Skip to main content Accessibility help
  • Print publication year: 2009
  • Online publication date: January 2011

6 - Channel waveguide components


Fields in channel waveguides are confined to the vicinity of the core within a few μm in both the lateral and the depth directions. There are two main advantages of the lateral confinement of channel guided-wave modes:

(1) The RF electric field required to obtain an electro-optical effect such as electro-optic change of index or electro-absorption needs only to exist in a small region around the core. The required electric field in a small region can be achieved with just a moderate RF voltage applied to the electrodes. Furthermore, when the electrodes are fabricated parallel to the channel waveguides, the electro-optical change of index or electro-absorption produced by a propagating RF signal can be synchronized with the propagation of the guided wave in a traveling wave interaction as discussed in Chapter 4. Thus the electro-optical modulation at high frequencies may be carried out effectively.

(2) Most optoelectronic devices are eventually connected to single mode optical fibers. The optical field pattern of the channel waveguides can be designed such that it matches well with the field pattern of single mode optical fibers or tapered fibers, providing high efficiency transmission of optical power to and from the low loss single mode fibers.

Traditionally, guided-wave devices have been discussed in the literature according to the type of optical interactions they utilize, such as directional coupling or electro-absorption.

Related content

Powered by UNSILO
Dragone, C., Efficient MxN coupler using Fourier optics. J. Lightwave Tech., 7 (1989) 479.
Soldano, L. B. and Pennings, E. C. M., Optical multi-mode interference devices based on self-imaging: Principles and applications. J. Lightwave Tech., 13 (1995) 615.
Smit, M. K. and Dam, C., Phasar based WDM-devices, principles, design, and applications. IEEE J. Select. Topics Quant. Elect., 2 (1996) 236.
Chen, J. X., Kawanishi, T., Higuma, K., et al., Tunable lithium niobate waveguide loop. IEEE Phot. Tech. Lett., 16 (2004) 2090.
Yariv, A., Optical Electronics in Modern Communication, Section 4.1, Oxford University Press (1997).
Yariv, A., Universal relations for coupling of optical power between microresonators and dielectric waveguide. Elect. Lett., 36 (2000) 321.
Kominato, T., Ohmori, Y., Takato, N., Okazaki, H., and Yasu, M., Ring resonators composed of GeO2-doped silica waveguide. J. Lightwave Tech., 10 (1992) 1781.
Oda, Kauhiro, Takato, Norio, and Toba, Hiroma, A wide FSR waveguide double-ring resonator for optical FDM transmission systems. J. Lightwave Tech., 9 (1991) 728.
Suzuki, S., Oda, K., and Hibino, Y., Integrated-optic double-ring resonators with a wide free spectra range of 100 GHz. J. Lightwave Tech., 13 (1995) 1766.
Unger, H. G., Planar Optical Waveguides and Fibers, Section 2.8, Oxford University Press (1977).
Lens, G., Eggleton, B. J., Madsen, C. K., and Slusher, R. F., Optical delay lines based on optical filters. IEEE J. Quant. Elect., 37 (2001) 525.
Zhuang, L., Roeloffzen, C. G. H., Heideman, R. G., et al., Single-chip ring resonator-based 1 × 8 optical beam forming network in CMOS-compatible waveguide technology. IEEE Phot. Tech. Lett., 19 (2007) 1130.
Pozar, D. M., Microwave Engineering, John Wiley and Sons (2005).
Chung, H., Chang, W. S. C., and Adler, E. L., Modeling and optimization of traveling-wave electrode in LiNbO3 electro-optic modulators. IEEE J. Quant. Elect., 27 (1991) 608.
Betts, G. E., LiNbO3 external modulators and high performance analog links, Chapter 4 in RF Photonic Technology in Optical Fiber Links, ed. Chang, W. S. C., Cambridge University Press (2002).
Koyama, F. and Iga, K., Frequency chirping in external modulators. J. Lightwave Tech., 6 (1988) 87.
Gnauck, A. H., Korotky, S. K., Veselk, J. J., et al., Dispersion penalty reduction using an optical modulator with adustable chirp. IEEE Phot. Tech. Lett., 3 (1991) 916.
Loi, K. K., Multiple-quantum-well waveguide modulators at 1.3 μm wavelength. Ph.D. thesis, University of California San Diego (1998).
Loi, K. K., Hodiak, J. H., Mei, X. B., et al., Low-loss 1.3 μm MQW electro-absorption modulators for high-linearity analog optical links. IEEE Phot. Tech. Lett., 10 (1998) 1572.
Zhuang, Y., Peripheral coupled waveguide multiple quantum well electro-absorption modulator for high efficiency, high spurious free dynamic range and high frequency fiber optical link. Ph.D. thesis, University of California San Diego (2005).
Zhuang, Y., Chang, W. S. C., and Yu, P. K. L., Peripheral-coupled-waveguide MQW electro-absorption modulator for near transparency and high spurious free dynamic range RF fiber-optic link. IEEE Phot. Tech. Lett., 16 (2004) 2033.
Betts, G. E., Xie, X., Shubin, I., Chang, W. S. C., and Yu, P. K. L., Gain limit in analog links using electro-absorption modulators. IEEE Phot. Tech. Lett., 18 (2006) 2065.
Fells, J. A. J., White, I. H., Gibbon, M. A., et al., Controlling the chirp in electro-absorption modulators under digital modulation. Elect. Lett., 30 (1994) 2066.
Devaux, F., Sorel, Y., and Kerdiles, J. F., Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter. J. Lightwave Tech., 11 (1993) 1937.
Ido, T., Tanaka, S., Suzuki, M., et al., Ultra-high-speed multiple-quantum-well optical modulators with integrated waveguides. J. Lightwave Tech., 14 (1996) 2026.
Kawanishi, H., Yamauchi, Y., Mineo, N., et al., EAM-integrated DFB laser modules with more than 40-GHz bandwidth. IEEE Phot. Tech. Lett., 13 (2001) 954.
Howerton, M. W., Moeller, R. P., Greenblatt, A. S., and Krahenbuhl, R., Fully packaged, broad-band LiNbO3 modulator with low drive voltage. IEEE Phot. Tech. Lett., 12 (2000) 792.
Noguchi, K., Motomi, G., and Miyazawa, H., Millimeter-wave Ti-LiNbO3 optical modulators. J. Lightwave Tech., 16 (1998) 615.
Korotky, S. K., Eisenstein, G., Tucker, R. S., Veselka, J. J., and Raybon, G., Optical intensity modulation to 40 GHz using a waveguide electro-optic switch. Appl. Phys. Lett., 50 (1987) 1631.
Irmscher, S., Lewen, R., and Eriksson, U., InP-InGaAsP high-speed traveling-wave electro-absorption modulator with integrated termination resistors. IEEE Phot. Tech. Lett., 14 (2002) 923.
Wheeler, H. A., Formulas for the skin effect. Proc. IRE, 30 (1942) 412.
Purcel, R. A., Masse, D. J., and Hartwig, C. P., Losses in microstrip. IEEE Trans. Microwave Theory and Tech., MTT-16 (1968) 342.
Denlinger, E. J., Losses of microstrip lines. IEEE Trans. Microwave Theory and Tech., MTT-28 (1980) 513.
Chung, H., Optimization of microwave frequency traveling-wave LiNbO3 integrated-optic modulators. Ph.D. thesis, University of California San Diego (1990).
Howerton, M. M. and Burns, W. K., Broadband traveling wave modulators in LiNbO3, Chapter 5 in RF Photonic Technology in Optical Fiber Links, ed. Chang, W. S. C., Cambridge University Press (2002).