Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T15:59:57.898Z Has data issue: false hasContentIssue false

3 - Polymer Solutions

Published online by Cambridge University Press:  05 August 2014

Himadri B. Bohidar
Affiliation:
Jawaharlal Nehru University
Get access

Summary

Basic concepts

Polymer solutions are complex liquids at any given temperature and require specialized thermodynamic treatment. The phase stability of polymer solutions is a pre-requisite for any potential application. In general, the theoretical calculation of the thermodynamic properties of liquids and solutions involves determination of their configurational properties (those that depend only on intermolecular interaction) ignoring the internal movement of molecules. As a result, we can define configurational or intermolecular energy of a solution as the energy of a liquid minus the energy of the same substance in the state of an ideal gas at the same temperature. Thus, as is evident, configurational thermodynamic properties can have combinatorial and/or non-combinatorial properties. This attribute of polymer solutions has attracted much attention in the past (Flory 1953; Hildebrand 1953; Huggins 1941, 1942).

Thermodynamics demands that entropy be the deciding factor that governs solution stability. Entropy of mixing arising due to the rearrangement of different molecules is called the geometrical or combinatorial entropy of mixing. The non-geometrical (non-combinatorial) contribution of the entropy of mixing results from the energy of interaction between the components present in the solution, resulting in contraction of the solvent and the formation of oriented solvation layers (hydration sheathes). This involves a decrease in entropy of the solvent. The former contribution(∆Scomb > 0) favours dissolution (∆G = ∆HTS becomes more negative), the latter contribution (∆Snon-comb < 0) does not favour dissolution. We find that under specific conditions, in some systems, the first contribution may dominate over the second and then the total entropy of mixing becomes negative. This concept of polymer solutions has been discussed in excellent detail by Flory (1953).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Flory, P. J. 1953. Principles of Polymer Chemistry. New York: Cornell University Press.
Hildebrand, J. H. 1953. Discuss. Faraday Soc. 15: 9.
Huggins, M. L. 1942. J. Phys. Chem. 46: 1.
Huggins, M. L. 1941. J. Chem. Phys. 9: 440.
Doi, M. and H., See. 1996. Introduction to Polymer Physics. Oxford: Oxford Science Publications.
Gedde, U. W. 1995. Polymer Physics. New York: Chapman and Hall.
Patterson, G. 2007. Physical Chemistry of Macromolecules. New York: CRC Press.
Rubinstein, M. and R. H., Colby. 2003. Polymer Physics. London: Oxford University Press.
Stein, Richard and Joseph, Powers. 2006. Topics in Polymer Physics. London: Imperial College Press.
Sun, S. F. 2004. Physical Chemistry of Macromolecules. New York: Wiley-Interscience.
Yamakawa, H. 1971. Modern Theory of Polymer Solutions. New York: Harper and Row.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Polymer Solutions
  • Himadri B. Bohidar, Jawaharlal Nehru University
  • Book: Fundamentals of Polymer Physics and Molecular Biophysics
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107415959.004
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Polymer Solutions
  • Himadri B. Bohidar, Jawaharlal Nehru University
  • Book: Fundamentals of Polymer Physics and Molecular Biophysics
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107415959.004
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Polymer Solutions
  • Himadri B. Bohidar, Jawaharlal Nehru University
  • Book: Fundamentals of Polymer Physics and Molecular Biophysics
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107415959.004
Available formats
×