Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-28T17:14:25.258Z Has data issue: false hasContentIssue false

4A - Neutrophils I

from PART II - INDIVIDUAL CELL TYPES

Published online by Cambridge University Press:  05 April 2014

Jose U. Scher
Affiliation:
New York University Langone Medical Center
Steven B. Abramson
Affiliation:
New York University Langone Medical Center
Michael H. Pillinger
Affiliation:
New York University Langone Medical Center
Charles N. Serhan
Affiliation:
Harvard Medical School
Peter A. Ward
Affiliation:
University of Michigan, Ann Arbor
Derek W. Gilroy
Affiliation:
University College London
Get access

Summary

INTRODUCTION

Polymorphonuclear leukocytes or granulocytes are hematopoietically derived phagocytes characterized by multilobed nuclei and the presence of multiple, distinct granules within their cytoplasm. Three different polymorphonuclear leukocytes are distinguished according to their granular staining properties: neutrophils (polymorphonuclear neutrophils or PMNs), basophils, and eosinophils. Neutrophil granules stain preferentially with neutral dyes, whereas basophil granules stain with basic dyes, and eosinophilic granules stain with acidic colorants such as eosin. These three types of leukocytes differ not only in their tinctorial properties, but also in their functions and roles during the inflammatory process. They constitute key effector cells in innate immunity, and the frontline of host defense in response to foreign antigens and microorganisms. In this chapter, we will focus on the biology and role of neutrophils. The other polymorphonuclear leukocytes are discussed elsewhere.

NEUTROPHIL HOMEOSTASIS: MYELOPOIESIS AND DESTRUCTION

Neutrophil myelopoiesis is a closely regulated pro cess that begins with the differentiation of pluripotent stem cells into primitive myeloid progenitors, which in turn differentiate into specific myeloid precursors. Contact with specific adhesion molecules, hematopoietic growth factors, and cytokines promotes the progression of myeloblasts along unique pathways to mature as neutrophils, eosinophils, and basophils, as well as monocytes. The sequence that leads to neutrophil formation begins with the neutrophilic promyelocyte and progresses through several maturation steps (neutrophilic myelocyte, metamyelocyte, band cell, and mature neutrophil) (Figure 4A.1).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bainton, D.F., Ullyot, J.L., and Farquhar, M.G. 1971. The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. J Exp Med 134(4):907–934.CrossRefGoogle ScholarPubMed
2. Rosmarin, A.G., Yang, Z., and Resendes, K.K. 2005. Transcriptional regulation in myelopoiesis: hematopoi-etic fate choice, myeloid differentiation, and leukemo-genesis. Exp Hematol 33(2):131–143.CrossRefGoogle Scholar
3. Gallin, J.I., and Snyderman, R. 1999. Inflammation: Basic Principles and Clinical Correlates. Philadelphia, PA: Lippincott Williams & Wilkins, 3rd ed., p. xxiii, 1335.Google Scholar
4. Richards, M.K., Liu, F., Iwasaki, H., Akashi, K., and Link, D.C. 2003. Pivotal role of granulocyte colony-stimulating factor in the development of progenitors in the common myeloid pathway. Blood 102(10):3562–3568.CrossRefGoogle ScholarPubMed
5. Lord, B.I., Bronchud, M.H., Owens, S., et al. 1989. The kinetics of human granulopoiesis following treatment with granulocyte colony-stimulating factor in vivo. Proc Natl Acad Sci USA 86(23):9499–9503.CrossRefGoogle ScholarPubMed
6. Fukunaga, R., Seto, Y., Mizushima, S., and Nagata, S. 1990. Three different mRNAs encoding human granu-locyte colony-stimulating factor receptor. Proc Natl Acad Sci USA 87(22):8702–8706.CrossRefGoogle Scholar
7. Pojda, Z., and Tsuboi, A. 1990. In vivo effects of human recombinant interleukin 6 on hemopoietic stem and progenitor cells and circulating blood cells in normal mice. Exp Hematol 18(9):1034–1037.Google ScholarPubMed
8. Metcalf, D., Begley, C.G., Johnson, G.R., Nicola, N.A., Lopez, A.F., and Williamson, D.J. 1987. Quantitative responsiveness of murine hemopoietic populations in vitro and in vivo to recombinant multi-CSF (IL-3). Exp Hematol 15(3):288–295.Google Scholar
9. Metcalf, D., Begley, C.G., Johnson, G.R., Nicola, N.A., Lopez, A.F., and Williamson, D.J. 1986. Effects of purified bacterially synthesized murine multi-CSF (IL-3) on hematopoiesis in normal adult mice. Blood 68(1):46–57.Google ScholarPubMed
10. Nagase, H., Miyamasu, M., Yamaguchi, M., et al. 2002. Cytokine-mediated regulation of CXCR4 expression in human neutrophils. J Leukoc Biol 71(4):711–717.Google ScholarPubMed
11. Martin, C., Burdon, P.C.E., Bridger, G., Gutierrez-Ramos, J-C., Williams, T.J., and Rankin, S.M. 2003. Chemokines acting via CXCR2 and CXCR4 control the release of neu-trophils from the bone marrow and their return following senescence. Immunity 19(4):583–593.CrossRefGoogle Scholar
12. Murray, J., Barbara, J.A., Dunkley, S.A., et al. 1997. Regulation of neutrophil apoptosis by tumor necrosis factor-alpha: requirement for TNFR55 and TNFR75 for induction of apoptosis in vitro. Blood 90(7):2772–2783.Google ScholarPubMed
13. Tortorella, C., Piazzolla, G., Spaccavento, F., Pece, S., Jirillo, E., and Antonaci, S. 1998. Spontaneous and Fas-induced apoptotic cell death in aged neutrophils. J Clin Immunol 18(5):321–329.CrossRefGoogle ScholarPubMed
14. Stark, M.A., Huo, Y., Burcin, T.L., Morris, M.A., Olson, T.S., and Ley, K. 2005. Phagocytosis of apoptotic neu-trophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22(3):285–294.CrossRefGoogle Scholar
15. Borregaard, N., Lollike, K., Kjeldsen, L., et al. 1993. Human neutrophil granules and secretory vesicles. Eur J Haematol 51(4):187–198.Google ScholarPubMed
16. Borregaard, N., Sehested, M., Nielsen, B.S., Sengel0v, H., and Kjeldsen, L. 1995. Biosynthesis of granule proteins in normal human bone marrow cells. Gelatinase is a marker of terminal neutrophil differentiation. Blood 85(3):812–817.Google ScholarPubMed
17. Cowland, J.B., and Borregaard, N. 1999. The individual regulation of granule protein mRNA levels during neu-trophil maturation explains the heterogeneity of neutro-phil granules. J Leukoc Biol 66(6):989–995.CrossRefGoogle Scholar
18. Cham, B.P., Gerrard, J.M., and Bainton, D.F. 1994. Granulophysin is located in the membrane of azuro-philic granules in human neutrophils and mobilizes to the plasma membrane following cell stimulation. Am J Pathol 144(6):1369–1380.Google ScholarPubMed
19. Dahms, N.M., Lobel, P., and Kornfeld, S. 1989. Mannose 6-phosphate receptors and lysosomal enzyme targeting. J Biol Chem 264(21):12115–12118.Google ScholarPubMed
20. Nauseef, W.M., McCormick, S., and Yi, H. 1992. Roles of heme insertion and the mannose-6-phosphate receptor in processing of the human myeloid lysosomal enzyme, myeloperoxidase. Blood 80(10):2622–2633.Google ScholarPubMed
21. Cieutat, A.M., Lobel, P., August, J.T., et al. 1998. Azurophilic granules of human neutrophilic leukocytes are deficient in lysosome-associated membrane proteins but retain the mannose 6-phosphate recognition marker. Blood 91(3):1044–1058.Google ScholarPubMed
22. Owen, C.A., and Campbell, E.J. 1999. The cell biology of leukocyte-mediated proteolysis. J Leukoc Biol 65(2):137–150.CrossRefGoogle ScholarPubMed
23. Kobayashi, Y. 2006. Neutrophil infiltration and chemokines. Crit Rev Immunol 26(4):307–316.CrossRefGoogle ScholarPubMed
24. Cohen, A.M., Zsebo, K.M., Inoue, H., et al. 1987. In vivo stimulation of granulopoiesis by recombinant human granulocyte colony-stimulating factor. Proc Natl Acad Sci USA 84(8):2484–2488.CrossRefGoogle ScholarPubMed
25. Hechtman, D.H., Cybulsky, M.I., Fuchs, H.J., Baker, J.B., and Gimbrone, M.A. Jr., 1991. Intravascular IL-8 inhibitor of polymorphonuclear leukocyte accumulation at sites of acute inflammation. J Immunol 147(3):883–892.Google ScholarPubMed
26. Theilgaard-Monch, K., Porse, B.T., and Borregaard, N. 2006. Systems biology of neutrophil differentiation and immune response. Curr Opin Immunol 18(1):54–60.CrossRefGoogle ScholarPubMed
27. Bokoch, G.M. 1995. Chemoattractant signaling and leukocyte activation. Blood 86(5):1649–1660.Google ScholarPubMed
28. Hall, A. 2005. Rho GTPases and the control of cell behaviour. Biochem Soc Trans 33(Pt 5):891–895.CrossRefGoogle ScholarPubMed
29. Kawasaki, M., Nakayama, K., and Wakatsuki, S. 2005. Membrane recruitment of effector proteins by Arf and Rab GTPases. Curr Opin Struct Biol 15(6):681–689.CrossRefGoogle ScholarPubMed
30. Morgan, C.P., Sengelov, H., Whatmore, J., Borregaard, N., and Cockcroft, S. 1997. ADP-ribosylation-factor-regulated phospholipase D activity localizes to secretory vesicles and mobilizes to the plasma membrane following N-formylmethionyl-leucyl-phenylalanine stimulation of human neutrophils. Biochem J 325(Pt 3):581–585.CrossRefGoogle ScholarPubMed
31. Murakami, M., and Kudo, I. 2002. Phospholipase A2. J Biochem 131(3):285–292.CrossRefGoogle ScholarPubMed
32. Pillinger, M.H., Feoktistov, A.S., Capodici, C., et al. 1996. Mitogen-activated protein kinase in neutrophils and enucleate neutrophil cytoplasts: evidence for regulation of cell-cell adhesion. J Biol Chem 271(20):12049–12056.CrossRefGoogle ScholarPubMed
33. Smolen, J.E., Stoehr, S.J., and Kuczynski, B. 1991. Cyclic AMP inhibits secretion from electroporated human neu-trophils. J Leukoc Biol 49(2):172–179.Google Scholar
34. Amin, A.R., Attur, M., Vyas, P., et al. 1995. Expression of nitric oxide synthase in human peripheral blood mononuclear cells and neutrophils. J Inflamm 47(4):190–205.Google ScholarPubMed
35. Scher, J.U., Pillinger, M.H., and Abramson, S.B. 2007. Nitric oxide synthases and osteoarthritis. Curr Rheumatol Rep 9(1):9–15.CrossRefGoogle ScholarPubMed
36. Clancy, R.M., Amin, A.R., and Abramson, S.B. 1998. The role of nitric oxide in inflammation and immunity. Arthritis Rheum 41(7):1141–1151.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
37. Nauseef, W.M., Volpp, B.D., McCormick, S., Leidal, K.G., and Clark, R.A. 1991. Assembly of the neutrophil respiratory burst oxidase. Protein kinase C promotes cytoskel-etal and membrane association of cytosolic oxidase components. J Biol Chem 266(9):5911–5917.Google ScholarPubMed
38. Kambayashi, Y., Takekoshi, S., Tanino, Y., et al. 2007. Various molecular species of diacylglycerol hydroperoxide activate human neutrophils via PKC activation. J Clin Biochem Nutr 41(1):68–75.CrossRefGoogle ScholarPubMed
39. Yamamoto, Y., Kambayashi, Y., Ito, T., Watanabe, K., and Nakano, M. 1997. 1,2-Diacylglycerol hydroperoxides induce the generation and release of superoxide anion from human polymorphonuclear leukocytes. FEBS Lett 412(3):461–464.CrossRefGoogle ScholarPubMed
40. Suzuki, K., Hino, M., Hato, F., Tatsumi, N., and Kitagawa, S. 1999. Cytokine-specific activation of distinct mitogen-activated protein kinase subtype cascades in human neutrophils stimulated by granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, and tumor necrosis factor-alpha. Blood 93(1):341–349.Google ScholarPubMed
41. Nick, J.A., Avdi, N.J., Young, S.K., et al. 1999. Selective activation and functional significance of p38 alpha mitogen-activated protein kinase in lipopolysaccharide-stimulated neutrophils. J Clin Invest 103(6):851–858.CrossRefGoogle ScholarPubMed
42. Avdi, N.J., Nick, J.A., Whitlock, B.B., et al. 2001. Tumor necrosis factor-alpha activation of the c-Jun N-terminal kinase pathway in human neutrophils. Integrin involvement in a pathway leading from cytoplasmic tyrosine kinases apoptosis. J Biol Chem 276(3):2189–2199.CrossRefGoogle Scholar
43. Chang, L.C., and Wang, J.P. 1999. Examination of the signal transduction pathways leading to activation of extracellular signal-regulated kinase by formyl-methionyl-leucyl-phenylalanine in rat neutrophils. FEBS Lett 454(1-2):165–168.CrossRefGoogle ScholarPubMed
44. Chen, L.W., Lin, M.W., and Hsu, C.M. 2005. Different pathways leading to activation of extracellular signal-regulated kinase and p38 MAP kinase by formyl-methionyl-leucyl-phenylalanine or platelet activating factor in human neu-trophils. J Bio med Sci 12(2):311–319.Google ScholarPubMed
45. Capodici, C., Pillinger, M.H., Han, G., Philips, M.R., and Weissmann, G. 1998. Integrin-dependent homotypic adhesion of neutrophils. Arachidonic acid activates Raf-1/Mek/Erk via a 5-lipoxygenase-dependent pathway. J Clin Invest 102(1):165–175.CrossRefGoogle Scholar
46. Thelen, M., Uguccioni, M., and Bosiger, J. 1995. PI 3-kinase-dependent and independent chemotaxis of human neutrophil leukocytes. Biochem Biophys Res Commun 217(3):1255–1262.CrossRefGoogle ScholarPubMed
47. Capodici, C., Hanft, S., Feoktistov, M., and Pillinger, M.H. 1998. Phosphatidylinositol 3-kinase mediates chemoattractant-stimulated, CD11b/CD18-dependentcell-cell adhesion of human neutrophils: evidence for an ERK-independent pathway. J Immunol 160(4):1901–1909.Google ScholarPubMed
48. Kilpatrick, L.E., Lee, J.Y., Haines, K.M., Campbell, D.E., Sullivan, K.E., and Korchak, H.M. 2002. A role for PKC-delta and PI 3-kinase in TNF-alpha-mediated antiapop-totic signaling in the human neutrophil. Am J Physiol Cell Physiol 283(1):C48–C57.CrossRefGoogle ScholarPubMed
49. Middleton, J., Neil, S., Wintle, J., et al. 1997. Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell 91(3):385–395.CrossRefGoogle ScholarPubMed
50. Diacovo, T.G., Roth, S.J., Buccola, J.M., Bainton, D.F., and Springer, T. A. 1996. Neutrophil rolling, arrest, and transmigration across activated, surface-adherent platelets via sequential action of P-selectin and the beta 2-integrin CD11b/CD18. Blood 88(1):146–157.Google ScholarPubMed
51. Muller, W.A., Weigl, S.A., Deng, X., and Phillips, D.M. 1993. PECAM-1 is required for transendothelial migration of leukocytes. J Exp Med 178(2):449–460.CrossRefGoogle ScholarPubMed
52. Baggiolini, M., and Clark-Lewis, I. 1992. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett 307(1):97–101.CrossRefGoogle ScholarPubMed
53. Underhill, D.M., and Ozinsky, A. 2002. Toll-like receptors: key mediators of microbe detection. Curr Opin Immunol 14(1):103–110.CrossRefGoogle ScholarPubMed
54. Ozinsky, A., Underhill, D.M., Fontenot, J.D., et al. 2000. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci USA 97(25):13766–13771.CrossRefGoogle ScholarPubMed
55. Hayashi, F., Means, T.K., and Luster, A.D. 2003. Toll-like receptors stimulate human neutrophil function. Blood 102(7):2660–2669.CrossRefGoogle ScholarPubMed
56. Indik, Z.K., Park, J.G., Hunter, S., and Schreiber, A.D. 1995. The molecular dissection of Fc gamma receptor mediated phagocytosis. Blood 86(12):4389–4399.Google ScholarPubMed
57. Ravetch, J.V., and Kinet, J.P. 1991. Fc receptors. Annu Rev Immunol 9:457–492.CrossRefGoogle ScholarPubMed
58. Karakawa, W.W., Sutton, A., Schneerson, R., Karpas, A., and Vann, W.F. 1988. Capsular antibodies induce type-specific phagocytosis of capsulated Staphylococcus aureus by human polymorphonuclear leukocytes. Infect Immun 56(5):1090–1095.Google ScholarPubMed
59. Elsbach, P., and Weiss, J. 1998. Role of the bactericidal/ permeability-increasing protein in host defence. Curr Opin Immunol 10(1):45–49.CrossRefGoogle ScholarPubMed
60. Brinkmann, V., Reichard, U., Goosmann, C., et al. 2004. Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535.CrossRefGoogle ScholarPubMed
61. Brinkmann, V., and Zychlinsky, A. 2007. Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol 5(8):577–582.CrossRefGoogle ScholarPubMed
62. Abramson, S.B., Leszczynska-Piziak, J., and Weissmann, G. 1991. Arachidonic acid as a second messenger. Interactions with a GTP-binding protein of human neu-trophils. J Immunol 147(1):231–236.Google Scholar
63. Samuelsson, B., Dahlen, S.E., Lindgren, J.A., Rouzer, C.A., and Serhan, C.N. 1987. Leukotrienes and lipox-ins: structures, biosynthesis, and biological effects. Science 237(4819):1171–1176.CrossRefGoogle ScholarPubMed
64. Chiang, N., Arita, M., and Serhan, C.N. 2005. Anti-inflammatory circuitry: lipoxin, aspirin-triggered lipox-ins and their receptor ALX. Prost Leukot Essent Fatty Acids 73(3-4):163–177.CrossRefGoogle ScholarPubMed
65. Serhan, C.N., Hong, S., Gronert, K., et al. 2002. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med 196(8):1025–1037.CrossRefGoogle ScholarPubMed
66. Scher, J.U., and Pillinger, M.H. 2005. 15d-PGJ2: the anti-inflammatory prostaglandin?Clin Immunol 114(2):100–109.Google ScholarPubMed
67. Kasama, T., Miwa, Y., Isozaki, T., Odai, T., Adachi, M., and Kunkel, S.L. 2005. Neutrophil-derived cytok-ines: potential therapeutic targets in inflammation. Curr Drug Targets Inflamm Allergy 4(3):273–279.CrossRefGoogle ScholarPubMed
68. Schroder, A.K., von der Ohe, M., Kolling, U., et al. 2006. Polymorphonuclear leucocytes selectively produce anti-inflammatory interleukin-1 receptor antagonist and chemokines, but fail to produce pro-inflammatory mediators. Immunology 119(3):317–327.CrossRefGoogle ScholarPubMed
69. Scapini, P., Lapinet-Vera, J.A., Gasperini, S., Calzetti, F., Bazzoni, F., and Cassatella, M.A. 2000. The neutro-phil as a cellular source of chemokines. Immunol Rev 177:195–203.CrossRefGoogle ScholarPubMed
70. Theilgaard-Monch, K., Jacobsen, L.C., Borup, R., et al. 2005. The transcriptional program of terminal granulo- ytic differentiation. Blood 105(4):1785–1796.CrossRefGoogle Scholar
71. Scapini, P., Carletto, A., Nardelli, B., et al. 2005. Proinflammatory mediators elicit secretion of the intracellular B-lymphocyte stimulator pool (BLyS) that is stored in activated neutrophils: implications for inflammatory diseases. Blood 105(2):830–837.CrossRefGoogle ScholarPubMed
72. Cassatella, M.A., Huber, V., Calzetti, F., et al. 2006. Interferon-activated neutrophils store a TNF-related apoptosis-inducing ligand (TRAIL/Apo-2 ligand) intra-cellular pool that is readily mobilizable following exposure to proinflammatory mediators. J Leukoc Biol 79(1):123–132.CrossRefGoogle Scholar
73. Reibman, J., Meixler, S., Lee, T.C., et al. 1991. Transforming growth factor beta 1, a potent chemoattractant for human neutrophils, bypasses classic signal-transduction pathways. Proc Natl Acad Sci USA 88(15):6805–6809.CrossRefGoogle ScholarPubMed
74. Fava, R.A., Olsen, N.J., Postlethwaite, A.E., et al. 1991. Transforming growth factor beta 1 (TGF-beta 1) induced neutrophil recruitment to synovial tissues: implications for TGF-beta-driven synovial inflammation and hyperplasia. J Exp Med 173(5):1121–1132.CrossRefGoogle ScholarPubMed
75. Huynh, M.L., Fadok, V.A., and Henson, P.M. 2002. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J Clin Invest 109(1):41–50.CrossRefGoogle ScholarPubMed
76. McColl, S.R., Paquin, R., Menard, C., and Beaulieu, A.D. 1992. Human neutrophils produce high levels of the interleukin 1 receptor antagonist in response to granu-locyte/macrophage colony-stimulating factor and tumor necrosis factor alpha. J Exp Med 176(2):593–598.Google Scholar
77. Fitzgerald, A.A., LeClercq, S.A., and Yan, A. 2005. Rapid responses to anakinra in patients with refractory adult-onset Still's disease. Arthritis Rheum 52(6):1794–1803.CrossRefGoogle ScholarPubMed
Burg, N.D., and Pillinger, M.H. 2001. The neutrophil: function and regulation in innate and humoral immunity. Clin Immunol 99(1):7–17.CrossRefGoogle ScholarPubMed
Kobayashi, Y. 2006. Neutrophil infiltration and chemokines. Crit Rev Immunol 26(4):307–316.CrossRefGoogle ScholarPubMed
Theilgaard-Monch, K., Porse, B.T., and Borregaard, N. 2006. Systems biology of neutrophil differentiation and immune response. Curr Opin Immunol 18(1):54–60.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×