodegradation, 10, 51–62.
Gravato, C. & Santos, M. A. (2002). Juvenile sea bass liver P450, EROD induction, and erythrocytic genotoxic responses to PAH and PAH-like compounds. Ecotoxicology and Environmental Safety, 51, 115–27.
Habe, H. & Omori, T. (2003). Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Bioscience, Biotechnology and Biochemistry, 67, 225–43.
Haemmerli, S. D., Leisola, M. S. A., Sanglard, D. & Fiechter, A. (1986). Oxidation of benzo[a]pyrene by extracellular ligninases of Phanerochaete chrysosporium: veratryl alcohol and stability of ligninase. Journal of Biological Chemistry, 261, 6900–3.
Hammel, K. E., Green, B. & Gai, W. Z. (1991). Ring fission of anthracene by a eukaryote. Proceedings of the National Academy of Sciences of the United States of America, 88, 10 605–8.
Hammel, K. E., Gai, W. Z., Green, B. & Moen, M. A. (1992). Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium. Applied and Environmental Microbiology, 58, 1832–8.
Harayama, S. (1997). Polycyclic aromatic hydrocarbon bioremediation design. Current Opinion in Biotechnology, 8, 268–73.
Harrigan, J. A., Vezina, C. M., McGarrigle, B. al. (2004). DNA adduct formation in precision-cut rat liver and lung slices exposed to benzo[a]pyrene. Toxicological Sciences, 77, 307–14.
Harvey, R. G. (1997). Polycyclic Aromatic Hydrocarbons. Hoboken, NJ: John Wiley & Sons.
Hedlund, B. P., Geiselbrecht, A. D., Bair, T. J. & Staley, J. T. (1999). Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov. Applied and Environmental Microbiology, 65, 251–9.
Heitkamp, M. A., Franklin, W. & Cerniglia, C. E. (1988a). Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium. Applied and Environmental Microbiology, 54, 2549–55.
Heitkamp, M. A., Freeman, J. P., Miller, D. W. & Cerniglia, C. E. (1988b). Pyrene degradation by a Mycobacterium sp.: identification of ring oxidation and ring fission products. Applied and Environmental Microbiology, 54, 2556–65.
Hestbjerg, H., Willumsen, P. A., Christensen, M., Andersen, O. & Jacobsen, C. S. (2003). Bioaugmentation of tar-contaminated soils under field conditions using Pleurotus ostreatus refuse from commercial mushroom production. Environmental Toxicology and Chemistry, 22, 692–8.
Hirano, S., Kitauchi, F., Haruki, al. (2004). Isolation and characterization of Xanthobacter polyaromaticivorans sp. nov. 127 W that degrades polycyclic and heterocyclic aromatic compounds under extremely low oxygen conditions. Bioscience, Biotechnology and Biochemistry, 68, 557–64.
Ho, Y., Jackson, M., Yang, Y., Mueller, J. G. & Pritchard, P. H. (2000). Characterization of fluoranthene- and pyrene-degrading bacteria isolated from PAH-contaminated soils and sediments. Journal of Industrial Microbiology and Biotechnology, 24, 100–12.
Hu, Y., Ren, F., Zhou, P., Xia, M. & Liu, S. (2003). Degradation of pyrene and characterization of Saccharothrix sp. PYX-6 from the oligotrophic Tianchi Lake in Xinjiang Uygur Autonomous Region, China. Chinese Science Bulletin, 48, 2210–5.
Huesemann, M. H., Hausmann, T. S. & Fortman, T. J. (2003). Assessment of bioavailability limitations during slurry biodegradation of petroleum hydrocarbons in aged soils. Environmental Toxicology and Chemistry, 22, 2853–60.
Jeon, C. O., Park, W., Padmanabhan, al. (2003). Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proceedings of the National Academy of Sciences of the United States of America, 100, 13 591–6.
Jeon, C. O., Park, W., Ghiorse, W. C. & Madsen, E. L. (2004). Polaromonas naphthalenivorans sp. nov., a naphthalene-degrading bacterium from naphthalene-contaminated sediment. International Journal of Systematic and Evolutionary Microbiology, 54, 93–7.
Jiang, C., Alexander, R., Kagi, R. I. & Murray, A. P. (2000). Origin of perylene in ancient sediments and its geological significance. Organic Geochemistry, 31, 1545–59.
Johnsen, A. R. & Karlson, U. (2004). Evaluation of bacterial strategies to promote the bioavailability of polycyclic aromatic hydrocarbons. Applied Microbiology and Biotechnology, 63, 452–9.
Johnsen, A. R., Winding, A., Karlson, U. & Roslev, P. (2002). Linking of microorganisms to phenanthrene metabolism in soil by analysis of 13C-labelled cell lipids. Applied and Environmental Microbiology, 68, 6106–13.
Jones, K. D. & Tiller, C. L. (1999). Effect of solution chemistry on the extent of binding of phenanthrene by a soil humic acid: a comparison of dissolved and clay bound humic. Environmental Science and Technology, 33, 580–7.
Joshi, M. M. & Lee, S. (1996). Effect of oxygen amendments and soil pH on bioremediation of industrially contaminated soils. Energy Sources, 18, 233–42.
Juhasz, A. L. & Naidu, R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. International Biodeterioration and Biodegradation, 45, 57–88.
Juhasz, A. L., Stanley, G. A. & Britz, M. L. (2002). Metabolite repression inhibits degradation of benzo[a]pyrene and dibenz[a, h]anthracene by Stenotrophomonas maltophilia VUN 10,003. Journal of Industrial Microbiology and Biotechnology, 28, 88–96.
Kalf, D. F., Crommentuijn, T. & Plassche, E. J. (1997). Environmental quality objectives for 10 polycyclic aromatic hydrocarbons (PAHs). Ecotoxicology and Environmental Safety, 36, 89–97.
Kanaly, R. A. & Harayama, S. (2000). Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. Journal of Bacteriology, 182, 2059–67.
Kanaly, R. A. & Watanabe, K. (2004). Multiple mechanisms contribute to the biodegradation of benzo[a]pyrene by petroleum-derived multicomponent nonaqueous-phase liquids. Environmental Toxicology and Chemistry, 23, 850–6.
Kanaly, R. A., Bartha, R., Watanabe, K. & Harayama, S. (2000). Rapid mineralization of benzo[a]pyrene by a microbial consortium growing on diesel fuel. Applied and Environmental Microbiology, 66, 4205–11.
Kazunga, C. & Aitken, M. D. (2000). Products from the incomplete metabolism of pyrene by polycyclic aromatic hydrocarbon-degrading bacteria. Applied and Environmental Microbiology, 66, 1917–22.
Kazunga, C., Aitken, M. D., Gold, A. & Sangaiah, R. (2001). Fluoranthene-2,3- and -1,5-diones are novel products from the bacterial transformation of fluoranthene. Environmental Science and Technology, 35, 917–22.
Kelley, I., Freeman, J. P. & Cerniglia, C. E. (1990). Identification of metabolites from degradation of naphthalene by a Mycobacterium sp. Biodegradation, 1, 283–90.
Khan, A. A., Wang, R.-F., Cao, al. (2001). Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1. Applied and Environmental Microbiology, 67, 3577–85.
Koganti, A., Singh, R., Ma, B.-L. & Weyand, E. H. (2001). Comparative analysis of PAH:DNA adducts formed in lung of mice exposed to neat coal tar and soils contaminated with coal tar. Environmental Science and Technology, 35, 2704–9.
Kosian, P. A., Makynen, E. A., Monson, P. al. (1998). Application of toxicity-based fractionation techniques and structure-activity relationship models for the identification of phototoxic polycyclic aromatic hydrocarbons in sediment pore water. Environmental Toxicology and Chemistry, 17, 1021–33.
Kotterman, M. J. J., Rietberg, H.-J., Hage, A. & Field, J. A. (1998). Polycyclic aromatic hydrocarbon oxidation by the white-rot fungus Bjerkandera sp. strain BOS55 in the presence of nonionic surfactants. Biotechnology and Bioengineering, 57, 220–7.
Krivobok, S., Kuony, S., Meyer, al. (2003). Identification of pyrene-induced proteins in Mycobacterium sp. strain 6PY1: evidence for two ring-hydroxylating dioxygenases. Journal of Bacteriology, 185, 3828–41.
Lahav, R., Fareleira, P., Nejidat, A. & Abielovich, A. (2002). The identification and characterization of osmotolerant yeast isolates from chemical wastewater evaporation ponds. Microbial Ecology, 43, 388–96.
Landmeyer, J. E., Chapelle, F. H., Petkewich, M. D. & Bradley, P. M. (1998). Assessment of natural attenuation of aromatic hydrocarbons in groundwater near a former manufactured-gas plant, South Carolina, USA. Environmental Geology, 34, 279–92.
Lau, K. L., Tsang, Y. Y. & Chiu, S. W. (2003). Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere, 52, 1539–46.
Lee, J., Kang, D., Lee, al. (2002). Influence of GSTM1 genotype on association between aromatic DNA adducts and urinary PAH metabolites in incineration workers. Mutation Research, 514, 213–21.
Lee, K., Park, J.-W. & Ahn, I.-S. (2003). Effect of additional carbon source on naphthalene biodegradation by Pseudomonas putida G7. Journal of Hazardous Materials, B105, 157–67.
Lehto, K.-M., Puhakka, J. A. & Lemmetyinen, H. (2003). Biodegradation of selected UV-irradiated and non-irradiated polycyclic aromatic hydrocarbons (PAHs). Biodegradation, 14, 249–63.
Leštan, D. & Lamar, R. T. (1996). Development of fungal inocula for bioaugmentation of contaminated soils. Applied and Environmental Microbiology, 62, 2045–52.
Leys, N. M. E. J., Ryngaert, A., Bastiaens, al. (2004). Occurrence and phylogenetic diversity of Sphingomonas strains in soils contaminated with polycyclic aromatic hydrocarbons. Applied and Environmental Microbiology, 70, 1944–55.
Li, P., Sun, T., Stagnitti, al. (2002). Field-scale bioremediation of soil contaminated with crude oil. Environmental Engineering Science, 19, 277–89.
Lin, G.-H., Sauer, N. E. & Cutright, T. J. (1996). Environmental regulations: a brief overview of their applications to bioremediation. International Biodeterioration and Biodegradation, 38, 1–8.
Liu, Y., Zhang, J. & Zhang, Z. (2004). Isolation and characterization of polycyclic aromatic hydrocarbons-degrading Sphingomonas sp. strain ZL5. Biodegradation, 15, 205–12.
Lodovici, M., Akpan, V., Giovannini, L., Migliani, F. & Dolara, P. (1998). Benzo[a]pyrene diol-epoxide DNA adducts and levels of polycyclic aromatic hydrocarbons in autoptic samples from human lungs. Chemico-Biological Interactions, 116, 199–212.
Lors, C., Mossmann, J. R. & Barbé, P. (2004). Phenotypic responses of the soil bacterial community to polycyclic aromatic hydrocarbon contamination in soils. Polycyclic Aromatic Compounds, 24, 21–36.
Löser, C., Seidel, H., Zehnsdorf, A. & Hoffmann, P. (2000). Improvement of the bioavailability of hydrocarbons by applying nonionic surfactants during the microbial remediation of a sandy soil. Acta Biotechnologica, 20, 99–118.
Lotfabad, S. K. & Gray, M. R. (2002). Kinetics of biodegradation of mixtures of polycyclic aromatic hydrocarbons. Applied Microbiology and Biotechnology, 60, 361–5.
MacGillivray, A. R. & Shiaris, M. P. (1994). Relative role of eukaryotic and prokaryotic micro-organisms in phenanthrene transformation in coastal sediments. Applied and Environmental Microbiology, 60, 1154–9.
Majcherczyk, A. & Johannes, C. (2000). Radical mediated indirect oxidation of a PEG-coupled polycyclic aromatic hydrocarbon (PAH) model compound by fungal laccase. Biochimica et Biophysica Acta, 1474, 157–62.
Makkar, R. S. & Rockne, K. J. (2003). Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons. Environmental Toxicology and Chemistry, 22, 2280–92.
Malachová, K. (1999). Using short-term mutagenicity tests for the evaluation of genotoxicity of contaminated soils. Journal of Soil Contamination, 8, 667–80.
Maliszewska-Kordybach, B. & Smreczak, B. (2000). Ecotoxicological activity of soils polluted with polycyclic aromatic hydrocarbons (PAHs)–Effect on plants. Environmental Technology, 21, 1099–110.
May, R., Schröder, P. & Sandermann, H. (1997). Ex-situ process for treating PAH-contaminated soil with Phanerochaete chrysosporium. Environmental Science and Technology, 31, 2626–33.
Meckenstock, R. U., Safinowski, M. & Griebler, C. (2004). Anaerobic degradation of polycyclic aromatic hydrocarbons. FEMS Microbiology Ecology, 49, 27–36.
Melcher, R. J., Apitz, S. E. & Hemmingsen, B. B. (2002). Impact of irradiation and polycyclic aromatic hydrocarbon spiking on microbial populations in marine sediment for future aging and biodegradability studies. Applied and Environmental Microbiology, 68, 2858–68.
Mendonça, E. & Picado, A. (2002). Ecotoxicological monitoring of remediation in a coke oven soil. Environmental Toxicology, 17, 74–9.
Meulenberg, R., Rijnaarts, H. H. M., Doddema, H. J. & Field, J. A. (1997). Partially oxidized polycyclic aromatic hydrocarbons show an increased bioavailability and biodegradability. FEMS Microbiology Letters, 152, 45–9.
Michallet-Ferrier, P., Aït-Aïssa, S., Balaguer, al. (2004). Assessment of estrogen (ER) and aryl hydrocarbon receptor (AhR) mediated activities in organic sediment extracts of the Detroit River, using in vitro bioassays based on human MELN and teleost PLHC-1 cell lines. Journal of Great Lakes Research, 30, 82–92.
Miller, K. P. & Ramos, K. S. (2001). Impact of cellular metabolism on the biological effects of benzo[a]pyrene and related hydrocarbons. Drug Metabolism Reviews, 33, 1–35.
Moody, J. D., Freeman, J. P., Doerge, D. R. & Cerniglia, C. E. (2001). Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1. Applied and Environmental Microbiology, 67, 1476–83.
Moody, J. D., Freeman, J. P., Fu, P. P. & Cerniglia, C. E. (2004). Degradation of benzo[a]pyrene by Mycobacterium vanbaalenii PYR-1. Applied and Environmental Microbiology, 70, 340–5.
Mougin, C. (2002). Bioremediation and phytoremediation of industrial PAH-polluted soils. Polycyclic Aromatic Compounds, 22, 1011–43.
Mrozik, A., Piotrowska-Seget, Z. & Labużek, S. (2003). Bacterial degradation and bioremediation of polycyclic aromatic hydrocarbons. Polish Journal of Environmental Studies, 12, 15–25.
Mueller, J. G., Cerniglia, C. E. & Pritchard, P. H. (1996). In Bioremediation: Principles and Applications, ed. Crawford, R. L. & Crawford, D. L.. Cambridge: Cambridge University Press, pp. 125–94.
Neumann, N. F. & Galvez, F. (2002). DNA microarrays and toxicogenomics: applications for ecotoxicology?Biotechnology Advances, 20, 391–419.
Novotný, Č., Erbanová, P., Cajthaml, al. (2000). Irpex lacteus, a white rot fungus applicable to water and soil bioremediation. Applied Microbiology and Biotechnology, 54, 850–3.
Ohura, T., Amagai, T., Fusaya, M. & Matsushita, H. (2004). Polycyclic aromatic hydrocarbons in indoor and outdoor environments and factors affecting their concentrations. Environmental Science and Technology, 38, 77–83.
Pan, F., Yang, Q., Zhang, Y., Zhang, S. & Yang, M. (2004). Biodegradation of polycyclic aromatic hydrocarbons by Pichia anomala. Biotechnology Letters, 26, 803–6.
Peachey, R. B. J. (2003). Tributyltin and polycyclic aromatic hydrocarbon levels in Mobile Bay, Alabama: a review. Marine Pollution Bulletin, 46, 1365–71.
Penning, T. M., Burczynski, M. E., Hung, al. (1999). Dihydrodiol dehydrogenases and polycyclic aromatic hydrocarbon activation: generation of reactive and redox active o-quinones. Chemical Research in Toxicology, 12, 1–18.
Pickard, M. A., Roman, R., Tinoco, R. & Vázquez-Duhalt, R. (1999). Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Applied and Environmental Microbiology, 65, 3805–9.
Pinto, L. J. & Moore, M. M. (2000). Release of polycyclic aromatic hydrocarbons from contaminated soils by surfactant and remediation of this effluent by Penicillium spp. Environmental Toxicology and Chemistry, 19, 1741–8.
Pointing, S. B. (2001). Feasibility of bioremediation by white-rot fungi. Applied Microbiology and Biotechnology, 57, 20–33.
Potin, O., Rafin, C. & Veignie, E. (2004). Bioremediation of an aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil by filamentous fungi isolated from the soil. International Biodeterioration and Biodegradation, 54, 45–52.
Pozzoli, L., Gilardoni, S., Perrone, M. al. (2004). Polycyclic aromatic hydrocarbons in the atmosphere: monitoring, sources, sinks and fate. I: Monitoring and sources. Annali di Chimica, 94, 17–32.
Preuss, R., Angerer, J. & Drexler, H. (2003). Naphthalene – an environmental and occupational toxicant. International Archives of Occupational and Environmental Health, 76, 556–76.
Rafin, C., Potin, O., Veignie, E., Lounès-Hadj Sahraoui, A. & Sancholle, M. (2000). Degradation of benzo[a]pyrene as sole carbon source by a non white rot fungus, Fusarium solani. Polycyclic Aromatic Compounds, 21, 311–29.
Rama, R., Sigoillot, J.-C., Chaplain, al. (2001). Inoculation of filamentous fungi in manufactured gas plant site soils and PAH transformation. Polycyclic Aromatic Compounds, 18, 397–414.
Ramsay, J. A., Li, H., Brown, R. S. & Ramsay, B. A. (2003). Naphthalene and anthracene mineralization linked to oxygen, nitrate, Fe(III) and sulphate reduction in a mixed microbial population. Biodegradation, 14, 321–9.
Rasmussen, G. & Olsen, R. A. (2004). Sorption and biological removal of creosote-contaminants from groundwater in soil/sand vegetated with orchard grass (Dactylis glomerata). Advances in Environmental Research, 8, 313–27.
Ravelet, C., Grosset, C., Krivobok, S., Montuelle, B. & Alary, J. (2001). Pyrene degradation by two fungi in a freshwater sediment and evaluation of fungal biomass by ergosterol content. Applied Microbiology and Biotechnology, 56, 803–8.
Renoux, A. Y., Millette, D., Tyagi, R. D. & Samson, R. (1999). Detoxification of fluorene, phenanthrene, carbazole and p-cresol in columns of aquifer sand as studied by the Microtox® assay. Water Research, 33, 2045–52.
Rivera, L., Curto, M. J. C., Pais, P., Galceran, M. T. & Puignou, L. (1996). Solid-phase extraction for the selective isolation of polycyclic aromatic hydrocarbons, azaarenes and heterocyclic aromatic amines in charcoal-grilled meat. Journal of Chromatography A, 731, 85–94.
Rockne, K. J., Chee-Sanford, J. C., Sanford, R. al. (2000). Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions. Applied and Environmental Microbiology, 66, 1595–601.
Rodrigues, J. L. M., Aiello, M. R., Urbance, J. W., Tsoi, T. V. & Tiedje, J. M. (2002). Use of both 16S rRNA and engineered functional genes with real-time PCR to quantify an engineered, PCB-degrading Rhodococcus in soil. Journal of Microbiological Methods, 51, 181–9.
Romero, M. C., Cazau, M. C., Giorgieri, S. & Arambarri, A. M. (1998). Phenanthrene degradation by micro-organisms isolated from a contaminated stream. Environmental Pollution, 101, 355–9.
Romero, M. C., Salvioli, M. L., Cazau, M. C. & Arambarri, A. M. (2002). Pyrene degradation by yeasts and filamentous fungi. Environmental Pollution, 117, 159–63.
Rothermich, M. M., Hayes, L. A. & Lovley, D. R. (2002). Anaerobic, sulfate-dependent degradation of polycyclic aromatic hydrocarbons in petroleum-contaminated harbor sediment. Environmental Science and Technology, 36, 4811–17.
Ruberto, L., Vazquez, S. C. & MacCormack, W. P. (2003). Effectiveness of the natural bacterial flora, biostimulation and bioaugmentation on the bioremediation of a hydrocarbon contaminated Antarctic soil. International Biodeterioration and Biodegradation, 52, 115–25.
Saltiene, Z., Brukstiene, D. & Ruzgyte, A. (2002). Contamination of soil by polycyclic aromatic hydrocarbons in some urban areas. Polycyclic Aromatic Compounds, 22, 23–35.
Samanta, S. K., Singh, O. V. & Jain, R. K. (2002). Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends in Biotechnology, 20, 243–8.
Santodonato, J. (1997). Review of the estrogenic and antiestrogenic activity of polycyclic aromatic hydrocarbons: relationship to carcinogenicity. Chemosphere, 34, 835–48.
Saponaro, S., Bonomo, L., Petruzzelli, G., Romele, L. & Barbafieri, M. (2002). Polycyclic aromatic hydrocarbons (PAHs) slurry phase bioremediation of a manufacturing gas plant (MGP) site aged soil. Water, Air, and Soil Pollution, 135, 219–36.
Saraswathy, A. & Hallberg, R. (2002). Degradation of pyrene by indigenous fungi from a former gasworks site. FEMS Microbiology Letters, 210, 227–32.
Schneider, J., Grosser, R., Jayasimhulu, K., Xue, W. & Warshawsky, D. (1996). Degradation of pyrene, benz[a]anthracene, and benzo[a]pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site. Applied and Environmental Microbiology, 62, 13–19.
Selifonov, S. A., Chapman, P. J., Akkerman, S. al. (1998). Use of 13C nuclear magnetic resonance to assess fossil fuel biodegradation: fate of [1–13C]acenaphthene in creosote polycyclic aromatic compound mixtures degraded by bacteria. Applied and Environmental Microbiology, 64, 1447–53.
Šepič, E., Bricelj, M. & Leskovšek, H. (1998). Degradation of fluoranthene by Pasteurella sp. IFA and Mycobacterium sp. PYR-1: Isolation and identification of metabolites. Journal of Applied Microbiology, 85, 746–54.
Shimada, T. & Fujii-Kuriyama, Y. (2004). Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and 1B1. Cancer Science, 95, 1–6.
Sho, M., Hamel, C. & Greer, C. W. (2004). Two distinct gene clusters encode pyrene degradation in Mycobacterium sp. strain S65. FEMS Microbiology Ecology, 48, 209–20.
Shuttleworth, K. L. & Cerniglia, C. E. (1996). Bacterial degradation of low concentrations of phenanthrene and inhibition by naphthalene. Microbial Ecology, 31, 305–17.
Sonnefeld, W. J., Zoller, W. H. & May, W. E. (1983). Dynamic coupled-column liquid chromatographic determination of ambient temperature vapor pressures of polynuclear aromatic hydrocarbons. Analytical Chemistry, 55, 275–80.
Steffen, K. T., Hatakka, A. & Hofrichter, M. (2003). Degradation of benzo[a]pyrene by the litter-decomposing basidiomycete Stropharia coronilla: role of manganese peroxidase. Applied and Environmental Microbiology, 69, 3957–64.
Straube, W. L., Jones-Meehan, J., Pritchard, P. H. & Jones, W. R. (1999). Bench-scale optimization of bioaugmentation strategies for treatment of soils contaminated with high molecular weight polyaromatic hydrocarbons. Resources, Conservation and Recycling, 27, 27–37.
Straube, W. L., Nestler, C. C., Hansen, L. al. (2003). Remediation of polyaromatic hydrocarbons (PAHs) through landfarming with biostimulation and bioaugmentation. Acta Biotechnologica, 23, 179–96.
Sutherland, J. B. (2004). Degradation of hydrocarbons by yeasts and filamentous fungi. In Fungal Biotechnology in Agricultural, Food, and Environmental Applications, ed. Arora, D. K.. New York: Marcel Dekker, pp. 443–55.
Sutherland, J. B., Freeman, J. P., Selby, A. al. (1990). Stereoselective formation of a K-region dihydrodiol from phenanthrene by Streptomyces flavovirens. Archives of Microbiology, 154, 260–6.
Sutherland, J. B., Selby, A. L., Freeman, J. P., Evans, F. E. & Cerniglia, C. E. (1991). Metabolism of phenanthrene by Phanerochaete chrysosporium. Applied and Environmental Microbiology, 57, 3310–16.
Sutherland, J. B., Selby, A. L., Freeman, J. al. (1992). Identification of xyloside conjugates formed from anthracene by Rhizoctonia solani. Mycological Research, 96, 509–17.
Sutherland, J. B., Rafii, F., Khan, A. A. & Cerniglia, C. E. (1995). Mechanisms of polycyclic aromatic hydrocarbon degradation. In Microbial Transformation and Degradation of Toxic Organic Chemicals, ed. Young, L. Y. & Cerniglia, C. E.. New York: Wiley-Liss, pp. 269–306.
Sverdrup, L. E., Nielsen, T. & Krogh, P. H. (2002). Soil ecotoxicity of polycyclic aromatic hydrocarbons in relation to soil sorption, lipophilicity, and water solubility. Environmental Science and Technology, 36, 2429–35.
Tiehm, A., Stieber, M., Werner, P. & Frimmel, F. H. (1997). Surfactant-enhanced mobilization and biodegradation of polycyclic aromatic hydrocarbons in manufactured gas plant soil. Environmental Science and Technology, 31, 2570–76.
Oost, R., Beyer, J. & Vermeulen, N. P. E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology, 13, 57–149.
Herwijnen, R., Wattiau, P., Bastiaens, al. (2003). Elucidation of the metabolic pathway of fluorene and cometabolic pathways of phenanthrene, fluoranthene, anthracene and dibenzothiophene by Sphingomonas sp. LB126. Research in Microbiology, 154, 199–206.
Veignie, E., Rafin, C., Woisel, P., Lounès-Hadj Sahraoui, A. & Cazier, F. (2002). Metabolization of the polycyclic aromatic hydrocarbon benzo[a]pyrene by a non-white rot fungus (Fusarium solani) in a batch reactor. Polycyclic Aromatic Compounds, 22, 87–97.
Veignie, E., Rafin, C., Woisel, P. & Cazier, F. (2004). Preliminary evidence of the role of hydrogen peroxide in the degradation of benzo[a]pyrene by a non-white rot fungus Fusarium solani. Environmental Pollution, 129, 1–4.
Verdin, A., Lounès-Hadj Sahraoui, A. & Durand, R. (2004). Degradation of benzo[a]pyrene by mitosporic fungi and extracellular oxidative enzymes. International Biodeterioration and Biodegradation, 53, 65–70.
Verdin, A., Lounès-Hadj Sahraoui, A., Newsam, R., Robinson, G. & Durand, R. (2005). Polycyclic aromatic hydrocarbons storage by Fusarium solani in intracellular lipid vesicles. Environmental Pollution, 133, 283–91.
Vila, J., López, Z., Sabaté, al. (2001). Identification of a novel metabolite in the degradation of pyrene by Mycobacterium sp. strain AP1: actions of the isolate on two- and three-ring polycyclic aromatic hydrocarbons. Applied and Environmental Microbiology, 67, 5497–505.
Villeneuve, D. L., Khim, J. S., Kannan, K. & Giesy, J. P. (2002). Relative potencies of individual polycyclic aromatic hydrocarbons to induce dioxinlike and estrogenic responses in three cell lines. Environmental Toxicology, 17, 128–37.
Volkering, F., Breure, A. M. & Rulkens, W. H. (1998). Microbiological aspects of surfactant use for biological soil remediation. Biodegradation, 8, 401–17.
Watanabe, T., Katayama, S., Enoki, M., Honda, Y. & Kuwahara, M. (2000). Formation of acyl radical in lipid peroxidation of linoleic acid by manganese-dependent peroxidase from Ceriporiopsis subvermispora and Bjerkandera adusta. European Journal of Biochemistry, 267, 4222–31.
White, P. A. (2002). The genotoxicity of priority polycyclic aromatic hydrocarbons in complex mixtures. Mutation Research, 515, 85–98.
Wilcke, W. (2000). Polycyclic aromatic hydrocarbons (PAHs) in soil–a review. Journal of Plant Nutrition and Soil Science, 163, 229–48.
Willumsen, P., Karlson, U., Stackebrandt, E. & Kroppenstedt, R. M. (2001). Mycobacterium frederiksbergense sp. nov., a novel polycyclic aromatic hydrocarbon-degrading Mycobacterium species. International Journal of Systematic and Evolutionary Microbiology, 51, 1715–22.
Wrenn, B. A. & Venosa, A. D. (1996). Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most-probable-number procedure. Canadian Journal of Microbiology, 42, 252–8.
Yang, J., Liu, X., Long, al. (2003). Influence of nonionic surfactant on the solubilization and biodegradation of phenanthrene. Journal of Environmental Sciences (China), 15, 859–62.
Yu, H. (2002). Environmental carcinogenic polycyclic aromatic hydrocarbons: photochemistry and phototoxicity. Journal of Environmental Science and Health C, 20, 149–83.
Zhang, H., Kallimanis, A., Koukkou, A. I. & Drainas, C. (2004). Isolation and characterization of novel bacteria degrading polycyclic aromatic hydrocarbons from polluted Greek soils. Applied Microbiology and Biotechnology, 65, 124–31.
Zheng, Z. & Obbard, J. P. (2001). Effect of non-ionic surfactants on elimination of polycyclic aromatic hydrocarbons (PAHs) in soil-slurry by Phanerochaete chrysosporium. Journal of Chemical Technology and Biotechnology, 76, 423–9.
Zheng, Z. & Obbard, J. P. (2002). Polycyclic aromatic hydrocarbon removal from soil by surfactant solubilization and Phanerochaete chrysosporium oxidation. Journal of Environmental Quality, 31, 1842–7.