Skip to main content Accessibility help
  • Print publication year: 2011
  • Online publication date: June 2012

18 - Direct solar energy conversion with photovoltaic devices

from Part 3 - Renewable energy sources
    • By David S. Ginley, Process Technology and Advanced Concepts, National Renewable Energy Laboratory, Golden, CO, USA, Reuben Collins, Physics Department and Renewable Energy Materials Research Science and Engineering Center, Colorado School of Mines, Garden, CO, USA, David Cahen, Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot Israel
  • Edited by David S. Ginley, National Renewable Energy Laboratory, Colorado, David Cahen, Weizmann Institute of Science, Israel
  • Publisher: Cambridge University Press
  • DOI:
  • pp 216-237



During the last decade the direct conversion of solar energy to electricity by photovoltaic cells has emerged from a pilot technology to one that produced 11 GWp of electricity generating capacity in 2009. With production growing at 50%–70% a year (at least until 2009) photovoltaics (PV) is becoming an important contributor to the next generation of renewable green power production. The question is that of how we can move to the terawatt ( TW ) scale [1].


The rapid evolution of PV as an alternative means of energy generation is bringing it closer to the point where it can make a significant contribution to challenges posed by the rapid growth of worldwide energy demand and the associated environmental issues. Together with the main existing technology, which is based on silicon (Si), the growth of the field is intertwined with the development of new materials and fabrication approaches. The PV industry, which was, until recently, based primarily on crystalline, polycrystalline, and amorphous Si, grew at an average annual rate of 50% during 2000–2010. This rate was increasing, at least until the 2008 economic crisis, with production of ~11 gigawatts (GWp) per year in 2009 [2]. While this may seem a very large number, PV installations in total are still supplying only <0.03% of all the world's power needs (~14–15 TW) [2]. As production increases, increasing individual cell efficiency and translating that to modules, as well as reducing manufacturing expenses and increasing system lifetimes, are all critical to achieving grid parity, the point at which the cost of PV power is equal to the price of grid electricity.

Related content

Powered by UNSILO
Hermann, W. A. 2006 “Quantifying global exergy resources,”Energy 31 1685
Shyam Mehta“26th Annual Data Collection Results: Another bumper year for manufacturing Masks turmoil.”PVNews 29 2010 11
von Roedern, B.Zweibel, K.Ullal, H. S. 2005 “The role of polycrystalline thin-film PV technologies for achieving mid-term market-competitive PV modules,”Proceedings of the 31st IEEE Photovoltaics Specialists Conference and ExhibitionLake Buena VistaFL
Ginley, D.Green, M.Collins, R. 2008 “Solar energy conversion toward 1 terawatt,”MRS Bull. 33 355
Green, M. A.Emery, K.Hishikawa, Y.Warta, W. 2011 “Solar cell efficiency tables (version 37),”Prog. Photovoltaics: Res. Appl. 19 84
Kazmerski, L.
Becquerel, E. 1839 “Mémoires sur les effets électriques produits sous l'influence des rayons,”Comptes Rendues 9 561
Smith, W. 1873
Adams, W. G.Day, R. E. 1877 “The action of light on selenium,”Proc. Roy. Soc. A 25 113
Einstein, A. 1905 “Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt” [“On a heuristic viewpoint concerning the production and transformation of light”]Ann. Phys. 17 132
Kennard, E. H.Dietrich, E. O. 1917 “An effect of light upon the contact potential of selenium and cuprous oxide,”Phys. Rev. 9 58
Grondahl, L. O. 1933 “The copper–cuprous oxide rectifier and photoelectric cell,”Rev. Mod. Phys. 5 141
Ohl, R. S. 1946
Ohl, R. S. 1948
Rappaport, P. 1954 “The electron voltaic effect in p–n junctions induced by beta-particle bombardment,”Phys. Rev. 93 246
Chapin, D. M.Fuller, C. S.Pearson, G. L. 1954 “A new silicon photocell for converting solar radiation into electrical power,”J. Appl. Phys. 25 676
Reynolds, D. C.Leies, G.Antes, L. L.Marburger, R. E. 1954 “Photovoltaic effect in cadmium sulfide,”Phys. Rev. 96 533
Jenny, D. A.Loferski, J. J.Rappaport, P. 1956 “Photovoltaic effect in GaAs p–n junctions and solar energy conversion,”Phys. Rev. 101 1208
Loferski, J. 1993 “The first forty years: a brief history of the modern photovoltaic age,”Prog. Photovoltaics: Res. Appl. 1 67
O'Regan, B.Grätzel, M. 1991 “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,”Nature 353 737
Tang, C. W. 1986 “Two-layer organic photovoltaic cell,”Appl. Phys. Lett. 48 183
Würfel, P. 2009 Physics of Solar Cells: From Basic Principles to Advanced ConceptsWeinheimWiley-VCH
Green, M. A. 2002 “Photovoltaic principles,”Physica E 14 11
Nelson, J. 2003 The Physics of Solar CellsLondonImperial College Press
Green, M. A. 2007 “Thin film solar cells: review of materials, technologies and commercial status,”J. Mater. Sci. Mater. Electron. 18 515
Günes, S.Neugebauer, H.Sariciftci, N. S. 2007 “Conjugated polymer-based organic solar cells,”Chem. Rev. 107 1324
Grätzel, M. 2003 “Dye-sensitized solar cells,”J. Photochem. Photobiol. C: Photochem. Rev. 4 145
Yamaguchi, M.Takamoto, T.Araki, K.Ekins-Daukes, N. 2005 “Multi-junction III–V solar cells,”Solar Energy 79 78
DOE 2009
Green, M. A. 2001 “Third generation photovoltaics: ultra-high conversion efficiency at low cost,”Prog. Photovoltaics: Res. Appl. 9 123
Green, M. A. 2001 “Photovoltaics for the 21st century II,”Electrochem. Soc. Proc. 2001 30
Surek, T. 2005 “Crystal growth and materials research in photovoltaics: progress and challenges,”J. Cryst. Growth 275 292
Margolis, R. M. 2003
Trina Solar
SunPower Corp 2010
First Solar
Shockley, W.Queisser, H. J. 1961 “Detailed balance limit of efficiency of p–n junction solar cells,”J. Appl. Phys. 32 510
Taira, S.Yoshimine, Y.Baba, T. 2007 932
SunPower Corp 2010
Slaoui, A.Collins, R. T. 2007 “Advanced inorganic materials for photovoltaics,”MRS Bull. 32 211
Yan, B.Yue, G.Owens, J. M.Yang, J.Guha, S. 2006 1477
Staebler, D. L.Wronski, C. R. 1980 “Optically induced conductivity changes in discharge-produced hydrogenated amorphous silicon,”J. Appl. Phys. 51
Contreras, M. A.Romero, M. J.Noufi, R. 2006 “Characterization of Cu(In,Ga)Se2 materials used in record performance solar cells,”Thin Solid Films 511–512 51
Wu, X. 2004 “High-efficiency polycrystalline CdTe thin-film solar cells,”Solar Energy 77 803
Contreras, M. A.Egaas, B.Ramanathan, K. 1999 Prog. Photovoltaics: Res. Appl. 7 311
AbuShama, J.Noufi, R.Yan, Y. 2001 “Cu(In,Ga)Se2 thin-film evolution during growth from (In,Ga)2Se3 precursors,”Mater. Res. Soc. Symp. Proc. 664
Kronik, L.Cahen, D.Schock, H. W. 1998 “Effect of Na on CuInSe2 and its solar cell performance,”Adv. Mater. 10 31
Romeo, A.Terheggen, M.Abou-Ras, D. 2004 “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells,”Prog. Photovoltaics: Res. Appl. 12 93
Shaheen, S. E.Ginley, D. S.Jabbour, G. E. 2005 “Organic-based photovoltaics: toward low-cost power generation,”MRS Bull. 30 10
Solarmer Energy, Inc 2010
Collins, G. 2004 “Next stretch for plastics electronics,”Sci. Am. 291 74
de Leeuw, D. M. 1999 “Plastic electronics,”Phys. World 12 31
Brabec, C. J.Gowrisanker, S.Halls, J. J. M. 2010 “Polymer–fullerence bulk-heterojunction solar cells,”Adv. Mater. 22 3839
Bony, L.Doig, S.Hart, C.Maurer, E.Newman, S. 2010 Achieving Low-Cost Solar PV: Industry Workshop Recommendations for Near-Term Balance of System Cost ReductionsRocky Mountain Institute5