Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T13:58:14.633Z Has data issue: false hasContentIssue false

10 - Small Habitable Worlds

from Part IV - Habitability of the Solar System

Published online by Cambridge University Press:  05 December 2012

Chris Impey
Affiliation:
University of Arizona
Jonathan Lunine
Affiliation:
Cornell University, New York
José Funes
Affiliation:
Vatican Observatory, Vatican City
Get access

Summary

Introduction

The astrobiological relevance of small bodies has been acknowledged for several decades with regard to their role in delivering volatiles to Earth and the inner Solar system (see Lunine 2006 for a review). However, until recently these objects were considered too small to sustain a deep liquid layer and hydrothermal activity over the long term. The last decade has been marked by a dramatic evolution of our understanding of small bodies, from observational constraints and theoretical arguments. The discoveries of geological activity on Saturn's satellite Enceladus and Pluto's satellite Charon have prompted theoreticians to develop new approaches for modeling the interiors of these objects, some of which are larger and/or warmer than Jupiter's satellite Europa, considered an archetype of a potentially habitable icy world. The purpose of this chapter is to evaluate the habitability potential of certain small bodies, i.e. their potential for sheltering life, whether life could develop in these environments, or was brought in from a different source.

This chapter focuses on large wet asteroids, small icy satellites, and trans-Neptunian objects (e.g. see the representatives of each class in Figure 10.1). We evaluate the occurrence in each class of objects of certain parameters that determine their capacity to sustain habitable conditions: the energy necessary to support chemical activity and chemical conditions amenable to the thriving of living organisms. The latter aspect is difficult to fully fathom as life has been found in the most surprising environments and based on unexpected nutrient systems. The question of the origin of life in favorable environments is considered in Chapter 2.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramov, O.Spencer, J. R. 2009 Endogenic heat from Enceladus’ south polar fractures: new observations, and models of conductive surface heatingIcarus 199 189CrossRefGoogle Scholar
A’Hearn, M. F.Feldman, P. D. 1992 Water vaporization on CeresIcarus 98 54CrossRefGoogle Scholar
Allen, D. E.Seyfried, W. E. 2004 Serpentinization and heat generation: constraints from Lost City and rainbow hydrothermal systemsGeochimica et Cosmochimica Acta 68 1347CrossRefGoogle Scholar
Barr, A. C. 2008 Mobile lid convection beneath Enceladus’ south polar terrainJournal of Geophysical Research 113 doi:10.1029/2008JE003114CrossRefGoogle Scholar
Barucci, M. A.Merlin, F.Guilbert, A. 2008 Surface composition and temperature of the TNO OrcusAstronomy and Astrophysics 479 L13CrossRefGoogle Scholar
Boxe, C. S.Hand, K. P.Nealson, K. H. 2012
Brearley, A. J. 2006 584
Busarev, V. V.Dorofeeva, V. A.Makalkin, A. B. 2003 345doi:10.1023/B:MOON.0000031951.59946.97CrossRef
Campins, H.Hargrove, K.Pinilla-Alonso, N. 2010 Water ice and organics on the surface of the asteroid 24 ThemisNature 464 1320CrossRefGoogle ScholarPubMed
Canup, R. M. 2005 A giant impact origin of Pluto–CharonScience 28 546CrossRefGoogle Scholar
Castillo-Rogez, J.Lunine, J. I. 2010 Evolution of Titan's rocky core constrained by Cassini observationsGeophysical Research Letters 37CrossRefGoogle Scholar
Castillo-Rogez, J. C.McCord, T. B. 2010 Ceres’ evolution and present state constrained by shape dataIcarus 205 443CrossRefGoogle Scholar
Castillo-Rogez, J. C.Schmidt, B. E. 2010 Geophysical evolution of the Themis family parent bodyGeophysical Research Letters 37 doi:10.1029/2009GL042353CrossRefGoogle Scholar
Castillo-Rogez, J.Matson, D. L.Sotin, C. 2007 190 179doi:10.1016/j.icarus.2007.02.018CrossRef
Castillo-Rogez, J. C.Johnson, T. V.Lee, M. H. 2009 26Al decay: heat production and a revised age for IapetusIcarus 204 658CrossRefGoogle Scholar
Choukroun, M.Chevrier, V.Kieffer, S. 2011 Clathrate hydrates in the Solar SystemThe Science of Solar System IcesGudipati, M. S.Castillo-Rogez, J. C.SpringerGoogle Scholar
Clark, R. N.Brown, R. H.Jaumann, R. 2005 435 66
Cohen, B. A.Coker, R. F. 2000 Modeling of liquid water on CM meteorite parent bodies and implications for amino acid racemizationIcarus 145 369CrossRefGoogle Scholar
Collins, G. C.Barr, A. C. 2008 P51C
Cook, J. C.Desch, S. J.Roush, T. L. 2007 Near-infrared spectroscopy of Charon: possible evidence for cryovolcanism on Kuiper Belt objectsAstrophysical Journal 663 1406CrossRefGoogle Scholar
Cruikshank, D. P.Wegryn, E.Dalle Ore, C. M. 2008 Hydrocarbons on Saturn's satellites Iapetus and PhoebeIcarus 193 334CrossRefGoogle Scholar
Cuzzi, J. N.Weidenschilling, S. J. 2006 Particle-gas dynamics and primary accretionMeteorites and the Early Solar SystemLauretta, D.McSween, H.TucsonUniversity of Arizona Press353Google Scholar
de Leon, J.Campins, H.Tsiganis, K. 2010 Origin of the near-Earth asteroid Phaethon and the Geminids meteor showerBulletin of the American Astronomical Society 42 1058Google Scholar
Desch, S. J.Cook, J. C.Doggett, T. C.Porter, S. B. 2009 Thermal evolution of Kuiper Belt objects, with implications for cryovolcanismIcarus 202 694CrossRefGoogle Scholar
Dodson-Robinson, S. E.Willacy, K.Bodenheimer, P. 2009 Ice lines, planetesimal composition and solid surface density in the solar nebulaIcarus 200 672CrossRefGoogle Scholar
Frank, E. A.Mojzsis, S. J. 2010 P33B
Gilmour, I.Sephton, M. A. 2004 An Introduction to AstrobiologyCambridgeCambridge University PressGoogle Scholar
Glein, C. R.Shock, E. L. 2010 Sodium chloride as a geophysical probe of a subsurface ocean on EnceladusGeophysical Research Letters 37CrossRefGoogle Scholar
Grimm, R. E.McSween, H. Y. 1989 Water and the thermal evolution of carbonaceous chondrite parent bodiesIcarus 83 244CrossRefGoogle Scholar
Hsieh, H.Jewitt, D. 2006 A population of comets in the main asteroid beltScience 312 561CrossRefGoogle ScholarPubMed
Hussmann, H. 2006 Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-Neptunian objectsIcarus 185 258CrossRefGoogle Scholar
Johnson, T. V.Lunine, R. A. 2005 Saturn's moon Phoebe as a captured body from the outer Solar SystemNature 435 69CrossRefGoogle ScholarPubMed
Kargel, J. S.Lunine, J. I. 1998 Clathrate hydrates on Earth and in the Solar SystemSolar System IcesSchmitt, B.Norwell, MAKluwer Academic Press97CrossRefGoogle Scholar
Keil, K. 2000 Thermal alteration of asteroids: evidence from meteoritesPlanetary and Space Science 48 887CrossRefGoogle Scholar
Kenyon, S. J.Bromley, B. C.O’Brien, D. P.Davis, D. R. 2008 Formation and collisional evolution of Kuiper Belt objectsThe Solar System Beyond NeptuneBarucci, M. A.Boehnhardt, H.Cruikshank, D. P.Morbidelli, A.TucsonUniversity of Arizona Press293Google Scholar
Kieffer, S. W.Lu, X.Bethke, C. M. 2006 A clathrate reservoir hypothesis for Enceladus’ south polar plumeScience 314 1764CrossRefGoogle ScholarPubMed
Lebofsky, L. A. 1978 Asteroid 1 Ceres – evidence for water of hydrationMonthly Notices of the Royal Astronomical Society 182 17PCrossRefGoogle Scholar
Licandro, J.Campins, H.Kelley, M. 2011 65 Cybele: detection of small silicate grains, water-ice, and organicsAstronomy and Astrophysics 525 doi:10.1051/0004-6361/201015339CrossRefGoogle Scholar
Lim, L. F.McConnochie, T.Bell, J. IIIHayward, T. 2005 Thermal Infrared (8–13 μm) spectra of 29 asteroids: the Cornell Mid-Infrared Asteroid Spectroscopy (MIDAS) surveyIcarus 173 385doi:10.1016/j.icarus.2004.08.005CrossRefGoogle Scholar
Lisse, C.Bar-Nun, A.Laufer, D. 2012
Lunine, J. I. 2006 Origin of water ice in the Solar SystemMeteorites and the Early Solar System II Lauretta, D. S.McSween, H. Y.TucsonUniversity of Arizona Press309Google Scholar
Manga, M.Wang, C.-Y. 2007 Pressurized oceans and the eruption of liquid water on Europa and EnceladusGeophysical Research Letters 34CrossRefGoogle Scholar
Marion, G. M.Kargel, K. S.Catling, D. C.Jakubowski, S. D. 2005 Effects of pressure on aqueous chemical equilibria at subzero temperatures with applications to EuropaGeochimica et Cosmochimica Acta 69 259CrossRefGoogle Scholar
Masiero, J.Mainzer, A.Grav, T. 2011
Matson, D. L.Castillo-Rogez, J. C.McKinnon, W. B. 2009 doi:10.1007/978-1-4020-9217-6_18CrossRef
McCord, T. B.Sotin, C. 2005 Ceres: evolution and current stateJournal of Geophysical Research 110CrossRefGoogle Scholar
McCord, T. B.Castillo-Rogez, J. C.Rivkin, A. S. 2011 163 63
Merlin, F.Barucci, M. A.Bergh, C. 2010 Chemical and physical properties of the variegated Pluto and Charon surfacesIcarus 210 930CrossRefGoogle Scholar
Milliken, R. E.Rivkin, A. S. 2009 Brucite and carbonate assemblages from altered olivine-rich materials on CeresNature Geoscience 2 258CrossRefGoogle Scholar
Möhlmann, D. 2010 The three types of liquid water in the surface of present MarsInternational Journal of Astrobiology 9 45CrossRefGoogle Scholar
Morbidelli, A.Bottke, W. F.Nesvorny, D.Levison, H. F. 2009 Asteroids were born bigIcarus 204 558CrossRefGoogle Scholar
Morris, M. A.Desch, S. J. 2009 Phyllosilicate emission from protoplanetary disks: is the indirect detection of extrasolar water possible?Astrobiology 9 965CrossRefGoogle ScholarPubMed
Mousis, O.Alibert, Y. 2005 On the composition of ices incorporated in CeresMonthly Notices of the Royal Astronomical Society 358 188CrossRefGoogle Scholar
Nimmo, F. 2004 Stresses generated in cooling viscoelastic ice shells: application to EuropaJournal of Geophysical Research 109CrossRefGoogle Scholar
Nimmo, F.Spencer, J. R.Pappalardo, R. T.Mullen, M. E. 2007 Shear heating as the origin of the plumes and heat flux on EnceladusNature 447 289CrossRefGoogle ScholarPubMed
Parkinson, C. D.Liang, M. C.Yung, Y. L.Kirschvink, J. L. 2008 Habitability of Enceladus: planetary conditions for lifeOrigin of Life and Evolution in the Biosphere 38 355CrossRefGoogle ScholarPubMed
Pearson, V. K.Sephton, M. A.Franchi, I. A. 2006 Carbon and nitrogen in carbonaceous chondrites: elemental abundances and stable isotopic compositionsMeteoritics and Planetary Science 41 1899CrossRefGoogle Scholar
Postberg, F.Kempf, S.Schmidt, J. 2009 Sodium salts in E-ring ice grains from an ocean below the surface of EnceladusNature 459 1098CrossRefGoogle ScholarPubMed
Rivkin, A. S.Emery, J. P. 2010 Detection of ice and organics on an asteroidal surfaceNature 464 1322CrossRefGoogle ScholarPubMed
Robuchon, G.Nimmo, F. 2011 Thermal evolution of Pluto and implications for surface tectonics and a subsurface oceanIcarus 216 426CrossRefGoogle Scholar
Ross, R. G.Kargel, J. S. 1998 Thermal conductivity of solar system ices, with special reference to Martian polar capsSolar System IcesSchmitt, B.Norwell, MassachusettsKluwer32Google Scholar
Ruiz, J.Fairén, A. G. 2005 Seas under ice: stability of liquid-water oceans within icy worldsEarth, Moon, and Planets 97 79CrossRefGoogle Scholar
Schenk, P.Zahnle, K. 2007 On the negligible surface age of TritonIcarus 192 135CrossRefGoogle Scholar
Schmidt, B. E.Castillo-Rogez, J. C. 2011
Schmidt, B. E.Thomas, P. C.Bauer, J. M. 2009 The shape and surface variation of 2 Pallas from the Hubble Space TelescopeScience 326 275CrossRefGoogle ScholarPubMed
Schorghofer, N. 2008 The lifetime of ice on main belt asteroidsAstrophysical Journal 682 697CrossRefGoogle Scholar
Shock, E. L.McKinnon, W. B. 1993 Hydrothermal processing of cometary volatiles – applications to TritonIcarus 106 464CrossRefGoogle ScholarPubMed
Sleep, N.Meibom, A.Fridriksson, T. 2004 H2-rich fluids from serpentinization: geochemical and biotic implicationsProceedings of the National Academy of Sciences 101 12818CrossRefGoogle ScholarPubMed
Spencer, J. R.Barr, A. C.Esposito, L. W. 2009 Enceladus: an active cryovolcanic satelliteSaturn after Cassini–HuygensNew YorkSpringer683CrossRefGoogle Scholar
Spitale, J. N.Porco, C. C. 2007 Association of the jets of Enceladus with the warmest regions on its south-polar fracturesNature 449 695CrossRefGoogle ScholarPubMed
Stern, S. A.McKinnon, W. B. 2000 Triton's surface and impactor population revisited in light of Kuiper Belt fluxes: evidence for small Kuiper Belt objects and recent geological activityAstronomical Journal 119 945CrossRefGoogle Scholar
Thomas, C.Parker, J. W.McFadden, L. A. 2005 Differentiation of the asteroid Ceres as revealed by its shapeNature 437 224CrossRefGoogle ScholarPubMed
Travis, B. J.Schubert, G. 2005 Hydrothermal convection in carbonaceous chondrite parent bodiesEarth and Planetary Science Letters 240 234CrossRefGoogle Scholar
Tyler, R. H. 2008 Strong ocean tidal flow and heating on moons of the outer planetsNature 456 770CrossRefGoogle ScholarPubMed
Vance, S.Harnmeijer, J.Kimura, J. 2007 Hydrothermal systems in small ocean planetsAstrobiology 7 987CrossRefGoogle ScholarPubMed
WaiteJr., J. H.Lewis, W. S.Magee, B. 2009 Ammonia, radiogenic Ar, organics, and deuterium measured in the plume of Saturn's icy moon EnceladusNature 460 487Google Scholar
Walsh, K. J.Morbidelli, A.Raymond, S. N. 2011 Origin of the Asteroid Belt and Mars’ small massBulletin of the American Astronomical Society 42 947Google Scholar
Wasserburg, G. J.Papanastassiou, D. A. 1982 Some short-lived nuclides in the early Solar SystemEssays in Nuclear AstrophysicsBarnes, C. A.Clayton, D. D.Schramm, D. N.New YorkCambridge University Press77Google Scholar
Weidenschilling, S. J.Cuzzi, J. 2006 Accretion dynamics and timescales: relation to chondritesMeteorites and the Early Solar Systems IILauretta, D.McSween, H. Y.TucsonUniversity of Arizona Press473Google Scholar
Wong, M. H. 2008 Oxygen and other volatiles in the giant planets and their satellitesOxygen in the Solar SystemMacPherson, G. J.Chantilly, V. A.Mineralogical Society of America241Google Scholar
Wynn-Williams, D. D.Cabrol, N. A.Grin, E. A. 2001 Brines in seepage channels as eluants for subsurface relict biomolecules on MarsAstrobiology 1 165CrossRefGoogle ScholarPubMed
Zolotov, M. Yu. 2009 204 183

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×