Skip to main content Accessibility help
  • Print publication year: 2014
  • Online publication date: June 2014

2 - Polymer physics and rheology


Several physical concepts that are of the utmost importance in fiber-forming processes are described in this chapter. The basic physical model of a flexible polymer macromolecule as a random walk is outlined in Section 2.1. The elongational and shear rheometry of polymer solutions and melts, which elucidate the stress relation with strains and strain rate, as well as stress relaxation is described in Section 2.2. The phenomenological rheological constitutive equations appropriate for the description of viscoelastic polymer solutions and melts are introduced in Section 2.3. The micromechanical foundations of the entropic elasticity responsible for viscoelasticity of polymer solutions and melts are sketched out in Section 2.4. Solidification and crystallization are discussed in Sections 2.5 and 2.6, respectively.

Polymer structure, macromolecular chains, Kuhn segment, persistence length

A linear polymer macromolecule can be represented as a succession of identical rigid segments connected at arbitrary angles, i.e. freely jointed with each other (Flory 1969, de Gennes 1979, Doi and Edwards (1986). Such a macromolecule is comprised of N segments, each of length b. The total length of a fully stretched macromolecule is then L = Nb. The rigid segments are called Kuhn segments. A real macromolecular chain consisting of n monomers is idealized as a random walk of N Kuhn segments, which are not monomers, nor is N identical to the degree of polymerization n. If the number of Kuhn segments in a macromolecule is not large, i.e. N is close to 1, it is rather inflexible, almost rod-like. On the other hand, if N >> 1, the macromolecule is very flexible, and on length scales that are significant compared to b, but much smaller than L, it can be viewed as a flexible string. Persistence length is another length scale that characterizes the resistance of segments of macromolecular chains to bending. It is of the same order of magnitude as the length of the Kuhn segments.

Related content

Powered by UNSILO
Astarita, G., Marrucci, G., 1974. Principles of Non-Newtonian Fluid Mechanics. McGraw-Hill, New York.
Avrami, M., 1939. Kinetics of phase change. I. General theory. J Chem. Phys. 7, 1103–1112.
Beyreuther, R., Brünig, H., 1997. High filament velocities in the underpressure spunbonding nonwoven process. Int. Fiber J. December, 129–134.
Bird, R. B., Curtiss, C. F., Armstrong, R. C., Hassager, O., 1987. Dynamics of Polymeric Liquids, John Wiley & Sons, New York.
Brünig, H., Beyreuther, R., Hoffman, H., 1999. The influence of quench air on fiber formation and properties in the melt spinning process. Int. Fiber J. April, 104–107.
Buchko, C. J., Chen, L. C., Shen, Y., Martin, D. C., 1999. Processing and microstructural characterization of porous biocompatible protein polymer thin filmsPolymer 40, 7397–7407.
Chang, H., Lodge, A. S., 1972. Comparison of rubberlike-liquid theory with stress-growth data for elongation of a low-density branched polyethylene melt. Rheol. Acta 11, 127–129.
Chen, C. H., White, J. L., Spruiell, J. E., Goswami, B. C., 1983. Dynamics, air drag and orientation development in the spunbonding process for nonwoven fabric. Tex. Res. J. January, 44–51.
Cheng, S. Z. D., Bu, H. S., Wunderlich, B., 1988. Double lamellae of low-molecular-mass fractions of poly(ethylene oxide) crystallized from the melt. Polymer 29, 579–583.
Choi, Y. B., Kim, S. Y., 1999. Effects of interface on the dynamic mechanical properties of PET/Nylon 6 bicomponent fibers. J. Appl. Polym. Sci. 74, 2083–2093.
Ciferri, A., Ward, I. M., 1979. Ultra-high Modulus Polymers. Appl. Sci. Publ., London.
de Gennes, P. G., 1979. Scaling Concepts in Polymer Physics. Ithaca, Cornell Univ. Press.
Dersch, R., Liu, T., Schaper, A. K., Greiner, A., Wendorff, J. H., 2003. Electrospun nanofibers: internal structure and intrinsic orientation. J. Polym. Sci.: Part A: Polym. Chem. 41, 545–553.
Doi, M., Edwards, S. F., 1986. The Theory of Polymer Dynamics. Clarendon Press, Oxford.
Fedorova, N., 2006. Investigation of the utility of islands in the sea bicomponent fiber technology in the spunbond process. PhD Thesis, NC State University.
Flory, P., 1969. Statistics of Chain Molecules. Interscience Publishers, New York.
Fong, H., Reneker, D. H., 1999. Elastomeric nanofibers of styrene-butadiene-styrene triblock copolymer. J. Polym. Sci., Polym. Phys. Ed. 37, 3488–3493.
Hajji, B., Spruiell, J. E., Lu, F. M., Malkan, S., Richardson, G. C., 1992. Modeling of the “Reicofil” spunbonding process. INDA Journal of Nonwovens Research 4, 16–21.
Han, T., Yarin, A. L., Reneker, D. H., 2008. Viscoelastic electrospun jets: initial stresses and elongational rheometry. Polymer 49, 1651–1658.
Holmes, D. R., Bunn, C. W., Smith, D. J., 1955. The crystal structure of polycaproamide: Nylon 6. J. Polym. Sci. 17, 159–177.
Jaeger, R., Schonherr, H., Vancso, G. J., 1996. Chain packing in electro-spun poly(ethylene oxide) visualized by atomic force microscopy. Macromolecules 29, 7634–7636.
Jena, A. K., Chaturvedi, M. C., 1992. Phase Transformations in Materials. Prentice Hall, Englewood Cliffs.
Joseph, D. D., 1990. Fluid Dynamics of Viscoelastic Liquids. Springer, New York.
Kikutani, T., Radhakrishnan, J., Arikawa, S., Takaku, A., Okui, N., Jin, X., Niwa, F., Kudo, Y., 1996. High-speed melt spinning of bicomponent fibers; mechanism of fiber structure development in poly(ethylene terephthalate)/polypropylene system. J. Appl. Polym. Sci. 62, 1913–1924.
Lamb, H., 1959. Hydrodynamics. Cambridge University Press, Cambridge.
Landau, L. D., Lifshitz, E. M., 1970. Theory of Elasticity. Pergamon Press, Oxford.
Landau, L. D., Lifshitz, E. M., 1987. Fluid Mechanics. Pergamon Press, New York.
Larson, R., 1988. Constitutive Equations for Polymer Melts and Solutions. Buttersworths, New York.
Li, Y., Goddard, W. A., 2002. Nylon 6 crystal structures, folds, and lamellae from theory. Macromolecules 35, 8440–8455.
Liu, W., Wu, Z., Reneker, D. H., 2000. Structure and morphology of poly(metaphenylene isophthalamide) nanofibers produced by electrospinning. Polymer Reprints 41 1193–1194.
Lodge, A., 1964. Elastic Liquids. Academic Press, London.
Loitsyanskii, L. G., 1966. Mechanics of Liquids and Gases. Pergamon Press, Oxford (the English translation of the 2nd Russian edition), and the 3rd Russian edition published by Nauka, Moscow, 1970.
Macosco, C. W., 1994. Rheology – Principles, Measurements and Applications. John Wiley & Sons, New York.
Maddams, W. F., Royaud, I. A. M., 1991. The application of Fourier transform Raman spectroscopy to the identification and characterisation of polyamides–II. Double- number. Spectrochim. Acta: Mol. Spectr. 47A, 1327–1333.
McKinley, G. H., Tripathi, A., 2000. How to extract the Newtonian viscosity from capillary breakup measurements in a filament rheometer. J. Rheol. 44, 653–669.
Mistra, S., Spruiell, J. E., Richeson, G. C., 1993. Investigation of the spunbonding process via mathematical modeling. INDA J. Nonwovens Res. 5, 13–19.
Nayfeh, A. H., 1981. Introduction to Perturbation Techniques. John Wiley & Sons, New York.
Penel-Pieron, L., Depecker, C., Seguela, R., Lefebvre, J. M., 2001. Structural and mechanical behavior of Nylon 6 films. Part 1. Identification and stability of the crystalline phases. J. Polym. Sci.: Part B: Polym. Phys. 39, 484–495.
Reiner, M., 1969. Deformation, Strain and Flow: An Elementary Introduction to Rheology. HK Lewis, London.
Reneker, D. H., Yarin, A. L., 2008. Electrospinning jets and polymer nanofibers. Polymer 49, 2387–2425.
Reneker, D. H., Yarin, A. L., Fong, H., Koombhongse, S., 2000. Bending instability of electrically charged liquid jets of polymer solutions in electospinning. J. Appl. Phys. 87, 4531–4547.
Reneker, D. H., Yarin, A. L., Zussman, E., Xu, H., 2007. Electrospinning of nanofibers from polymer solutions and melts. Adv. Appl. Mech. 41, 43–195.
Reynolds, J., Sternstein, S. S., 1964. Effect of pressure on the infrared spectra of some hydrogen‐bonded solids. J. Chem. Phys. 41, 47–51.
Russell, D. P., Beaumont, P. W. R., 1980. Structure and properties of injection-molded nylon-6: Part 1. Structure and morphology of nylon 6. J. Mater. Sci. 15, 197–207.
Sikorski, P., Atkins, E. D. T., 2001. The three-dimensional structure of monodisperse 5-amide nylon 6 crystals in the lambda-phase. Macromolecules 34, 4788–4794.
Sinha-Ray, S., Lee, M. W., Sinha-Ray, S., An, S., Pourdeyhimi, B., Yoon, S. S., Yarin, A. L., 2013a. Supersonic nanoblowing: A new ulta-stiff phase of nylon 6 in 20–50 nm confinement. J. Mater. Chem. C 1, 3491–3498.
Sinha-Ray, S., Srikar, R., Lee, C. C., Li, A., Yarin, A. L., 2011. Shear and elongational rheology of gypsum slurries. Applied Rheology 21, 63071.
Sinha-Ray, S., Yarin, A. L., Pourdeyhimi, B., 2013b. Prediction of angular and mass distribution in meltblown polymer laydown. Polymer 54, 860–872.
Smook, J., Pennings, A. J., 1983. Preparation of ultra-high strength polyethylene fibers by gel-spinning/hot-drawing at high spinning rates. Polym. Bull. 9, 75–80.
Srikar, R., Gambaryan-Roisman, T., Steffes, C., Stephan, P., Tropea, C., Yarin, A. L., 2009. Nanofiber coating of surfaces for intensification of spray or drop impact cooling. Int. J. Heat and Mass Transf. 52, 5814–5826.
Stelter, M., Wunderlich, J., Rath, S. K., Brenn, G., Yarin, A. L., Singh, R. P., Durst, F., 1999. Shear and extensional investigations in solutions of grafted/ungrafted amylopectin and polyacrylamide. J. Appl. Polym. Sci. 74, 2773–2782.
Stelter, M., Brenn, G., Yarin, A. L., Singh, R. P., Durst, F., 2000. Validation and application of a novel elongational device for polymer solutions. J. Rheol. 44, 595–616.
Stelter, M, Brenn, G., Yarin, A. L., Singh, R. P., Durst, F., 2002. Investigation of the elongational behavior of polymer solutions by means of an elongational rheometer. J. Rheol. 46, 507–527.
Takahashi, Y., Tadokoro, H., 1973. Structural studies of polyethers (-(CH2)M-O-)N.10. crystal-structure of poly(ethylene oxide)Macromolecules 6, 672–675.
Theron, S. A., Zussman, E., Yarin, A. L., 2004. Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 45, 2017–2030.
Tiwari, M. K., Bazilevsky, A. V., Yarin, A. L., Megaridis, C. M., 2009 Elongational and shear rheology of carbon nanotube suspensions-fluids with yield stress. Rheologica Acta 48, 597–609.
Wunderlich, T., Stelter, M., Tripathy, T., Nayak, B. R., Brenn, G., Yarin, A. L., Singh, R. P., Brunn, P. O., Durst, F., 2000. Shear and extensional rheological investigations in solutions of grafted and ungrafted polysaccharides. J. Appl. Polym. Sci. 77, 3200 – 3209.
Xu, H., Yarin, A. L., Reneker, D. H., 2003. Characterization of fluid flow in jets during electrospinning. Polymer Preprints 44, 51–52.
Yarin, A. L., 1990. Strong flows of polymeric liquids: 1. Rheological behavior. J. Non-Newton. Fluid Mech. 37, 113 – 138.
Yarin, A. L., 1992. Flow-induced on-line crystallization of rodlike molecules in fibre spinning. J. Applied Polymer Sci. 46, 873–878.
Yarin, A. L., 1993. Free Liquid Jets and Films: Hydrodynamics and Rheology. Longman Scientific & Technical and John Wiley & Sons, Harlow, New York.
Yarin, A. L., Koombhongse, S., Reneker, D. H., 2001. Bending instability in electrospinning of nanofibers. J. Appl. Phys. 89, 3018–3026.
Yarin, A. L., Sinha-Ray, S., Pourdeyhimi, B., 2010. Meltblowing: II-Linear and nonlinear waves on viscoelastic polymer jets. J. Appl. Phys. 108, 034913.
Yarin, A. L., Sinha-Ray, S., Pourdeyhimi, B., 2011. Meltblowing: Multiple jets and fiber-size distribution and lay-down patterns. Polymer 52, 2929–2938.
Yarin, A. L., Zussman, E., Theron, A., Rahimi, S., Sobe, Z., Hassan, D., 2004. Elongational behavior of gelled propellant simulants. J. Rheol. 48, 101–116.
Yoshimura, M., Iohara, K., Nagai, H., Takahashi, T., Koyama, K., 2003. Structure formation of blend and sheath/core conjugated fibers in high-speed spinning of PET, including a small amount of PMMA. J. Macr. Sci.: Part B–Physics B42, 325–339.
Zhao, Z., Zheng, W., Tian, H., Yu, W., Han, D., Li, B., 2007. Crystallization behaviors of secondarily quenched nylon 6. Mater. Lett. 61, 925–930.
Ziabicki, A. 1976. Fundamentals of Fibre Formation. John Wiley & Sons, London.
Zussman, E., Rittel, D., Yarin, A. L., 2003. Failure modes of electrospun nanofibers. Appl. Phys. Lett. 82, 3958–3960.